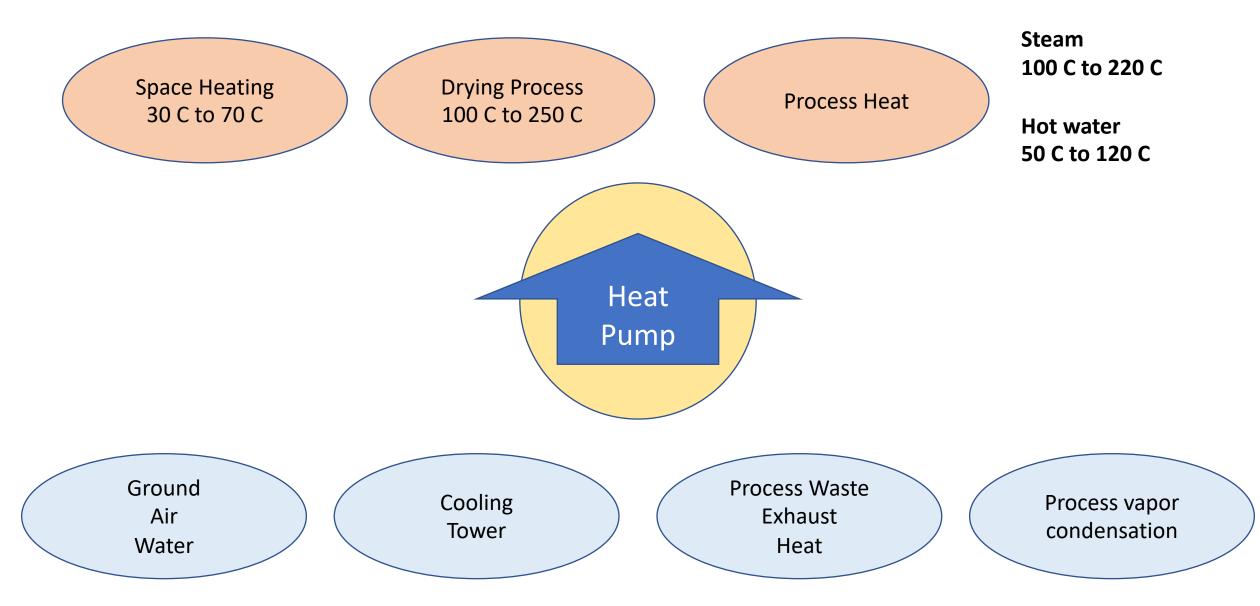

High Temperature (Industrial) Heat Pumps: An Untapped US Industrial **Process Energy Efficiency** Opportunity

> Paul Scheihing, 50001 Strategies In collaboration with Neal Elliott and Ed Rightor, ACEEE Low Temperature Industrial Processes Workshop February 3, 2021

Fundamentals of Heat Pumps

 $COP_{heating} = Q_{sink}/Energy In$


 $COP_{carnot, heating} = T_{sink} / (T_{sink} - T_{source})$

COP _{heating} = Carnot Eff. * COP _{carnot, heating}

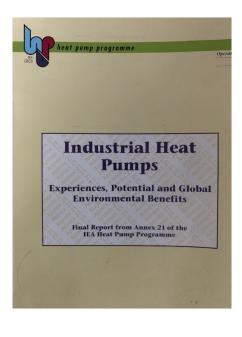
Heat pump Carnot Eff. ranges from ~30 - 60%

