


## Bio-Manufacturing Solutions Workshop February 10<sup>th</sup> 2021

Aindrila Mukhopadhyay VP, Biofuels and Bioproducts Joint BioEnergy Institute Bioscience Area, LBNL



## Energy sector and transportation fuels remain a prominent factor contributing to GHG emissions



EPA GHG Inventory

Total global emissions rate is ~40 GtCO<sub>2</sub>/year. (Majumdar and Deutsch, Joule 2018) PRINCETON UNIVERSITY
and linger center for energy+the environmental Institute





**BioSciences** 



In the U.S. petroleum is the primary source for transportation fuels and chemicals



Source: U.S. Department of Energy





A billion dry tons of sustainable biomass has the potential to..







# The US. Department of Energy has funded Four **Bioenergy Research Centers**





SustainabilitySustainabilityFeedstock<br/>developmentDeconstruction

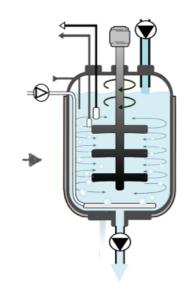


oint BioEnergy Institute

Conversion

Total funding going back to 2007 > 1B

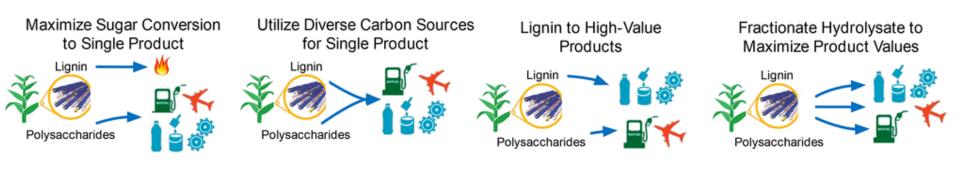


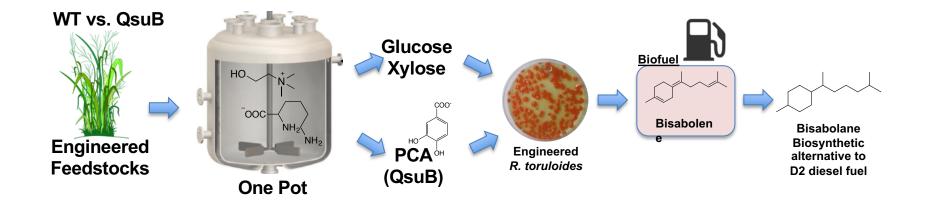



## JBEI's basic science provides



- Engineered bioenergy crops with low susceptibility to disease and drought that can be readily deconstructed into sugar and aromatic intermediates
- An feedstock agnostic deconstruction process using ionic liquids that liberates ≥90% of sugars and lignin-derived intermediates
- Engineered microorganisms that simultaneously utilize the sugars and lignin-derived intermediates to produce targets at industrially relevant titers, rates, and yields (TRY)





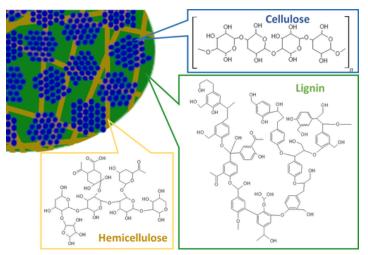

## The goal is to provide many options












# Abundant sustainable and renewable Feedstocks vary geographically



Plant-based biomass can vary considerably and require different deconstruction and thus different downstream conversion host

Lignocellulosic biomass is sugars (2/3) and aromatics (1/3)



