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Abstract 
 

In this paper we model three layers of transportation disruption – first electrification, then autonomy, 

and finally sharing and pooling – in order to project transportation electricity demand to 2050. In 

addition, we consider three “wild cards” that have the potential to influence LDV travel in especially 

unpredictable ways. Using an expanded kaya identity framework, we model vehicle stock, energy 

intensity, and vehicle miles traveled, progressively considering the effects of each of these three 

disruptions. We find that energy use from light duty vehicle (LDV) transport will likely be in the 570 TWh 

to 1140 TWh range, 13% to 26%, respectively, of total electricity demand in 2050. 
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Executive Summary 
 

The transportation sector is now facing trifecta disruptions of electrification, sharing, and autonomy – 

disruptions known in some transport circles as the “Three Revolutions.” Together, these disruptions are 

expected to have profound impacts across developed world economies, from the auto industry, to the 

labor force, to family lifestyles and more. In an attempt to explore a small corner of impact from these 

revolutions, this paper attempts to quantify the electricity needed to power light duty passenger electric 

fleets.  

In contrast to many other works on the subject, our focus is on the aggregate national electrical energy 

needed to power the light-duty vehicle fleet between now and 2050. From the standpoint of climate 

policy the electric energy we need is the single most important indicator of our need for carbon free 

power. As we stick to this specific focus we do not analyze or discuss many other important aspects of 

the growth of electric transport on electric utilities, including charging patterns or methods, integrating 

EV demand response, or energy sourcing. We also do not produce new forecasts of EV and AV sales or 

the underlying costs of owning and operating vehicles over time. 

We review and rely on several industry forecasts to create our own EV scenarios. Our work can be 

viewed as attempting to improve upon, or at least add usefully to, the handful of studies that examine 

long-term transport power demand. The studies we reference and rely upon can be referenced in part 

II.A – Prior Work.  

Research Approach 

Transport energy and emissions are often forecasted by (1) estimating the vehicle-miles that will be 

traveled (VMT) , using well-established models benchmarked from prior changes in travel on these modes 

over decades;  and (2) multiplying VMT times the energy use per vehicle-mile which can be forecasted by 

analyzing current efficiencies, fuel economy rules, fleet composition shifts, and similar factors.   To address 

difficulties in depending upon aggregate VMT forecasts, in our work we use a conceptual framework 

based on an expanded kaya identity, and then apply the framework in the three “layers” and further 

adjustments as explained below.   The disaggregated kaya identity we use is:  
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Where the stock in  year t of EVs of  a motorized vehicle type i is denoted by ĸi,t; vi,t  is the average miles 

travelled by that vehicle type in year t; and eni,t is the average power use of the vehicle type i per mile 

travelled during year t. 

One obvious deficiency with our approach is that VMT, mode share, and electric intensity are all 

interdependent.  Every decision to take a trip is a function of the underlying drivers of travel and the 

mode choices for each chosen trip – time cost, money cost, and other costs and benefits for each mode 

option. This interdependence operates differently in the short-run and the long-run.  In the short run, 

the choice of travel mode is approximately fixed by the state of technology, existing infrastructure and 

vehicle stocks, and current arrangements such as transit schedules and the accessibility of EV chargers.   

In the long-run, every one of these trip choice determinants changes in a path-dependent manner.   

Moreover, in the long-run the choice is nested, first in a choice of own/share a vehicle by type and then 

whether to use that vehicle for a trip.  

We break through this deep interdependence using a very simple and inelegant approach.   We first 

posit a baseline in which none of the Three Revolutions occurs.   In this baseline scenario, we generally 

adopt the view of Litman, Circella, et al, and the Federal Highway Administration that per-capita LDV 

travel by Americans has hit its peak and is likely to decline, but for the potential effects of the Three 

Revolutions.     The effect of the Three Revolutions is then factored into our implicit baseline in three 

“layers” of calculations.    

The first layer is electrification, an interim scenario in which the only major change is the availability of 

EVs as an alternative to CVs, i.e. without changes in ownership models, autonomy, shared modes, or any 

urban design changes not already embedded in conventional forecasts.   The next layer of our 

calculation modifies this interim case to reflect the onset of autonomous vehicles.  As many researchers 

are predicting, AVs will have many complex effects on travel demand, amounting on net to a significant 

and perhaps very large increase in VMT.  Conversely, AVs will reportedly enable savings in EI through 

network and vehicle management approaches not available to conventional vehicles, and (much later, 

we think) energy-reducing changes to the vehicles themselves.  In this layer, we first survey AV 

penetration predictions and adopt an AV penetration base case and a second, more aggressive 
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sensitivity case. In the final layer, we add the potential impacts of the new pooled and shared modes, 

including integrated multimodal systems, also called mobility-as-a-service, among other ideas.   The 

figure below illustrates our conceptual approach. 

Figure 1: Conceptual Approach

 

 

Conventional Ownership 

For our analysis, we begin with forecasts from industry groups that have projected electric vehicle sales, 

with or without visible adjustments for the growth of autonomous driving or new ownership models.   

After examining several commercial projections, we assume that EV adoption follows a similar 

technology adoption curve described by Everett Rogers’s Diffusion of Innovations theory. 

Electric vehicle sales, though, do not represent the actual stock of electric vehicles in a given year that 

would consume electricity. Rather, electricity consumption would be driven by the total number of 

vehicles on the road, which is affected by car retirements as well as sales. To inform our estimate of 

electric vehicle stock, we rely on the survival rates for conventional cars and light trucks provided by the 
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Oak Ridge National Laboratory’s Transportation Energy Data Book (Oad Ridge National Lab, 2016). 

Details of our assumptions and estimations can be found in section III.A – EV Projections Under 

Conventional Ownership.  

The figure below shows the stock of electric LDVs in our high and low cases. 

Figure 2: Electric Vehicle Stock Under Conventional Ownership 

\ 

We next estimate how many miles each conventionally-owned vehicle in our stock will drive annually, 

using 2015 Idaho National Labs survey data for BEVs and PHEVs. The eVMT values for both PHEVs and 

BEVs, though, are noticeably lower than the average VMTs of ICE LDVs today. For ICE cars in 2015, the 

average annual VMT was 11,327 miles and for SUVs it was 11,855 miles. Current models of electric 

vehicles often do not have the same drive range as the ICE equivalent vehicle due to the limitations of 

current battery technology. However, we expect the annual miles driven using electricity to increase as 

battery technology continues to improve and battery ranges increase.  In order to capture the effect of 

battery improvement for the future years of our analysis, we fit a curve to projected battery energy 

density increases and use the percent increase over time to gross up the total electric vehicle miles for 

both PHEVs and BEVs.   

We then use the annual VMT for ICE vehicles as the baseline distance the average electric car owner 

would drive in a year under conventional ownership prior to autonomy. In other words, in this scenario 

we linearly trend annual eVMTs for PHEVs and BEVs from their current average levels to the average 

VMT of conventional vehicles in 2015 as reported by the FHWA.   Details of our methodology can be 

found in section III.B – VMT Assumptions. 
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Even if we assume the ownership model will not change, as we assume for the base layer, EVs are likely 

to become steadily more energy-efficient over time. We therefore estimate trends in energy efficiency 

improvements based on well-established theories of the returns to R&D and manufacturing learning 

curves. 

The combination of these assumptions represents the three main inputs to the kaya identity 

formulation. Our EV projections, eVMT estimates, and expected vehicle energy intensities are multiplied 

by each other to calculate our conventional ownership base case (or stage one) electricity consumption 

projections, shown in the table below: 

Table 3: Conventional Ownership Results 

 

Overall, we project 2050 electricity demand of 890 TWh and 510 TWh in our high and low cases, 

respectively. These figures represent roughly 23 and 13% of the current electricity demand of 3900 TWh 

and 20 and 11%, respectively, of EIA’s projected 2050 electricity consumption of 4,500 TWh.  