Less lift temperature equals greater heat pump efficiency

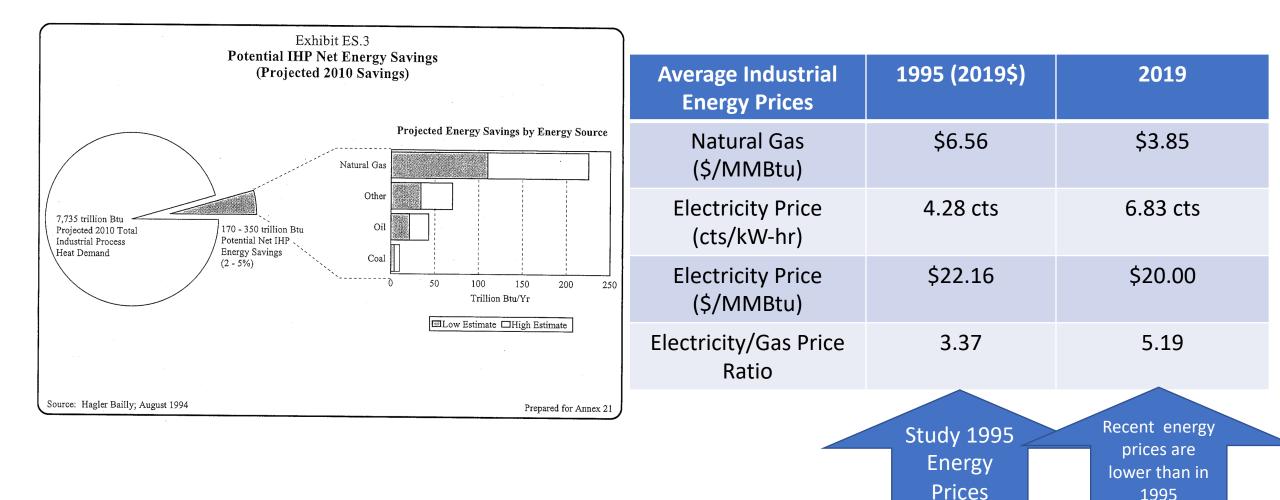
Typical HTHP heat sources and sinks

US DOE Heat Pump Program & IEA Annex 21 Study

IEA Annex 21 Study (1993 – 1995)

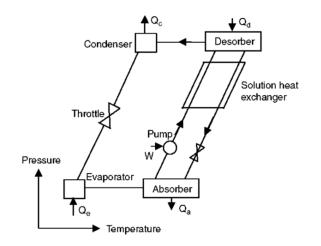

- Industrial Heat Pumps: Experiences, Potential and Global Environmental Benefits

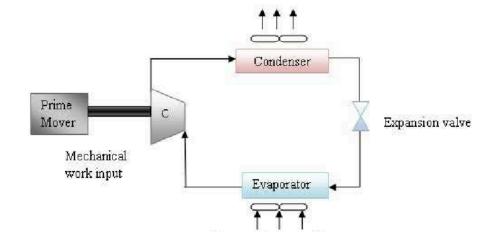
- ➢ 8 countries collaborated
- > 35 processes evaluated for IHP potential across all 8 countries
- > Each country performed IHP market study (see right hand box for US IHP Study)


US IHP Market Study

- US study screened 42 processes; 26 found for economic IHP potential
- 8 processes accounted for most (68%) of IHP economic energy savings
 - ➢ Corn milling
 - ➤ TMP pulp
 - Unbleached kraft linerboard
 - Beet sugar refining
 - Bleached kraft pulp
 - Bleached kraft pulp and paper
 - High fructose corn syrup
 - Synthetic rubber

https://heatpumpingtechnologies.org/annex21/


US DOE 1995 Industrial Heat Pump Market Study found 2-5% net process heat savings; 170 - 350 TBtu/yr

