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Concrete is the world’s most used material

« 17-20 billion metric tons of concrete per year globally

Concrete mixing truck holds
7-9 cubic yards of concrete
with 5 to 8 sacks of cement
(94 |b. each) per cubic yard

* 4.6 billion metric tons cement produced per year globally

626 kg/per capita, higher than
human food consumption
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Cement manufacturing is energy-intensive

« To produce 1 ton of portland cement requires up to 7000 MJ (2000kWh)
of electrical power and fuel energy
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Source: Modified from Giannopoulos et al, 2006

NRC (Canada) Fuel handling 0.4%
www.iipinetwork.org/wp-content/letd/content/clinker-making.html
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Cement manufacturing produces CO,

« “If the cement industry were a country, it would be the third largest
emitter in the world - behind China and the US. It contributes more CO,
than aviation fuel (2.5%) and is not far behind the global agriculture
business (12%).” - BBC News, 17 December 2018

The production of “clinker” accounts for most of the CO2
emissions of cement production

Process

= Quarrying & transport emissions d 3caC03 + S|02 <~ Ca3SiO5 + 3C02

More than 50%
= Grinding & preparation of ore than S0%
raw materials

= Cooling, grinding, mixing

— Clinker production

Thermal

emissions
40%

Source: Chatham House B|B|C
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Levers for change

1. Thermal and electric efficiency (equipment and process changes)
2. Alternative fuels (equipment and process)

3. Clinker substitution — supplementary cementitious materials and
alternative cements (material changes)

4. Carbon capture and storage (equipment, process and material
changes)

5. Efficiency of materials use (material changes)
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Planning strategies

Eisenhower Decision Matrix
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. : - .
|mplementat|on = Set date and || term potential
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uality time
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Impact of changes in processes and materials

Action and the possible impact
on cement-related CO2
(% reduction in emissions)

Carbon capture and storage 95 1 00:%3 o
Novel cements 90 1 00:%?
Clinker substitution 70 90%

-
Alternative fuels 0‘%) E 2

Energy efficiency 4'8%

Source: Chatham House

BBC News, 2018
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Impact of changes in processes and materials

Reduction of clinker to cement ratio

Fuel switching

Innovative technologies (inel. carbon capture) | IEEG—G——
T
[B—
M

Thermal energy efficiency

Electricity intensity
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Fig. 17. Low-carbon roadmap cumulative CO; emissions reductions in the 2DS compared to the RTS from 2020 to 2050, as modified by VDZ, data from OECD/IEA/
CSI 121.

M. Schneider Cement and Concrete Research 124 (2019) 105792
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Alternative fuels

 Alternative fuels can play an important role
* Moisture content, burning rate, and contamination need consideration

M. Schneider /| Cement and Concrete Research 78 (2015) 14-23
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Fig. 2. Development of specific energy demand in the German cement industry [2].
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Clinker substitution: SCMs

* More than 60% of ready-mixed concrete in the US uses supplementary
cementitious materials (SCMs) to replace a portion of cement in

concrete
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Eco-efficient cements:

Potential, economically viable
solutions for a low-CO2, cement-
based materials industry

Karen L Scrivener, Vanderley M. John, Ellis M. Gartner
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Clinker substitution: alternative cements

 Alkali-activated materials (“Geopolymers”)
» Calcium sulfoaluminate belite cements (CSAB)
* Magnesium-based cement
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Acth Y
Cement, but with 25-30% lower €O, emissions.

Run in parmarship with technical ceners BRE [UK] and ICIEM [Poland],
Project Aether has received the suppart of the UFE+ fingnciol instrumen
of the European Community.
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Clinker substitution: alternative cements

TABLE 1 “ﬁ rest -29;

Clinker compound Chemical COz emissions N
(kg/tonne)

Alite (C25) [typically, »60% of Portland cement clinker] 579

Belite (C25) 512

Tricalcium Aluminate (CsA) 489

Tetracalcium Alumnino-Ferrite (C4AF “Ferrite®) 362

Quicklime (Cal) 786

Wollastonite (C5) [a major component in Solidia clinkers] 379

Ye'elimite (CaA35) [made with Ca504 as sulphur source] 216

Periclase (MgO) [made from magnesium carbonate] 1100

Periclase (Mg} [made from basic magnesium silicate rocks] 0

Eco-efficient cements:

Potential, economically viable

solutions for a low-CO2, cement- Figure 10. The abundance of elements in the earth's crust
ials i Source: Wikipedia].

based materials industry [Source: Wikipedia]

Karen L. Scrivener, Vanderley M. John, Ellis M. Gartner
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Carbon capture technologies
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Figure 6. Estimated cost of carbon capture and Storage
(CC5) source ECRA Erica Sciarra Eugenio Lopez, Senior thesis 2020, UT Austin
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Carbon capture + alternative cements

COConcrete, LLC

The CO,Concrete technology
turns carbon dioxide emissions
into CO,Concrete™ products
that can replace traditional
concrete, with a much lower
CO, footprint. The technology is
based on the concept of “CO,
mineralization” -the
conversion of gaseous CO, into
solid mineral carbonates (e.g.,
CaC03) within the

CO,Concrete™ products. rapid assembly
flue gas ) i ) = ;l'
.?...1.,'. :. . @ L] i
' "".0" co, A ‘4_
' [ 4 'Y mineralization o -
‘@° wan
C@b o mmm=
|| ‘—‘\a“—' -] A ;

_% SOLIDIA

| MIX

SOLIDIA CEMENT™
POWDER AND

SAND TO FORM A
LOOSELY

PACKED STRUCTURE

FILL THE OPEN
SPACES WITH H,0
AND CO,

) SOLIDIA CEMENT™

REACTS WITH CO,

TO MAKE CALCIUM
CARBONATE AND
SILICA, WHICH
HARDEN THE
STRUCTURE, MAKING
SOLIDIA CONCRETE™



The University of Texas at Austin

Civil, Architectural and

Environmental Engineering
Cockrell School of Engineering

Conclusions

« Cement and concrete are the most important materials for development
of infrastructure globally

« The CO, and energy footprints of the cement and concrete industries
are large, but there are several strategies being used to reduce
emissions:

- Use more alternative fuels
- Reduce clinker/cement content in concrete
- Implement technologies for CO, capture and reuse

« The need for change is urgent, and we need to explore short-term and
long-term solutions simultaneously
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