Dahmen et al 2018 GCB-Bioenergy

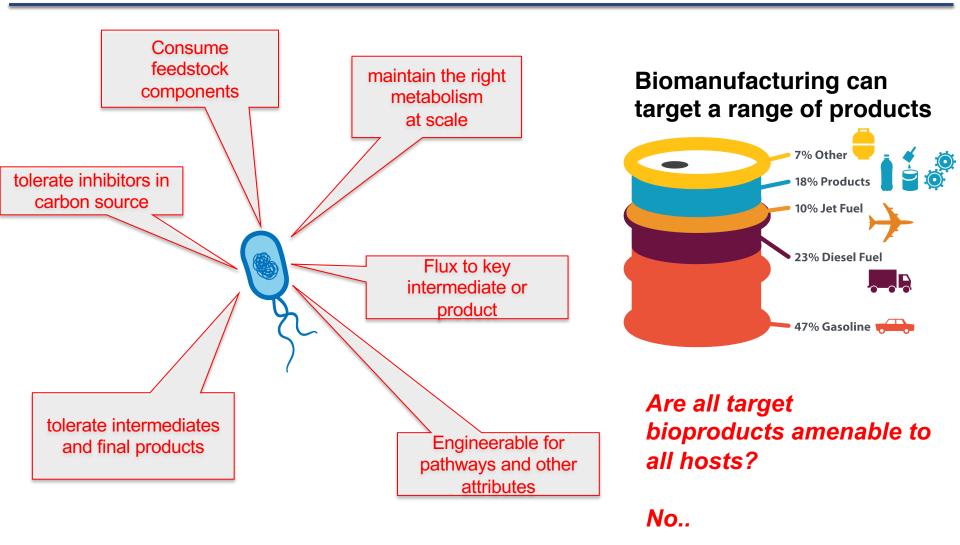
Cultivated Lignocellulosic biomass is not the only carbon feedstock

Gas feedstocks

Ag Waste/ forage

Municipal solid waste

Other waste streams


### We need conversion systems for all of these available feedstocks



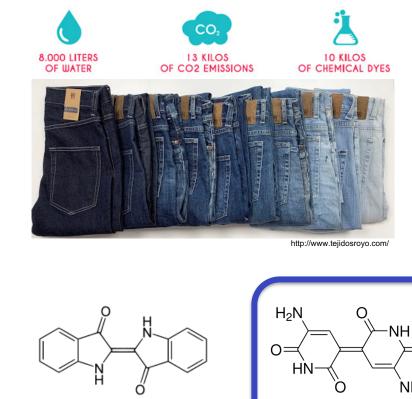


## Considerations for host microbe selection ..










 $( \bigcirc )$ 

## Bioproduct case study: Need for sustainable materials for dyes and pigments







Indigo

NH<sub>2</sub> Indigoidine

Is this pigment really the best candidate to reduce GHG emissions?? Both TEA and LCA are required





(0)



| Molar yields using<br>Glucose   | Different industrial hosts used as production platforms |                     |                      |               |                  |
|---------------------------------|---------------------------------------------------------|---------------------|----------------------|---------------|------------------|
|                                 | P.<br>putida                                            | C. glutamicum       | E.coli               | R. toruloides | S.<br>cerevisiae |
| Indigoidine                     | 0.54                                                    | 0.4                 | 0.4                  | 0.5           | 0.079            |
| Glutamine                       | 1.14                                                    | 1                   | 1.14                 | 1.12          | 0.48             |
| Biomass                         | 0.098                                                   | 0.092               | 0.088                | 0.075         | 0.029            |
| Genome-scale metabolic<br>model | iJN146<br>21                                            | iCW773 <sup>2</sup> | iML1515 <sup>3</sup> | iRhto1108C⁴   | iMM904⁵          |
| ATPM                            | 0.92                                                    | -                   | 6.86                 | 1.012         | 1                |

ATPM – ATP maintenance

### Genome-scale models used in this analyses:

<sup>1</sup>Nogales *et al.* (2020). *Environ. Microbiol.* 22(1), 255–269. <sup>2</sup>Zhang *et al.* (2017). *Biotechnol. Biofuels*, 10(1), 1–16. <sup>3</sup>Monk *et al.* (2017). *Nat. Biotechnol.*, 35(10), 904–908. <sup>4</sup>Dinh *et al.* (2019). *Metabol. Eng. Commun.*, 9, e00101. <sup>5</sup> Mo *et al.* (2009). <sup>\*</sup>BMC Syst. Biol. 3: 37.





 $( \bigcirc )$ 

Banerjee, Eng et al. Nat Commun 11, 5385 (2020).