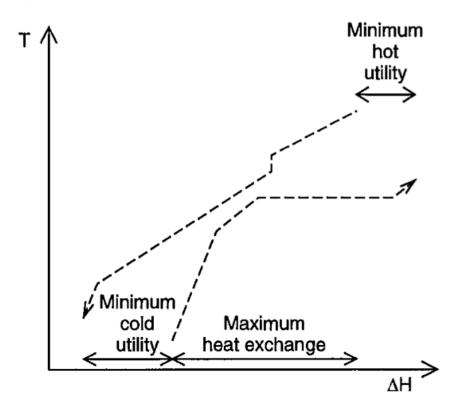


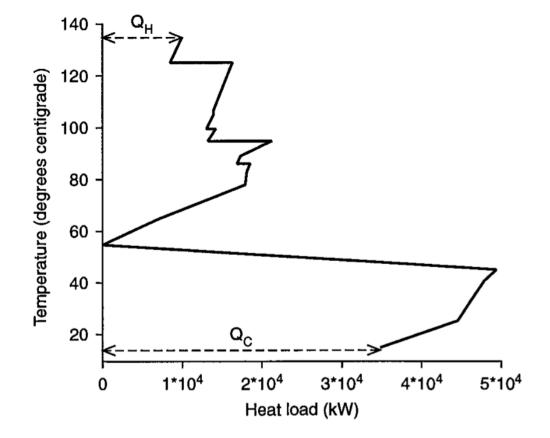
Annex 21 Global Environmental Benefits of IHPs: US Study, Prepared for US DOE & EPRI by RCG Hagler Bailey, Aug 1994

4 High Temperature Heat Pump Types

Cycle Type	High Temperature Heat Pump Type
Closed Cycle	Mechanical vapor compression heat pump
Closed Cycle	Heat activated heat pump: absorption or heat transformer
Open Cycle	Mechanical vapor re-compression (MVR) heat pump
Open Cycle	Thermal vapor re-compression (TVR) or steam ejector heat pump