 

 

Case Year

Total 

Number of 

EV in Service

Portion 

Stock 

Electric

Total 

Number 

of AV in 

Service

Fleet 

Average 

eVMT / 

Vehicle

Fleet 

Average 

Efficiency

Total 

TWh

Total 

TWh EV 

Bump

(%) (per yr) (kWh/mile) (TWh) (TWh)

2015 406,076 0.2% 0 7,179 0.32 0.9 0.9

2025 17,086,996 6.6% 0 10,075 0.34 59.0 59.0

2030 52,378,548 19.7% 0 10,734 0.33 187.9 194.0

2040 166,919,164 59.6% 0 11,039 0.32 593.0 651.9

2050 251,742,035 85.4% 0 11,231 0.31 886.2 973.8

2015 406,076 0.2% 0 7,179 0.32 0.9 0.9

2025 7,063,273 2.7% 0 10,061 0.34 24.3 24.3

2030 20,532,231 7.7% 0 10,729 0.33 73.6 76.0

2040 81,511,381 29.1% 0 11,049 0.32 289.2 317.9

2050 145,941,420 49.5% 0 11,236 0.31 511.7 562.3

Base Low

Base High



6 
Electric_Transport_Draft _10_5_17 

Impact of Autonomous Vehicles 

Next, we examine the power impacts of commercially available, fully-self-driving (“autonomous”) light-

duty vehicles.   We oversimplify by treating the transition to AVs as a bright line before and after Level 4 

or 5 AVs sold and allowed to be used with relatively few restrictions.  Our projections show the national 

totals, increasing as the number of areas and vehicles sold both rise.    

There is a cacophony of opinions as to when and how the autonomy revolution will occur – not to 

mention its implications for travel, the economy, and our built environment.   On one end stand highly 

optimistic writers such as Aribib and Seba, who predict that AVs will handle 95% of all passenger-miles 

by 2030, all but ending individual auto ownership. At the other extreme, researchers such as Litman 

(Litman, 2017) and Nieuwenhuijsen (Niewenhuijsen, 2015) predict that 100% level 5 autonomy in the 

fleet will not occur until 2070 or later. Beyond differences in numerical outcomes, some of these 

estimates come with somewhat concrete scenarios or narratives as to how the AV market will unfold 

with respect to regulatory approval, cost reduction, consumer choice shifts, and urban infrastructure 

changes.    

Amongst all these considerations the work we find most convincing is Lavasani, Jin, and Du’s (Lavasani, 

Jin, & Du, 2016) estimates of Bass or “S-curves” using parameters selected by comparing AVs to other 

types of technologies, similar and dissimilar, for which there are full adoption histories. The results of LJD’s 

base estimate, is that cumulative AV sales rise from 1.3 MM in 2030, five years after introduction, to 70 

MM by 2045 and saturation (i.e. no further growth in AV sales) by 2060.   We also create estimates of 

electricity use for the A&S scenario, which we consider a highly aggressive upper bound on AV use.  If 

nothing else, this allows us to estimate a range of possible outcomes. 

There is widespread agreement that vehicle autonomy will trigger significant changes in the travel 

patterns of many Americans (along with changes in EI, explored later).    Some of these changes will 

reduce VMT, while others are expected to increase it significantly.    These effects include increased road 

capacity as AVs travel smoothly at close intervals, lower time cost for drivers as driving time is freed for 

leisure or work activities, and increased access as children, the elderly, and disabled use autonomy to 

increase mobility – the results of these effects are outlined in the table below. 
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Table 4: VMT Effect of Automated Vehicles 

 

AVs similarly have significant effects on the energy intensity used per mile of any given vehicle type. 

These effects include: traffic smoothing due to their ability to immediately see and respond to traffic 

conditions; better intersection management to reduce starts and stops and therefore reduce energy 

use; faster travel which will increase EI as AVs travel at higher speeds; platooning, which will reduce air 

resistance; and rightsizing, where smaller and lighter vehicles will be available because safety features of 

conventional vehicles will no longer be necessary. The net EI of AVs is summarized in the table below: 
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Table 5: EI Effect of Automated Vehicles 

Effect Impact Timing 

Traffic Smoothing -15% 50% reduction in technology 

improvements in EI for the first 

10 years, then linear phase- in 

from 2035 

Intersection Management -4% Linear phase-in for urban EVs 

starting in 2035 and fully 

implemented by 2055 

Higher Average Speed +8% Linear phase-in from 2030-2035 

Platooning -2.5% Linear phase-in from 2030-2035 

Rightsizing/Weight Reduction -50% Phased in linearly at 1% per year 

or 1.5% per year starting in 2040 

 

Pooling, sharing, and seamless 

We next add a third layer to our electric power forecasts, the impacts of many shared and pooled modes 

and businesses including various forms of what are being called “mobility networks.” We examine 

literature surrounding non-pooled dynamic ridesourcing, traditional carpooling, car-sharing, and pooled 

dynamic ridesharing or ridesplitting, and in the end conclude that these three phenomena, while 

extremely important for the ways in which our transportation system may operate in the future, will 

likely not significantly change total electricity demand from transport, which is the goal of this paper. 

Our review of the literature can be found in sections V.A – V.D. 

Seamless mobility systems, which integrate public transport with “last mile” taxi services, could shift 

enough transportation away from individual LDVs to have a small impact, and we conduct a simple 

calculation to bound the power implications of a concerted public policy push towards SMSs. The result 

of this calculation (found in Section V.E – Seamless Mobility Systems) is a potential 2% drop in electricity 

demand. 

  



9 
Electric_Transport_Draft _10_5_17 

Wild Card factors 

Finally, we consider “wildcard factors” – a handful of factors that will influence future LDV travel in 

especially unpredictable ways. We look at (1) Road Infrastructure Costs, including AV-specific 

infrastructure, and the manner in which LDV travelers will or will not pay for it; (2) telecommuting, e-

commerce, and other electronic substitutes for personal or business travel; and (3) redesign of urban 

areas to reduce the need to travel.    

The three “wild cards” we have surveyed have generally done a poor job of living up to their label.   Of 

the three, we have concluded that electronic travel substitutes are unlikely to result in VMT differences 

not already captured in the range of outcomes in the three layers of modeling above.   Our review also 

indicates that urban design will, at most, add 2% on top of our existing scenarios.  As urban redesign is 

largely policy-driven, not an exogenous factor, our non-policy scenarios amount to a prediction that the 

most likely outcomes exclude a significant policy shift that could, if adopted, reduce travel.   

Charges for the use of infrastructure in a manner that affects driving is also a true wild card.   It is far 

beyond our ability to predict how the U.S. federal government and the states will cope with the 

deterioration of existing roads and the need for infrastructure to service AVs.   Even today, well before 

the advent of AV-specific infrastructure, these questions push the U.S. Congress and many states to the 

political breaking point.   About all that can be said of this wild card is that it, too, presents almost 

entirely downside risk to transport power demand.   Today, no LDV pays anywhere near its full share of 

the cost of roadway infrastructure; total infrastructure funding is far short of funding needs; and as yet 

electric vehicles pay even less than gasoline cars.    

We believe we can get a rough, order-of-magnitude range by examining two simple pricing scenarios:   a 

flat 2.2 2017 cents per mile charge and a larger 2.4 cents per mile ($.60/gal @ 25 mpg) escalating to 

double its level in real terms by 2050.   

Snapshot results of the effect on VMT in the year 2050 can be expressed in a 4x4 matrix, below: 
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Table 6: Road Pricing Reductions in VMT 

 

The result is a 10% to 42% reduction in VMT in the year 2050 when the full effects of our four VMT fee 

scenarios are applied. However, we use only the -.2 elasticity for our two base scenarios. 

Results and Observations 

The authors of the hundreds of pieces of research we have relied upon have each made dozens of 

assumptions underlying their work.   As we have compiled this research we have made dozens more.   

Were we to catalog these comprehensively, we would end up with a huge list and an infeasibly large 

number of possible scenarios and sensitivity runs that could be examined. 

However, over the course of our research a handful of assumptions stand out as particularly important, 

either because they describe an important fork in the development path for U.S. passenger transport or 

because they have relatively strong and direct effects of LDV power use.   A full summary of these 

variables is included in chapter VII. In brief, they encompass: 1) projections for vehicle sales and 

adoption, changes in VMT from EV price signals and AV technological improvements, gains in energy 

efficiency from both EV and AV evolutions (EI), and potential road pricing and policy signals. 