## Microbes engineered and optimized to produce high levels of Indigoidine

18 g/ L

2

--- OD<sub>800</sub>

3

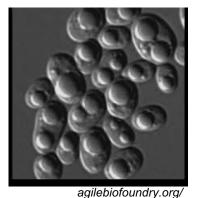
Days

4

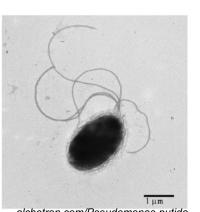
--- Glucose

5

7


20

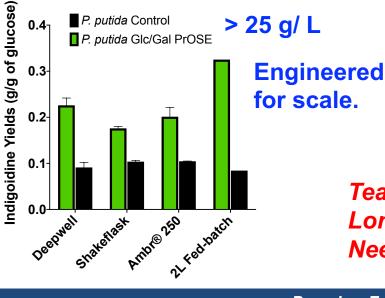
Indigoidine [g/L] 2 10 2


0

0






R. toruloides is a oleaginous



yeast

alchetron.com/Pseudomonas-putida

P. putida is a soil bacterium



100

80

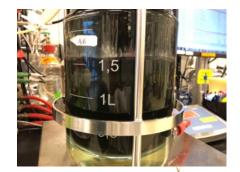
40

20

OD800 60

150 125 <sup>\_\_\_\_</sup>

100


75

50

25 0

Glucose consumed





ABXPDU AND BIOPRODUCTS PROCESS DEVELOPMENT UNIT

### Team Science Long term goals **Need partners**



US Patent Appl. Ser. No. 8980,054, 21-Feb-2020 16/417,499 (2019/04/20) Banerjee, Eng et al. Nat Commun 2020 Wehrs, et. al., Green Chemistry 2019



## ABABADDU ADVANCED BIOFUELS AND BIOPRODUCTS PROCESS DEVELOPMENT UNIT







 $( \oslash )$ 

## ABPDU understands and solves Scale-up Challenges



## Supported by DOE EERE from the BioEnergy Technologies Office (BETO)

5,333 Million amyris

😟 DIGESTIV

huue.

C ardra

SUGARLOGIX

ripple

CinderBio

косн

NOVOME

Sylvatex

mosaic

Z zymera

R

0

TOTAL

1.942 Million

LYGSS

NVIZYNE

<u>L</u>UM



ADVANCED BIOFUELS AND BIOPRODUCTS PROCESS DEVELOPMENT UNIT

### Worked with over 60 companies

Supporting Industry in **Raising Non-Dilutive Funds** 



Securing **Private** Financing







- Goal: Enable biorefineries to achieve 50% reductions in time to bioprocess scale-up as compared to the current average of around 10 years by establishing a distributed Agile BioFoundry to productionize synthetic biology
- Outcomes: Development and deployment of technologies enabling commercially relevant biomanufacturing of a wide range of bioproducts by both new and established industrial hosts
- Relevance: \$20M/year public infrastructure investment that increases U.S. industrial competitiveness and enables opportunities for private sector growth and jobs
- Risks: Past learnings do not transfer well across target molecules and microbial hosts. Experiment data sets are of insufficient quality/quantity/consistency to learn from











The barriers that limit biomanufacturing's contributions to climate change mitigation include:

- •Lack of focus on and support for this objective among bioscientists and -engineers
- •Mismatch between organisms used in laboratories and those best-suited to biomanufacturing
- •Difficulty and cost of using the most abundant and sustainable feedstocks
- •Inefficiency of scaled-up processes and high cost of separation and purification
- •Inability to predict results of scaling-up, leading to variation in output
- •Insufficient systems for data analysis and integration
- •Lack of domestic intermediate-scale facilities for process development and optimization
- •Lack of funding for demonstration and early commercial production facilities
- •Poor technology transfer and lack of standardized process recipe tools
- •Weakness of end-use markets to stimulate sufficient private investments in innovation
- •Potential conflicts over the future of agriculture





## Next steps.. (no silver bullets)



- Renewable Jet fuels is a key piece in GHG reductions.
  - Careful selection (TEA, LCA) of non-fuel targets can help offset GHG emissions in meaningful ways
- Development of the process needs to consider
  - Diverse Feedstocks and starting material
  - Selecting the host to match the feedstock and product
  - Starting with Scalability and separations in mind
- Federal funds support many valuable efforts DOE, USDA and others but this interdisciplinary problem requires cross/ inter-agency work
- For successful tech transfer
  - The pieces need to come together team science
  - End to end optimizations take time long term funding
  - Big team long term projects may need different set of incentives and metrics to measure success, than what is currently in place
- More such workshops that initiate/ continue dialogue on what barriers still exist.
   With Scientists, engineers, economists we may also need social science folks.