Closed Cycle Mechanical Vapor Compression Heat Pump

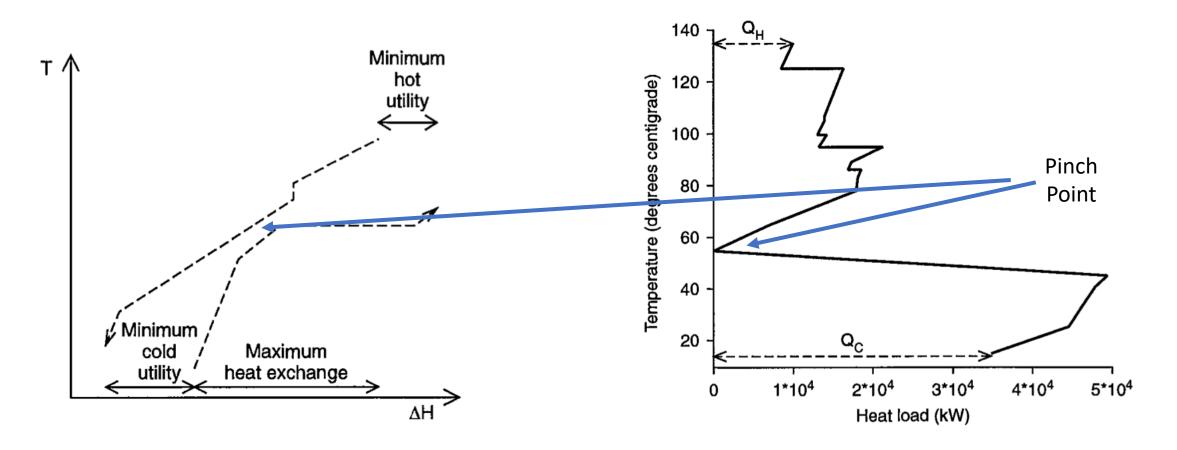



Mechanical vapor recompressor

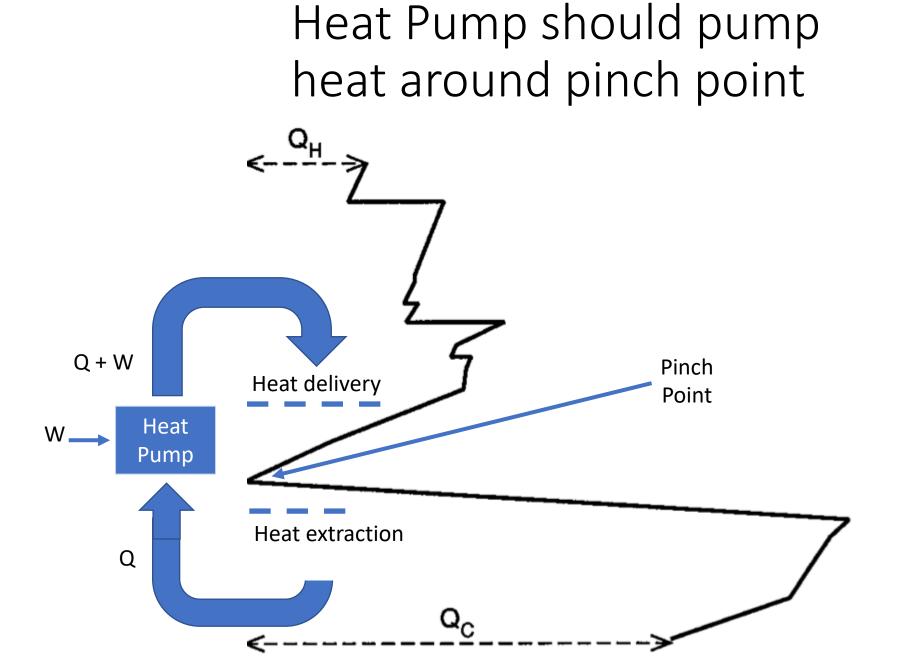
Steam ejector

Absorption heat pump

Heat Integration and Proper Placement of HTHPs with PINCH technology



Example Composite curves of heating and cooling streams


Example Grand Composite Curve

Heat Integration and Proper Placement of HTHPs with PINCH technology

Example Composite curves of heating and cooling streams

Example Grand Composite Curve

Key IHP barriers in the US

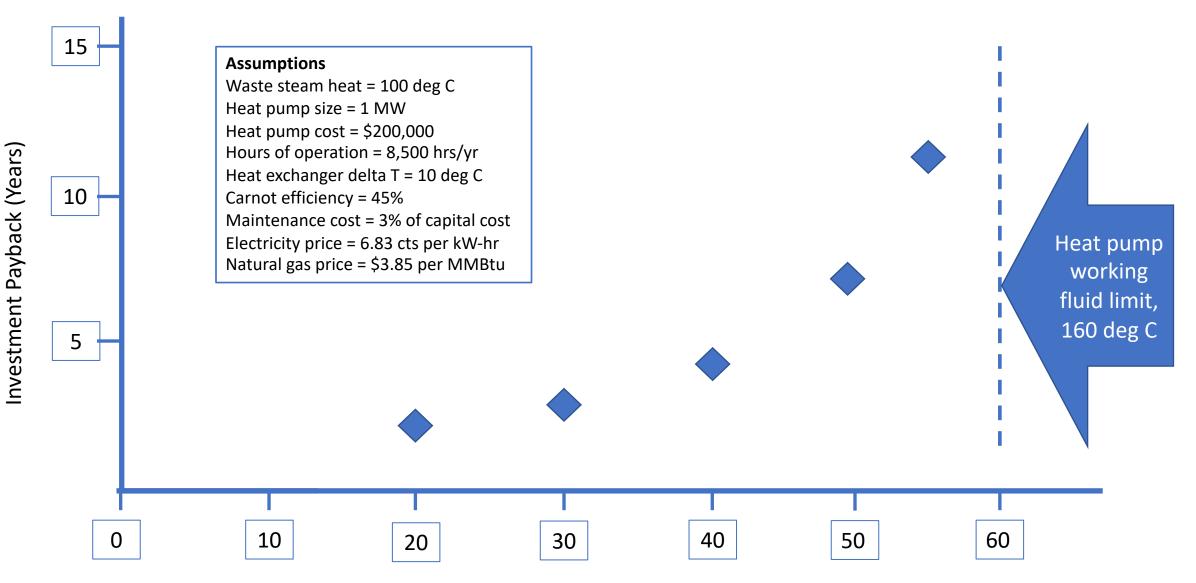
Low level of awareness of the technical possibilities and economic feasibility among end users, engineering firms, suppliers, etc.