The table below summarizes LDV transport power demand from our calculations for the milestone years 

between now and 2050.    As the table shows, 2050 LDV power use is approximately 1140 TWh and 570 

TWh, in the High Base and Policy Cases, respectively.     As these cases are intended to approximate 

upper and lower likely boundaries, the results are surprisingly close together.   Whereas the earlier 

literature surveys described in Chapter II of the report found upper and lower bounds differing by as 

much as a factor of ten, our calculations suggest that the difference between our likely boundary cases 

is only about 600 TWh, 15 percent of today’s power use.    If our calculations have any value, we have a 

pretty good idea of the power we’ll need thirty years from now so long as EVs take off on roughly the 

high sales trajectory we forecast and no black swan events cause a serious rupture in American driving 

habits. 
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Table 7: Results Summary 

Electricity Consumption Summary 
                

                

Case Year 

Total 
Number of 

EV in 
Service 

Portion 
Stock 

Electric 

Total 
Number of 

AV in 
Service 

Fleet 
Average 
eVMT / 
Vehicle 

Fleet 
Average 

Efficiency 
Total 
TWh 

      (%)   (per yr) (kWh/mile) (TWh) 

                

2015 406,076 0.2% 0 7,179 0.32 1 

2025 16,890,719 6.5% 0 9,087 0.34 53 

2030 52,379,566 19.7% 3,182,833 10,290 0.35 187 

2040 166,979,970 59.6% 65,615,683 13,420 0.33 742 

2050 252,371,537 85.6% 180,263,265 16,927 0.27 1140 

                

2015 406,076 0.2% 0 7,179 0.32 1 

2025 17,086,996 6.6% 0 8,508 0.31 45 

2030 52,378,548 19.7% 196,278 8,826 0.30 140 

2040 166,928,240 59.6% 17,786,550 8,865 0.29 435 

2050 251,932,162 85.5% 128,559,496 10,038 0.23 570 

                

 

Section VII.C dives further into sensitivity analyses and scenario decomposition, and lead us to the same 

overall conclusion. It is beyond both our means and expertise to provide anything approaching a 

complete discussion of the implications of our findings for energy, transport, or climate policy.   Instead, 

we provide a small set of policy observations that speak mainly to the focus of our analysis, namely the 

intersection of transport changes and the power industry. Beyond electrification of LDVs per se, the 

policy approaches to reducing carbon seem to divide into these categories: 

(A) shift drivers – and later, single occupants of AVs -- out of SOVs and into either pooled rides 

or, much better, integrated multimodal on-demand mobility systems, via any number of 

policy tools;   

(B) encourage or require electric LDVs to become more efficient more quickly than otherwise, 

much as CAFE and ZEV standards have forced ICE fleet efficiency gains; or 

Base 

High 

Policy 

Case 
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(C) Harvest the vehicle and system efficiency improvements theoretically offered by AVs as 

soon as possible after they are introduced. 

From the policy standpoint, the autonomous vehicle revolution is exceedingly complex. This is an area 

where much more work is needed.   We need much better data on the realistic changes we will need to 

make to our road and communications infrastructure to accommodate AVs at each penetration level, 

and how these changes can be staged so they need not be completely redone as the AV fleet grows.   

We also need better data on how these vehicles will co-exist with conventionally-driven cars and trucks 

and how efficiency and safety improvements can be accelerated in the presence of mixed fleets.   

Finally, there is almost no data on how much the infrastructure changes for AVs will cost, much less on 

how we will finance them.    

With the possible exception of the latter, enormous amounts of research are now underway.   When we 

have some of these answers we will have the ability to make somewhat better estimates of the impacts 

of autonomous vehicles on future power demand.       
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I.Introduction and Overview 

A. INTRODUCTION AND PURPOSE 
 

The transportation sector is now facing the same disruptions that have upended many other sectors of 

the economy. Platform and car-sharing companies such as Uber and Zipcar are threatening the vehicle 

ownership model that has stood for a century.   Electric vehicles are the fastest-growing segment of the 

industry, with more than 40 models for sale in the U.S. today.   And aided by a new generation of 

families who prefer “walkable urbanism,” the design of urban areas to reduce the need for car travel has 

moved from the fringes to the core of much city planning. 1 

Transportation is also undergoing shift from human-piloted to driverless or autonomous vehicles (AVs).   

(Some researchers stress the difference between connected and unconnected AVs; we assume that all 

AVs are connected, but do not use the acronym CAV.)   Most experts agree that AV technology will be 

commercially available by the mid-2020s and commonplace in the 2030s.   This technology is predicted to 

unleash dramatic changes in the ways personal and freight vehicles are used, transport safety, urban 

design, and transport energy use. Importantly, we employ the gross simplification that all AVs are electric, 

intentionally biasing our power demand upward.      

The trifecta disruptions of electrification, sharing, and autonomy have become known in some transport 

circles as the “Three Revolutions.”2 Together, the three are expected to have profound impacts across 

developed world economies, from the auto industry, to the labor force, to family lifestyles and more.3   

At the same time, the need for reducing greenhouse gases from transportation is as much beyond dispute 

as is the science of climate change itself.    In 2016, U.S. GHG emissions from transport for the first time 

became the largest single component of total U.S. GHG emissions.4   In many states and cities, including 

our home city of Boston, transport emissions now exceed the less-carbon intensive use of electricity for 

                                                           
1 (Leinberger, The Option of Urbanism: Investing in a New American Dream., 2008)  
2 (Sperling, 2017)  
3 (Barclays, 2015); (Clements & Kockelman, Economic Effects of Automated Vehicles, 2017) (Albright and 

Stonebridge Group, 2016) 
4 (U.S. Energy Information Administration, 2017) 
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buildings and industry.   As the locus of climate action shifts to states and cities – especially in Trump’s 

post-Paris U.S. – putting transport emissions on a firm trajectory to mid-century zero is clearly of the 

utmost importance.   

In the U.S., all these disruptions and imperatives for change are occurring against a backdrop of modest 

economic and population growth, increasing e-commerce and automation, increased urbanization and 

continued sprawl, and an increasingly congested and deteriorating travel infrastructure.  The latest 

national assessment of U.S. transportation notes that the network quality of U.S. roads is rated 16th in the 

world and likely to slide further unless transport investment increases substantially.5 

The purpose of this paper is to examine one important outcome from all of these forces: the electricity 

needed to power passenger electric fleets and the implications for greenhouse gas emissions 

(equivalently, carbon, CO2, or GHGs for short). The amount of electricity used along this path will 

obviously be a function of billions of individual trip and vehicle purchase decisions, all influenced in turn 

by myriad economic, demographic, policy, and technological factors. Our goal is to establish realistic 

bounds on the aggregate increase in electricity required to power all electric transport between now and 

2050.       Our hope is that a carefully structured set of assumptions and calculations can reduce a problem 

of unfathomable complexity into a set of scenarios realistic enough to guide policies regarding climate 

change and the electric power industry.6  

In contrast to many other works on the subject, our focus is on the aggregate national electrical energy 

needed to power the light-duty vehicle (LDV) fleet between now and 2050.   From the standpoint of 

climate policy the electric energy we need is the single most important indicator of our need for carbon 

free power (We intentionally but inaccurately use the terms power and energy interchangeably in this 

work, referring in both cases to electrical energy and/or the full industrial system that makes and delivers 

it).   Sales of electric energy are also one of the most immediate and intuitive measures of the growth 

potential for both the supply and delivery segments of the power sector.   These growth prospects, in 

turn, critically inform the possibilities for change in the business and regulatory structure of the industry. 

                                                           
5 (U.S. Department of Transportation) P.3  
6 Importantly, we ignore the potential for hydrogen as a transport fuel source; we plan to include it in subsequent 
work. 
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As we stick to this specific focus we do not analyze or discuss many other important aspects of the growth 

of electric transport on electric utilities.   For example, we do not examine the patterns or methods of 

vehicle charging, so we reach no conclusions on the size or character of the electric delivery infrastructure 

needed to power the EV fleet.   We likewise do not examine the very important potential for managing 

EV charging by integrating EVs into their local distribution system as one of many distributed energy 

resources.7   Finally, we do not focus on the degree to which electricity in any given year will come from 

carbon-free sources nor the changes required in the power system to integrate renewables and storage 

and provide zero-carbon power as soon as possible -- certainly by mid-century.   These are all topics of 

widespread, important research; our work is simply intended to add a realistic aggregate size range to the 

discussion.  