Lack of knowledge on how to integrate heat pumps into existing industrial processes

Lack of best practice examples to create trust in new type of process heating solution

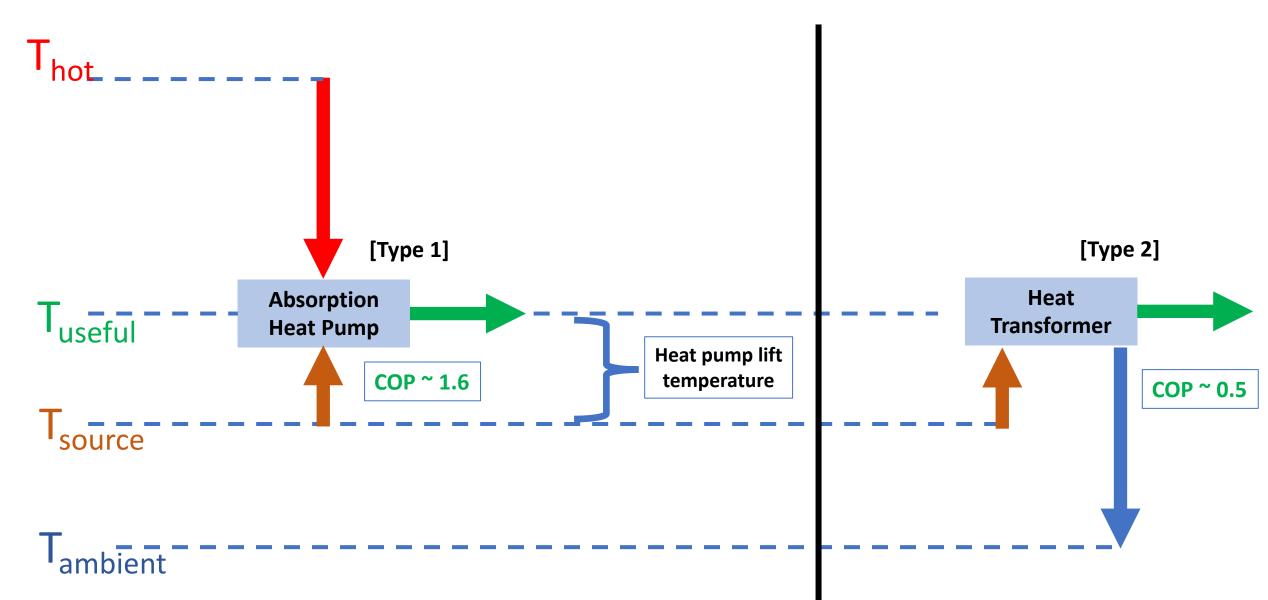
Most times one-off, tailor-made design and many times need to be integrated to process

Long payback on investment due to low natural gas price and/or high electric to natural gas price ratio


Competing process heating energy efficiency options

Heat storage could be required

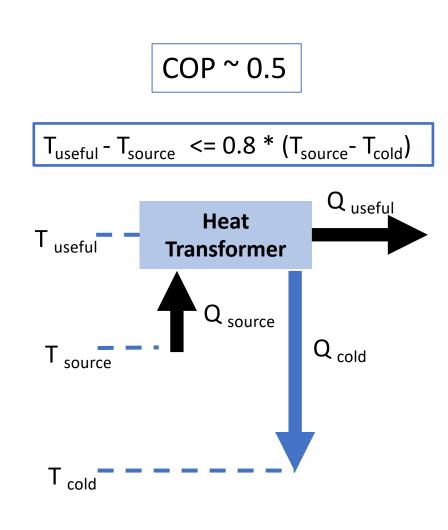
Existing technology limited by heat pump output temperature (~160 deg. C, 320 deg. F)


Limited domestic equipment suppliers – EU, Japan

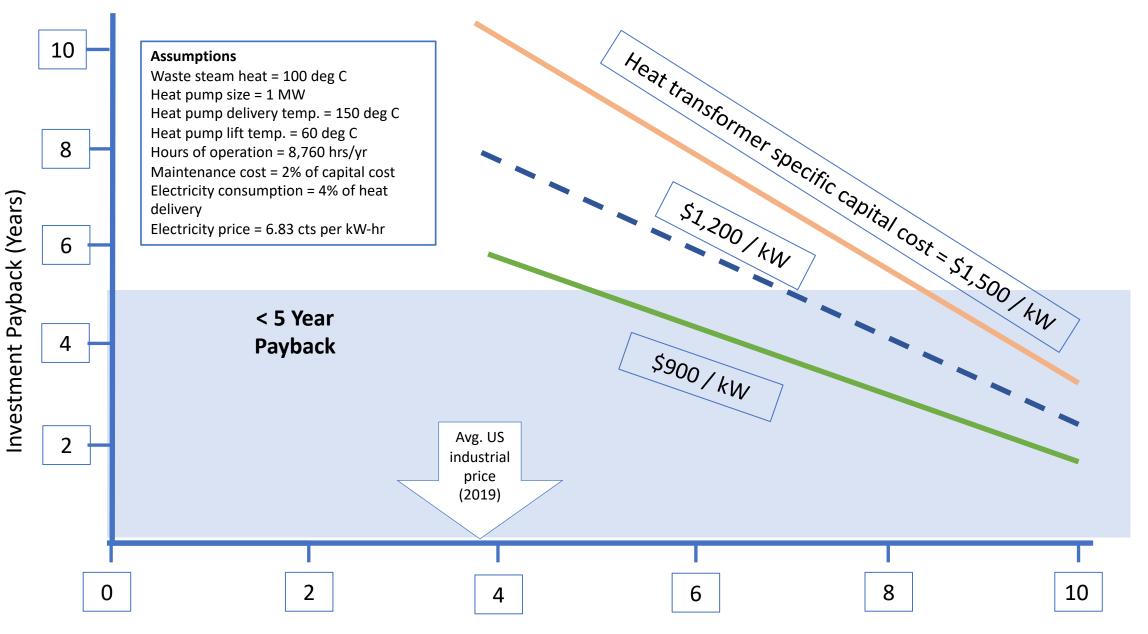
Mechanical Vapor Compression Heat Pump Payback versus Heat Pump Lift Temperature

Heat Pump Lift Temperature (degrees C)

What are major technology opportunities that are NOT currently being researched? Advanced High Temperature Heat-Activated Heat Pumps – Type 1 and 2



Example Economics for 1 MW Heat Transformer



Payback = \$1,500,000 / (\$194,000 - \$54,000) = 10.7 yrs

Note 1 – assume 1MW Heat Transformer produces 3750 lbs steam per hr @ 150C and avoids boiler steam and cooling tower costs @ \$5.90 per 1000 lbs steam. Boiler steam costs account for energy cost (natural gas cost and boiler combustion efficiency) and chemical cost needed to treat boiler water. Private communication Riyaz Papar, January, 2021

Heat Transformer Payback versus Natural Gas Price

Natural gas price (\$ per MMBtu)

Emerging heat-activated heat pump technology

QPinch

Heat-activated heat pump by reversible chemical reaction

phosphoric acid to diphosphoric and water

 $H_4P_2O_7 + H_2O \rightleftharpoons 2H_3PO_4$

```
T<sub>sink</sub> up to 220 deg. C
```

Minimal electricity requirements; waste heat-driven

```
Lift temperature= 40 - 100 deg. C
```

Multi megawatt demos planned; independent validation needed for:

- Cost and performance
- Reliability and material durability
- Impact on process control

www.qpinch.com

What are the most critical research priorities in HTHPs?