We stress at the outset that this report is not a new EV or AV forecast based on original work – quite the 

reverse.   It is rather a synthesis of hundreds of original studies, blog posts, industry reports, and other 

sources that range from peer-reviewed work to opinions reported in newspaper articles.  Our modeling is 

essentially an accounting framework that provides a way of deconstructing the deeply interconnected 

issues of fleet electrification, autonomy, new business models, and other factors into subparts we think 

we have been able to analyze and interrelate.   In no way does this remove a constant need to choose 

from among many unprovable assumptions and opinions, and nearly every number in this paper fits this 

description.    

Consistent with this, it is not our purpose to produce new forecasts of EV and AV sales or the underlying 

costs of owning and operating conventional, electric, and autonomous vehicles over time.   Certainly any 

economically-derived forecast of vehicle sales must be based on a long-term view of the capital and 

operating costs of vehicle alternatives, unless the forecast is for a period in which policy mandates require 

a single vehicle type (e.g. bans on further conventional vehicle sales).    However, for the sake of 

transparency, the general view we have formed of the underlying comparative cost drivers are as follows: 

● The purchase cost premium for non-autonomous BEVs will diminish to smaller and smaller levels 

and be inconsequential by the 2030s; 

                                                           
7 Similarly, we do not treat electric vehicle charging infrastructure as part of the transport infrastructure, though if 

we were to be analytically strict we easily could.   Instead we assume throughout that this infrastructure is amply 
supplied by electric utilities and third parties, and that the costs of this infrastructure are collected through electric 
power prices.  
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● Autonomous vehicles will have a purchase price premium that also erodes, though over a longer 

period, as reflected in the AV forecast we use below; 

● U.S. electricity prices will vary between roughly constant in real terms through 2050 and growing 

at most one percent real a year in some years and locations;  and 

● Gasoline and diesel prices will vary between constant and declining real prices as conventionally-

fueled vehicles lose market share.     

 

Most of the forecasts we review and employ do not make their comparable cost assumptions transparent; 

regardless, we have no doubt that our views may not align entirely with those adopted by the researchers 

whose work we rely on.   In those cases, it is fair to say that our work embodies implicit or explicit internal 

inconsistencies. 

Our work examines light-duty vehicles, separated between autos and light trucks as much as possible.    

The obvious reason is that LDVs account for 90% of motor vehicle travel8  in the United States; of this, 

urban mass transit is about one percent of person-miles.9 In subsequent work we plan to add estimates 

of freight and transit electric use, as well as addressing electric use for new transport infrastructure, to 

attempt at arriving at total U.S. transport electric use.  

This work is largely a review of various highly uncertain forecasts, trends, and policy outcomes.   Our 

selection of any of these parameters is inherently judgmental, biased by our own priors and 

experience.   While exercising this judgment, we have attempted to use a consistent philosophy of 

assumption selection.  For all parameters examined, this philosophy is to search for upper and lower 

limits that correspond to our subjective judgment that it is (subjectively)  70-80% likely that the eventual 

true parameter is within these two limits.   In other words, we are not trying to find true upper and 

lower bounds, but rather our subjective view of the approximate center of a multidimensional 

probability space. 

Mechanically, we implement this in a very simple fashion.   For the parameters we find significant, we 

adopt high and low values.   Occasionally we adopt a third value as a sensitivity case, or treat either the 

                                                           
8 (Federal Highway Association, 2017) 
9 As (Polzin, 2006) p. 26 notes, if all urban mass transit in the U.S. disappeared overnight, the impact on VMT 

would be less than two percent.   
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high or low value as the “base” value.   This is a simplistic way of saying that we assume the probability 

distribution is not a bell-shaped curve with symmetric high and low values, but rather an asymmetric 

curve weighted towards the base value we adopt.     

After adopting many of these values, we assemble them into two main scenarios labeled High Base and 

Policy.   The High Base scenario attempts to assemble a consistent set of parameters that together reach 

(judgmentally) perhaps 85% of the way towards the highest level of power use we believe will occur in 

2050.   The Policy case does the same thing in the other direction, implementing policies atop negative 

outcomes that yield a comparable level of low demand.    In short, our goal is to isolate – perhaps guess 

is a more accurate verb -- a span of power demand that contains most of the overall probability of the 

2050 demand for LDV power. 

B.  RELEVANT PRIOR WORK 
 

Many researchers have looked at electricity use for light duty EVs, often in combination with general 

forecasts of EV adoption and broader questions of transport energy use during a disruptive period.    Most 

of these estimates are either very short term in nature or for a specific metropolitan area – both of which 

are valuable and interesting, but difficult to generalize.   Forecasts of metropolitan area EV use are 

exemplified by Gucwa10  for the San Francisco area, Zhao and Kockelman11 for Austin, Texas, and Childress, 

et al12 for Portland, OR.   Of the long term forecasts, the enormous changes engulfing the sector typically 

give rise to a scenario approach, where transport energy use varies by such a wide margin that it is difficult 

to extract much in the way of policy or planning guidance.13    Nonetheless, we review and rely on several 

industry EV forecasts to create our own EV scenarios.  

There are many good examples of short-term transport power forecasts. Goldman Sachs14 (GS) recently 

estimated that EVs would add 0.5% to electricity demand by 2025, half of an estimated 1% total annual 

electric sales growth per year during this period.    Morgan Stanley15 estimated that EVs will add 0.1% to 

                                                           
10 (Gucwa, 2014) 
11 (Zhao & Kockelman, Anticipating the Regional Impacts of Connected and Automated Vehicle Travel in Austin, 

Texas, 2017)  
12 (Childress, Nichols, Charlton, & Coe, 2015) 
13 See, for example, (World Energy Council, 2011) 
14 (Kooroshy, Ibbotson, Lee, Bingham, & Simons, 2015); (Kooroshy, et al., 2016) 
15 (Morgan Stanley 2016) 
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average electric sales growth rates through 2025.    Although it is difficult to gain long-term insights from 

these forecasts, the GS paper suggests the interesting (and somewhat contrarian) view that the rate of 

change in the total stock of EVs will not foreseeably rise above 4% per year, a rate that increases power 

demand about 1% per year.16 Interestingly, our results bear this out (for LDVs), and it remains true all the 

way to 2050.    

In the academic literature, both Brown, Gonder, and Repac (BGR)17 and MacKenzie, Wadud, and Leiby 

(MWL)18 estimate long-term energy use – but only by scenario.   BGR’s three scenarios span long-term 

outcomes from -95% to +173% of current energy use -- an extraordinarily large range of outcomes.   

MWL’s four scenarios cover an only slightly smaller expanse; from -40% of current energy to about 

+140%.   Stephens, et al19 derives the widest estimates of all, partly because their purpose is explicitly to 

search for upper and lower bounds.   Expressed as gallons of gasoline, their scenarios range from 37 to 

303 billion gallons of gasoline per year, a factor of ten difference.   Although these papers are extremely 

valuable in many ways, and we draw on them extensively in our work, their conclusions cover too wide a 

range to guide many policy decisions. 

A handful of studies do examine long-term transport power demand; our work can be viewed as 

attempting to improve on, or at least add usefully to, these studies.  One such study is the Electric Power 

Research Institute Natural Resources Defense Council (EPRI/NRDC) 20  environmental assessment of 

electric transport.  This three-volume work predicts 450 TWh of LDV electric demand in 2050, a figure not 

far from one of our cases.   A second expansive study of transportation by Bank of America/Merrill Lynch 

(BAML) also predicts a 7.5%-27% increase in U.S. electric demand by 2050.21   Another estimate comes 

from the Brattle Group’s recent report on Electrification,22 which estimates a rough bound of 2,100 TWh 

of power use if all U.S. vehicle transport is electrified, a 56% increase over 2015 sales. 

                                                           
16 (Kooroshy, Ibbotson, Lee, Bingham, & Simons, 2015), p.1, 6  
17 (Brown, Gonder, & Repac, 2014) 
18 (MacKenzie, Wadud, & Leiby, 2014) 
19 (Stevens, et al., 2016) 
20 Electric Power Research Institute and Natural Resources Defense Council. Environmental Assessment of a Full 

Electric Transportation Portfolio, Volume 2: Greenhouse Gas Emissions (2015) 
21 (Bank of America Merrill Lynch, 2017) (p. 231) 
22 (Weiss, Hledik, Hagerty, & Gorman, 2016) 
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Alternatively, essentially every estimate of 2050 EV fleets can be transformed into a power use prediction, 

as we do later in this paper.   Using this approach, Bank of America/Merrill Lynch Research shows 2050 

electricity percentage increase forecasts spanning a more conventional range, from +7.5% to +27.3% of 

base 2050 electric demand, at 25%, and 100% of EV penetration, respectively.23    Relative to current U.S. 

power demand, this represents about 290 to 1,000 TWh.   While these numbers seem plausible, and well 

within the ability of the industry to accommodate, they are also derived more or less from parametric 

scenarios of EV penetration rather than explicit EV forecasts by BAML (which are, themselves, scenario-

driven).     

Similarly, Bloomberg New Energy Finance (BNEF) recently predicted that 50% of 2040 U.S. auto sales will 

be EVs, a little below one-sixth of global sales in that year. Total global power demand, for EVs, per BNEF, 

was 1800TWh. If we assume US vehicles are twice as energy-intensive as the global average, U.S. EV power 

use will be 600 TWh in 2040. 24  As a final example, the Rocky Mountain Institute, predicts 50% 

electrification of the U.S. fleet by 2050.25   A second RMI report links this prediction to approximately 600 

TWh greater power demand in a “fast growth” scenario.26   Table I-1 summarizes these predictions. 

Table I-1 

   

One reason why these estimates are difficult to grasp is that so many changes are hitting the sector at 

once.   Electrification and battery improvements are proceeding faster than most past predictions.   Self-

driving cars, which many believe will revolutionize transportation in a variety of unpredictable ways, are 

                                                           
23 (Bank of America Merrill Lynch, 2017), p. 231 
24 (BNEF, 2017) 
25 (Walker & Johnson, 2016) 
26 (Walker & Johnson, 2016) p. 19 
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also improving quickly.    Mature countries like the U.S. are also experiencing declines in driving and license 

rates as millennials express a preference for walkable urbanism.   New transport network firms have 

rocketed up to become major providers in only a decade.   Information technologies and ecommerce 

continues to grow.   Adding up the long-term effect of these changes on power use seems impossible, but 

we attempt it nonetheless.   
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II. Research Approach 

A. THE KAYA IDENTITY FRAMEWORK 
 

Transport energy and emissions are often forecasted by (1) estimating the vehicle-miles that will be 

traveled (VMT) , using well-established models benchmarked from prior changes in travel on these modes 

over decades;  and (2) multiplying VMT times the energy use per vehicle-mile, which can be forecasted by 

analyzing current efficiencies, fuel economy rules, fleet composition shifts, and technical change.27   VMT 

are either forecast in the aggregate using reduced-form econometric equations or from vehicle forecasts.    

This relationship, known as a Kaya identity28, is often written in its aggregate form as: 

     (1) 

Where total VMT is denoted by v, average energy intensity in kilowatt-hours per mile is denoted by en, 

and ᵩl is the total energy use for LDV transport. Obviously, this approach is useful when models predicting 

aggregate total travel are stable enough to perform well over long forecast periods and fleetwide average 

energy intensity can also be projected with confidence.  

Unfortunately, essentially none of the conditions that make this aggregate approach easy hold today.   

Traditional forecasts of aggregate VMT began losing accuracy following the Great Recession of 2008, well 

before the sharing and autonomy disruptions had much of an effect.   Autonomy is expected to greatly 

disrupt these forecasts, possibly along with new preferences for walkable urbanism, ridesharing, and 

other changes. At present, most econometrically-derived models of VMT can’t be expected to reflect new 

forms of demand for travel from AVs, nor do they capture VMT changes from shared ownership and 

related changes in urban design.29  Driverless personal and freight vehicles are so different that they 

constitute essentially new, never-before-experienced transport modes.   In the words of several experts, 

                                                           
27 Carbon emissions follow trivially from energy use using accepted emissions factors per unit of fuel.   There are 

also many other types of models that forecast transport energy use using agent-based models, energy and 
emissions-focused simulation models, and others.   We organize the discussion around Kaya Identity approaches, 
but survey and cite many results from other types of models herein. 
28 (Kaya, 1990)  
29 See Workpaper A and (Litman, 2016) for a brief discussion of aggregate VMT models.  
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“AVs have the potential to interact with each other, the transportation infrastructure and the built 

environment in such complex ways that it is likely to take years of dedicated research to have a detailed 

assessment of the possible impacts of the future system.”30 Without useful aggregate VMT forecasts, we 

have nothing by which to multiply the estimated efficiency of these vehicles to come up with estimated 

energy use or emissions. Furthermore, aggregate VMT forecasts do not allow us to determine the extent 

of EV penetration, which is obviously the centerpiece of electricity forecasts.   Fleetwide energy intensity 

is also much harder to predict as many new modes and models enter the picture in the next 30 years.     

There is nothing close to a silver bullet to address these difficulties, but we gain a little tractability with a 

conceptual framework based on an expanded identity of the following form, and then applying the 

framework in the three “layers” and further adjustments as explained below.   The disaggregated kaya 

identity we use is:  

(2)  

 

Where the stock in  year t of EVs of  a motorized vehicle type i is denoted by ĸi,t, vi,t  is the average miles 

travelled by that vehicle type in year t, and eni,t is the average power use of the vehicle type i per mile 

travelled during year t, which we refer to as electric intensity or EI. 

Intuitively, this expansion of the identity trades the problem of forecasting aggregate VMT and energy 

intensity for the problem of forecasting the number of each type of vehicle in the fleet each year, the 

efficiency of that vintage vehicle, and number of miles that vehicle is driven.   The uncertainties and 

potential errors in this approach are no less gigantic, but at least they are disaggregated within a more 

flexible and transparent framework.   For example, this framework allows us to treat electric non-

autonomous and autonomous cars and light trucks all separately, adjusting use intensity for modes or 

submodes (such as shared or pooled vehicles) as well as allowing the composition of the fleet to migrate 

from one mode to another.    For example, it is widely predicted that non-autonomous pooled vehicles 

will ultimately be replaced by so-called “robotaxis” around 2030-2035, according to most forecasts.   

                                                           
30 (Brown, Gonder, & Repac, 2014); (Karim, 2017) 
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Equation (2) allows us to shift between individual and pooled AVs during this period, trend VMT per 

vehicle for each of these modes, and express and trend EI for each.31  

This disaggregated form hardly obviates the need to study and then forecast each of these elements over 

the next several decades as they undergo disruption in the Three Revolutions.  However, forecasting 

adoption of vehicles by mode, average VMT by vehicle/mode/vintage, and average EI by 

vehicle/mode/vintage unpacks the giant box of fleet-wide aggregates into elements for which there are 

sometimes extensive bodies of work and some basis for intuition.  Although this may create a sense of 

false precision – there is no guarantee that N forecasted variables will have an aggregate error lower than 

two aggregate variables – we at least have visibility into several of the main change processes extant. 

Moreover, we must recognize at the outset that the growth of all of the modes and sub-modes, their EI, 

and annual use will all be greatly affected, directly and indirectly, by federal, state, and local policies, as 

well as economics and tastes.   Researchers agree that public policies will have an unusually strong impact 

on the pace of new mode adoption, especially for AVs.   We discuss policy dependence throughout the 

paper, seeking a range reflecting the most likely policy outcomes.  In this important sense, our results are 

bounded in large part by our pure judgement as to the likely ranges and impacts of many U.S. transport 

policies. 

As discussed below, researchers are starting to come up with useful ways to estimate the changes in 

mode-and vehicle-specific VMT triggered by all of these factors.   However, the timing of each source of 

VMT shift is also important and equally uncertain.  All three revolutions are occurring on separate but 

undoubtedly interdependent timetables, yielding feedback loops between many of the major drivers.   