- Heat-activated heat pumps R&D should focus on:
- Developing various Type 1 and 2 cycles and configurations to demonstrate performance and cost
- Demonstrate heat pump material durability in actual industrial settings and conditions.
- Demonstrate heat pump operability and reliability in varied industrial processes to prove out economics
- Prove heat pump working fluids are safe and environmentally benign

• Technology development R&D targets

Specific capital cost (total installation) < \$1,000 per kW
 Heat delivery > 200 deg. C and ideally > 250 deg. C
 Lift temperature up to 100 deg. C

Conclusions

There's reason to be optimistic about High Temperature Heat Pumps

- New perspective by industry: Companies that are serious about decarbonizing their energy footprints will consider HTHPs if they yield significant (>5 – 10%) energy savings and decarbonization at a reasonable payback, e.g., less than 5 years.
- 2. R&D justified to build domestic High Temperature Heat Pump industry: Advanced heat-activated heat pumps could be a game-changer to greatly expand the number of economic opportunities in the US process industries - even with only modest increases in natural gas prices. Cost-shared R&D in the US should help build the domestic supplier base for high temperature heat pumps.
- **3. Technology development is not enough:** Further technology development is needed and justified but needs to be coupled with effective energy policy and/or incentives to motivate all participants in HTHP market end users, vendors, engineering firms and energy efficiency program administrators/utilities.

Background Slides

Mechanical vapor compression heat pumps; reference Cordin Arpagaus, 2020

Supplier update – market overview

Selection of industrial heat pumps with heat supply temperature ≥ 90 °C

				-			
Manufacturer	Country	Product	Refrigerant	Max. T _{Supply}	Heating capacity	Compressor type	
Kobe Steel		SGH 165	R134a/R245fa	165 °C	70 – 660 kW		
(Kobelco steam grow heat pump)		SGH 120	R245fa	120 °C	70 – 370 kW	Double screw	
		HEM-HR90,-90A	R134a/R245fa	90 °C	70 – 230 kW		
Viking		HeatBooster	R1336mzz(Z)	160 °C	28 – 188 kW	Piston (4 parallel)	
Heating Engines AS		HeatBooster S4	R245fa	130 °C	92 – 172 kW		
Ochsner		IWWDSS R2R3b	R134a/ÖKO1	130 °C	170 – 750 kW	Screw	
		IWWDS ER3b	ÖKO1 (R245fa)	130 °C	120 – 400 kW	(TWIN unit upto 1,5 MW)	
		IWWHS ER3b	ÖKO1 (R245fa or R1233zd)	95°C	60 – 640 kW		
Frigopol (& AIT)		HighButane 2.0	R600	130 °C	50 kW	Piston	
Hybrid Energy		Hybrid Heat Pump	R717 (NH ₃)	120 °C	0.25 – 2.5 MW	Piston	
Mayakawa		Eco Sirocco	R744 (CO ₂)	120 °C	65 – 90 kW	Screw	
Mayekawa		Eco Cute Unimo	R744 (CO ₂)	90 °C	45 – 110 kW		
Combitherm		HWW 245fa	R245fa	120 °C	62 – 252 kW	Piston	
		HWW R1234ze	R1234ze(E)	95 °C	85 – 1301 kW	FISION	
ENGIE (ex-Dürr thermea)		Thermeco ₂ HHR	R744 (CO ₂)	110 °C	45 – 1'200 kW	Piston (up to 6 parallel)	
Oilon		ChillHeat	R134a	100 °C	30 – 1'000 kW	Piston	
		P60 bis P450	R1234ze(E)			(up to 6 parallel)	
Friotherm		Unitop 22	R1234ze(E)	95 °C	0.6 – 3.6 MW	Turbo	
		Unitop 50	R134a	90 °C	9 – 20 MW	(two-stage)	
Star Refrigeration		Neatpump	R717 (NH ₃)	90 °C	0.35 – 15 MW	Screw (Vilter VSSH 76 bar)	
GEA Refrigeration		GEA Grasso FX P 63 bar	R717 (NH ₃)	90 °C	2 – 4.5 MW	Double screw (63 bar)	
		HeatPAC HPX	R717 (NH ₃)	90 °C	326 – 1'324 kW	Piston (60 bar)	
Johnson Controls		HeatPAC Screw	R717 (NH ₃)	90 °C	230 – 1'315 kW	Screw	
		Titan OM	R134a	90 °C	5 – 20 MW	Turbo	
Mitsubishi		ETW-L	R134a	90 °C	340 – 600 kW	Turbo (two-stage)	
Viessmann		Vitocal 350-HT Pro	R1234ze(E)	90 °C	148 – 390 kW	Piston (2 to 3 in parallel)	