This triggers a multifaceted interdependence between all of the terms, including an indirect 

interdependence between VMT and the rate of AV and EV penetration.   Thus, while equation (2) is 

arithmetically straightforward, each term is extremely difficult to forecast in isolation and the interactions 

between the terms are nearly impossible to capture outside of a few extremely new and somewhat 

specialized studies.   

  

                                                           
31 As we apply this framework below, we do not find it necessary to use all the degrees of freedom, but the 
expanded framework is nonetheless essential. 
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B. MODELING THE THREE MAIN DISRUPTIONS BY LAYER  
 

As just noted, one obvious deficiency with our approach is that VMT, mode share, and electric intensity 

are all interdependent.  Every decision to take a trip is a function of the underlying drivers of travel and 

the mode choices for each chosen trip – time cost, money cost, and other costs and benefits for each 

mode option. This marks the first simultaneity:  whether one is willing to take a trip depends in part on 

the features of, and options for, the traverse.   If the food store is one block away, frequent trips by foot 

substitute for weekly trips by car;  if the market is one mile away, trips are less frequent and almost surely 

by car, taxi, or transit.    

In short, the simultaneous choice of whether and how to take a trip is a function of the attributes of the 

travel modes available, which in turn are a function of technology and cost attributes for each mode and 

the nature of the route/mode choices. In turn, route choices are a complex function of the built 

environment between origin and destination.   Dense walkable and bikeable areas enable shorter non-car 

trips, while distant jobs and homes in suburbs and exurbs often allow only one realistic mode and route 

choice involving a car.   Yet the choice of where to live, work and shop are also endogenous, often shaped 

or even decided by transportation options. 

This interdependence operates differently in the short-run and the long-run.  In the short run, the choice 

of travel mode is approximately fixed by the state of technology, existing infrastructure and vehicle stocks, 

and current arrangements such as transit schedules and the accessibility of EV chargers.   In the long-run, 

every one of these trip choice determinants changes in a path-dependent manner.   Moreover, in the 

long-run the choice is nested, first in a choice of own/share a vehicle by type and then whether to use 

that vehicle for a trip.32   A future breakthrough on battery costs should lower the cost of EVs, leading to 

larger and cheaper fleet of shared SAVs, leading more young families to decide that they prefer to remain 

in dense urban neighborhoods.   As demand for these neighborhoods goes up, developers and planners 

provide a larger and larger supply of denser, metropolitan homes and transit system provide more 

frequent service due to increased density.   Thus, in the decades between now and 2050, one technology 

                                                           
32 See for example (Binny, Kockelman, & Musti, 2011) Figure 3.  
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breakthrough could alter the future path of urban design and the mode choices available dozens of years 

hence.    

We break through this deep interdependence using a very simple and inelegant approach.   We first posit 

a baseline in which none of the Three Revolutions occurs.   In this baseline scenario, we generally adopt 

the view of Litman,33 Circella, et al,34 and the Federal Highway Administration35 that per-capita LDV travel 

by Americans has hit its peak and is likely to decline, but for the potential effects of the Three Revolutions.     

The latest FHWA forecast of VMT projects 0.71%/yr growth for the next 30 years, just slightly higher than 

U.S. population growth (0.63%).    Litman and Circella, et al. both suggest that, aside from the shocks of 

the Three Revolutions, long-term trends such as the aging of the American population, stabilization or 

even decline of workforce participation levels, and the preferences of millennials for walkable urbanism 

all suggest that the era of growth in per-capita U.S. travel is at an end.    

The manner in which our approach reflects this baseline view is somewhat opaque.   As our goal is to 

forecast only electric VMT (eVMT), we forecast the sales of EVs each year and multiply them by each 

vehicle’s expected annual travel.   We do not increase expected per-vehicle travel based on an exogenous 

trend, such as the FHWA’s 0.71% increase in per-capita VMT.   This is our bow to our view that pre-

revolution per-capita travel is stable, if not declining.   As explained in the next section, we increase per-

vehicle VMT only from specific changes due to electrification, autonomy, or the advent of new 

shared/pooled modes.   (Of course, we must also account for electricity use per mile, as explained further 

below).   

The effect of the Three Revolutions is then factored into our implicit baseline in three “layers” of 

calculations.   The first layer is electrification, an interim scenario in which the only major change is the 

availability of EVs as an alternative to CVs, i.e. without changes in ownership models, autonomy, shared 

modes, or any urban design changes not already embedded in our implicit baseline.   We employ relatively 

conventional third-party forecasts of EV penetration that do not appear to reflect the full impacts of 

vehicle sharing or connected, autonomous vehicles.   Disaggregating them by vehicle class, we create a 

                                                           
33 (Litman, The Future Isn't What It Used to Be: Changing Trends and Their Implications for Transport Planning, 

2016); (Litman, Evaluating Public Transit Benefits and Costs: Best Practices Guidebook, 2017) 
34 (Circella, Tiedeman, Handy, Alemi, & Mokhtarian, 2016) 
35 (Federal Highway Association, 2017) 
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preliminary disaggregated kaya identity and associated electricity forecast that we call our Conventional 

EV Ownership Interim Case. 

Within this first layer we also project the composition of the EV vehicle fleet and changes in EV EI due to 

technological improvements in EVs themselves.  At this stage, we do not incorporate AV-induced 

electricity shifts, such as increased travel or traffic-smoothing.   Allow VMT to increase for EVs based solely 

on their cheaper per-mile operating costs, including their current exemption from per-mile fuel taxes.36   

Further, major adjustments to VMT are considered in the following two stages, reflecting travel demand 

impacts induced by ridesharing and autonomy.       

The next layer of our calculation modifies this interim case to reflect the onset of autonomous vehicles.  

As many researchers are predicting, AVs will have many complex effects on travel demand, amounting on 

net to a significant and perhaps very large increase in VMT.  Conversely, AVs will reportedly enable savings 

in EI through network and vehicle management approaches not available to conventional vehicles, and 

(much later, we think) energy-reducing changes to the vehicles themselves.  In this layer, we first survey 

AV penetration predictions and adopt an AV penetration base case and a second, more aggressive 

sensitivity case.   Based on the timing implied by these forecasts, we first allocate all of these AVs to the 

EV stock.  We then manually adjust VMT for each type of EAV according to the penetration timetable and 

the literature on each VMT change driver.  We also consider whether AEVs are likely to have significantly 

different EI than non-AEVs, including whether AV technology will change travel and road safety to the 

point where vehicles will downsize and downweight significantly and thereby use less power per mile.   As 

we are modifying our conventional ownership case only to add in the effects of autonomy, this stage is 

equivalent to the currently-unpopular scenarios in which carsharing, ridesharing, and other 

transportation-as-a-service (TaaS) or “new mobility” models do not take hold.  

In the final layer, we add the potential impacts of the new pooled and shared modes, including integrated 

multimodal systems, also called mobility-as-a-service, among other names.   As one of our AV penetration 

scenarios is intended to reflect these new modes stimulating AV adoption, we consider the extent to 

which AVs will change the number of VMT driven by each AEV type.   In kaya terms, the question here is 

                                                           
36 In chapter seven we examine road pricing scenarios that require EVs to pay per-mile road taxes, partly offsetting 
these savings and resulting VMT increases. 
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the extent to which these new models create a different composition of the EV/AEV vehicle stocks and 

different annual VMT for the components of the stock.     

In other words, when all the pooling, ridesharing, carsharing, and mobility-as-a-service changes are said 

and done, there will be a future number of passengers in a future set of vehicles each going a certain 

number of miles at a certain level of efficiency.   The differences between our second and third layers are 

that, in a pooled/shared/services world, there are ideally fewer vehicles, each driving more annual miles 

and each with larger average occupancies.   This implies more use of increasingly electrified mass transit 

and a faster rise of low-power, lighter intracity passenger vehicles which are more efficient than the 

average LDV.   Complex as they are, all these changes boil down to shifts of VMT between modes (including 

some new ones) in the disaggregated Kaya identity and perhaps some changes in EI.     

Although this description makes our analysis sound like a sophisticated adjustment of Kaya terms to 

reflect these effects, our actual analysis is far less advanced. After studying the literature on shared and 

pooled modes, and applying our own opinions on the pace of vehicle occupancy shifts due either to policy 

or taste, we conclude (or perhaps assume) that the net effects of this layer on electric use can be captured 

by a handful of simple adjustments and scenarios.   

With the addition of our third layer the main part of our computational framework is complete.  The 

scenarios emerging from this layer are intended to reflect the main impacts of all three revolutions on 

LDV power use through 2050.   However, there are three additional issues we examine further to see 

whether our scenarios might be updated:  travel pricing options triggered by the need to pay for transport 

infrastructure,  the effect of communications-based substitutes for travel (e.g. telecommuting),  and the 

effect of concerted efforts to redesign urban centers for less travel.   These have the potential to change 

VMT and EI enough to affect power use and we do not think they are fully captured in our construction of 

the three main model layers. We refer to these three items as “wild cards,” though in fact there is more 

than enough uncertainty to apply this label to any other element of our forecast. 

In summary, our calculation proceeds in four layers or stages:   Modeling EV adoption and travel under 

conventional ownership;  modeling the penetration of AVs (all assumed to be EVs) and their impact on 

VMT by mode, also before reflecting pooled/shared/integrated mobility business models;  adding in the 

VMT and EI effects of these shared/pooled modes and business models; and finally considering the effects 
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of the three wild cards: urban design, electronic substitutes for travel, and infrastructure pricing.   Figure 

II-1 illustrates our conceptual approach.     
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Figure II-1: Research Approach 
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C. SIMILAR EFFORTS 
 

The approach we take in this paper builds upon several similar efforts.   Some of these efforts would 

appear from their title to focus on only one of the Three Revolutions, but inevitably all three creep into 

the analysis.   In particular, as far back as 2014, two groups of authors pioneered essentially the approach 

we are using under the guise of researching only the energy impacts of AVs.   Brown, Gonder and Repac 

(2014)37 reviewed, in sequence, literature estimates for all of the factors affected by autonomy that will 

drive electricity use up or down.    They created lists of factors that would alter “use intensity” (UI), roughly 

translating into VMT, and energy intensity, respectively.   For each of these factors, they searched the 

literature to reach a judgement as to what a reasonable estimate might be for the impact of that factor, 

taken in isolation.   However, their goal was to examine fuel savings of all types, not electric demand, so 

their results are expressed as percentages of baseline fuel use over a specific horizon.    

The second 2014 paper, Morrow, et al (2014)38, performs a condensed version of the same exercise.   This 

work revolves around two scenarios: (1) a best-case outcome where automation reduces VMTs by 40% 

and EI is reduced by two-thirds, yielding an 80% reduction in energy use; and (2) a worst-case scenario 

where VMTs increase by 40% and auto energy intensity increases by 25%.  As in BGR, however, the results 

are in the form of percentage changes from an unspecified base case, a measure not easily translated into 

EV electricity use.     

A third paper using this approximate approach is MacKenzie, Wadud, and Leiby (MWL, 2014)39.  Although 

styled as an investigation of the energy impact of AVs, the authors quantify – again in percentage terms 

versus an unspecified baseline – the effects of ridesharing as well as autonomy.   Consistent with the Kaya 

identity adjustment approach, the authors divide their impacts between those affecting travel demand 

(VMT) and energy use per mile (EI). The authors pay particularly close attention to aspects of AV 

technologies that could change EI, such as changes in average highway speeds, and also include an 

interesting elasticity-based estimate of travel demand changes from AVs.   As with the studies above, the 

raw materials are extremely valuable but the end product cannot be used to forecast electricity use. 

                                                           
37 (Brown, Gonder, & Repac, 2014) 
38 (Morrow III, et al., 2014) 
39 (Wadud, MacKenzie, & Lieby, 2016) 
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An updated and expanded version of these approaches was published in 2016 by Stephens, et al.40 In 

addition to updating the underlying literature review, this work explicitly incorporated ridesharing, as well 

as varying level of autonomy, through four scenarios:  conventional, partial autonomy without sharing, 

full autonomy without sharing, and full autonomy with full sharing.    As with our current work, the goal 

was to establish upper and lower bounds for LDV energy use, and in contrast to the studies above the 

authors estimated the change in fuel consumption (not just percentages) in each scenario.   This study 

was highlighted in a U.S. Department of Energy paper on new mobility systems. However, the study 

appears to use a current-year base case and does not explicitly factor in electrification, once again making 

it difficult to translate directly into EV power demand.     

We draw heavily on all of these works, and many other similar but more narrowly focused works, in a 

framework that essentially translates these results into long-term projections of electricity use.41 

III. Conventional Ownership Scenarios Stage Results 
 

In this section, we provide numerical results from the first stage of our analysis. As mentioned above, 

these initial scenarios do not factor in changes from the growth of autonomous vehicles or new 

ownership/TaaS business models.  We highlight the key assumptions used in our projections of light duty 

vehicle (LDV) electricity consumption and provide the main takeaways. We begin by discussing our 

projection of electric vehicle sales and compare our projections to other industry forecasts. Then, we 

provide our average annual electric vehicle miles travelled (eVMT) and electric vehicle energy intensity 

assumptions. Finally, we discuss our results and put our first stage of results into context with the latter 

two stages of our analysis.  

A. EV PROJECTIONS UNDER CONVENTIONAL OWNERSHIP    
 

                                                           
40 (Stephens, Taylor, Moore, & Ward, 2016) 
41 There are dozens more papers in the literature that address one or more aspects of future EV energy use, many 

of which are subsequently cited below.   Additional studies that resemble (Brown, Gonder, & Repac, 2014) and 
(Stevens, et al., 2016) include (Greenblatt & Saxena, 2015) who estimate the impacts of a wide range of scenarios 
in which gasoline vehicles are converted into autonomous electric taxis (AETs) through 2050.  Their calculations 
show, for example, that converting the majority of gasoline vehicles to AETs by that year would reduce GHGs by 
70%-90% versus EIA’s 2014 long-term baseline.  However, their calculations are in the form of parametric “what if” 
scenarios, not projections.     
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Many industry groups have projected electric vehicle sales, often without any visible adjustment either 

for the growth of autonomous driving or for new ownership models. For our analysis, we begin with these 

forecasts.   After examining several commercial projections, we assume that EV adoption follows a similar 

technology adoption curve described by Everett Rogers’s Diffusion of Innovations theory.42 Specifically, 

we employ a reduced form of the Bass Diffusion Model, a widely accepted and cited quantitative 

generalization of the theory used to model product growth rates, for our empirical modeling. 43  The 

specific quantitative formulation is shown below. 

  𝑆(𝑡) = 𝑚(
1− 𝑒−(𝑝+𝑞)𝑡

1+ 
𝑞

𝑝
𝑒−(𝑝+𝑞)𝑡

)    (3) 

Where, 

S(t) = percent of total sales in year t 

m = final percent of total sales 

p = coefficient of innovation 

q = coefficient of imitation 

t = year  

Our EV sales share forecasts are most accurately viewed as extensions of two prominent industry 

forecasts out to the year 2050.   We prepared these by first reviewing projections made by Green Tech 

Media (GTM, 2016), the US DOE’s 2017 Annual Energy Outlook (U.S. Energy Information Agency, 2017),  

(EPRI & NRDC, 2015), (BNEF, 2017), and the Institute for Electric Innovation (IEI, 2017).     Based on our 

judgement, we selected GTM’s forecast as our high EV case and IEI’s projection as our low case.    

Because neither of these projections extend to 2050, we “backfit” a Bass curve to approximate these 

forecasts as far as they went.   We did this by entering parameters from the published forecasts and 

then experimenting with the Bass p and q parameters until our curves closely fit the published forecasts.   

As part of this exercise, we assumed that the 2050 terminal sales shares for EVs were 90% in the high 

case and 58% in the low case. 