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

Ratio of Industrial electricity/gas Price

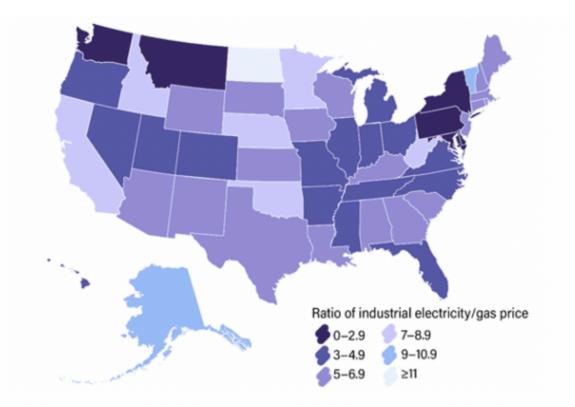
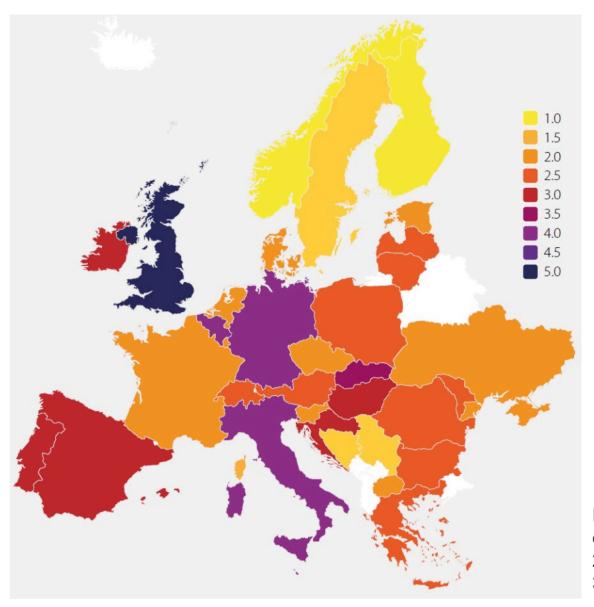



Figure 11. Ratio of industrial electricity to gas price by state. Calculation based on average annual electricity prices and Henry Hub natural gas prices within states. *Sources:* EIA 2020b, 2020e.

Rightor, Whitlock, Elliott ACEEE 2020

Market challenges

Electricity to gas price ratio

For small scale industrial end-users with 2 GWh/a to 20 GWh/a electricity 3 GWh/a to 28 GWh/a gas

A2EP Briefing: Advances in industrial heat pumps – 3 September 2020

cordin.arpagaus@ost.ch

IHP types: Pros and Cons. What are the pros and cons of various HTHP types?

Туре	Prime Mover	Pros	Cons	Typical COP
Closed cycle compression	Electricity (Motor) or Fuel (Heat Engine)	 Good COP for moderate lift temperature Multiple vendors Electricity only on site 	 Requires low electric-fuel price ratio Limited supply temperature to ~320F supply 	3 to 10
Heat-activated (Type 1)	Fuel (Process Heat or Steam)	 Uses lower cost fuel as driver Minimal moving parts Higher supply temperature ~400F 	 High CapEx Limited vendors Emerging technology 	1.6
Heat-activated (Type 2)	Waste heat	 Uses free waste heat as driver Minimal moving parts Higher supply temperature ~400F 	 High CapEx Limited vendors Emerging technology Requires cold sink T 	0.5
MVR	Electricity (Motor) or Fuel (Heat Engine)	 Good COP for moderate lift temperature Electricity only on site 	 Requires low electric-fuel price ratio High speed compressor 	3 to 10
TVR	Steam	Low CapExSimple and low maintenance	- Low energy efficiency	2.0