The p and q parameters resulting from this exercise appear reasonable.  Our p factor assumption (i.e. 

coefficient of innovation) is 0.0013 in our low and high case. The p factor represents how quickly a new 

                                                           
42 (Rogers, 2003) 
43 (Lavasani, Jin, & Du, 2016)  
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technology is being adopted, and our coefficient of innovation estimate is high compared to values 

estimated for the automobile (0.0002) and cellphone (0.00067) and about the same as the value for the 

internet (0.0017). However, our estimate is low compared to those calculated by Lavansani for hybrid 

electric vehicles (HEV, between 0.01 and 0.015).  Lavansani and her co-authors argue that HEV’s p factor 

is higher than other technologies because from a consumer perspective, HEV technology does not 

represent a revolutionary new approach to car ownership and operation as compared to an internal 

combustion engine (ICE) vehicle.44 The fact that our estimates for the coefficient of innovation are lower 

than HEV estimates but higher than other disruptive technologies suggests that BEVs will require new 

demands from consumers regarding vehicle operation (e.g. understanding charging constraints) but are 

otherwise not massively different than their ICE counterparts. 

On the other hand, our q factor (i.e. coefficient of imitation) estimates of 0.24 and 0.30 in our low and 

high cases, respectively, were lower than most comparable technologies, though higher than the value 

estimated for automobile adoption. Unlike the p factor, which mostly deals with a consumer’s risk of 

technology adoption, the q factor represents a consumer’s cultural and lifestyle preferences. For 

automobiles, the factor was estimated to be 0.09; however, the factor for the HEVs in Lavasani’s study 

varied from 0.34 to 0.39, indicating that these technologies, once being adopted by innovators, would be 

adopted more quickly than our corresponding estimates for BEVs. This is consistent with a view that 

imitating a neighbor’s purchase of an HEV is easier than imitating a BEV purchase. 

Figure III.1 below shows the two sales projections we model. 

  

                                                           
44 (Lavasani, Jin, & Du, 2016) 
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Figure III-1: Projections of Electric Vehicles 

 
It is important to note that the data that results from our analytical formulation is returned as percent of 

total LDV sales (S(t)) as projected by the U.S. Department of Energy’s National Energy Modeling System.  If 

at this point we were to incorporate the view that ridesharing services were going to vastly reduce vehicle 

sales, we could create multiple car ownership scenarios.  Instead, we begin with projections of vehicle 

sales under a continuation of current ownership trends, and use these to develop sales numbers such as 

those in Figure III.1.  EIA’s estimation for vehicle growth is based on econometric modeling that uses 

forecasted macroeconomic indicators such as population and GDP to estimate future LDV sales.45 Overall, 

they report a cumulative average growth rate of 0.4% for LDV sales through 2050 which compares to their 

0.6% projected population increase.46 Accordingly, we multiply these projected market shares by EIA’s 

estimate of total U.S. LDV annual sales through 2050 to generate the numbers shown above in Figure III.1.  

EIA’s projection does not account for the paradigm shifts in the transportation sector that were 

introduced in the earlier sections of this report. The EIA does not take a position on transformative 

technology such as car sharing and vehicle automation but rather provides a picture of the business as 

                                                           
45 (U.S. Energy Information Agency, 2014) 
46 (EIA, 2017) 
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usual world. However, since our first stage analysis does not consider the effects of technologic change, 

we are comfortable using the EIA figure as the basis of total annual LDV sales.  

To check our work, we compared other industry projections to our own; Figure III.2 below depicts some 

of the key comparisons. GTM research projects a range of 2025 electric vehicle sales from 3 to 3.5 million 

in their base case and high case, respectively, and EV go, a leading car charging provider, projects 2025 

sales between 1.2 to 2.4 million.47,48 Longer term and more bullish estimates from the National Resource 

Defense Council (NRDC), the Electric Research Power Institute (EPRI), and the Climate Policy Initiative (CPI) 

estimate a range of annual sales between 6 and 17 million by 2040 and BNEF projects sales slightly above 

10 million by 2040.49,50,51 Yet other sources are less bullish on the EV market. UBS research projects less 

growth in sales in the near term, estimating only 600 thousand EV sales by 2025, and EEI only projects 

around 1 million EV sales by 2025.52,53 Similarly, EIA projects 1.2 million electric vehicle sales by 2025 in 

their reference case but then holds sales level relatively constant. By 2050, their reference case projects 

only 1.7 million annual sales of EVs.54 The EIA, however, is constantly adjusting their forecasts and as 

stated above tends to be a poor predictor of technological revolution.  Their EV projections in the 2017 

Annual Energy Outlook (AEO) are double their forecast from the prior year and nearly 10 times larger than 

their forecast from 2014. In general, the EIA usually trails technology trends and is generally regarded as 

a conservative forecaster.55  

  

                                                           
47 (Gavrilovic, The Impact of Electric Vehicles on the Grid: Customer Adoption, Grid Load, and Outlook, 2016) 
48 Personal communications, EV Go to James Schulte, Energy Impact Partners  
49 (Alexander, 2015) 
50 (Energy Transitions Commision, 2017) 
51 (BNEF, 2017) 
52 (Dounis & Langan, 2017) 
53 (Cooper & Schefter, 2017) 
54 (EIA, 2017) 
55 (Cohan, 2017) 
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Figure III-2: Comparison to Other Industry Projections 

 

Source: ISE Analysis; GTM, EV Go, NRDC, EPRI, BNEF, EEI, and CPI 

 

Similar to other industry projections, our projection in Figure III-2 lumps the various electric vehicle types 

(i.e. car/sedan, light truck/SUV, plug-in hybrid (PHEV), and battery electric vehicle (BEV)) into one broad 

EV category.  However, each of these types will likely consume different amounts of electricity.  SUVs have 

higher electric energy intensities than sedans due to their larger sizes, and PHEVs use a combination of 

electric and fossil fuel. Therefore, we break up our projections of electric vehicles into these various 

vehicle types.  

First, to split up near-term electric sales into electric trucks and cars, we use the 2016 breakdown of 72% 

electric cars and 18% E-SUVs.56 We then assume that SUV sales as a percent of total sales grows based on 

the bass diffusion formulation discussed above until the breakdown between E-SUV and car sales equals 

                                                           
56 Inside EV website, accessed at http://insideevs.com/ on May 2017.  

http://insideevs.com/
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the traditional ICE LDV division of sales in 2015, 56% for light trucks/SUVs. 57  We assume the same 

breakdown is reached for electric vehicles by 2027.58 

To break out the sales between PHEVs and BEVs, we also started with the breakdown of sales between 

these two types in 2016. In 2016, about half of electric vehicles purchased were PHEVs with the other half 

being BEVs. We assume this breakdown will continue in the near to medium term as range anxiety and 

attachment to gasoline driven vehicles remains. However, Bank of America and Merrill Lynch (BAML) 

project that by 2025, only about 30% of total electric vehicle sales will be PHEV. 59   We trend this 

percentage from 30% in 2025 to 10% in 2050.60  

Electric vehicle sales, though, do not represent the actual stock of electric vehicles in a given year that 

would consume electricity. Rather, electricity consumption would be driven by the total number of 

vehicles on the road, which is affected by car retirements as well as sales. To inform our estimate of 

electric vehicle stock, we rely on the survival rates for conventional cars and light trucks provided by the 

Oak Ridge National Laboratory’s Transportation Energy Data Book (ORNL).61    

The survival rates provided by ORNL are estimates of the percentage of gasoline vehicles, from a specific 

year, that remain on the road (i.e. a survival rate of 99% suggests that 1% of vehicles have been retired).  

The percent slowly decreases the older or more distant a particular car model is from the year it was built.  

For instance, the ‘Year 1’ survival rate reported by ORNL for a sedan is 99.7% but by year 15 that rate 

drops to 51%, suggesting that 49% of vehicles purchased 15 years ago have been retired.  

These survival rates, though estimated for traditional ICE vehicles, represent our best guess for how long 

new vehicles remain in circulation year over year after being sold. However, it is likely that survival rates 

would be different for EVs. As compared to ICE vehicles, EVs do not have complex transmission, only have 

one moving part in the motor, and have regenerative braking that may improve brake life. A car battery 

may need to be replaced multiple times during the lifetime of a car, but this replacement does not mean 

                                                           
57 This is a much more aggressive assumption than BNEF reportedly makes in its latest EV forecast, probably 

biasing our electric demand projections upwards. 
58 (Oak Ridge National Lab, 2016) 
59 (Ma, Nahal, Tran, & Hill, Thematic Investing: Overdrive - Global Future Mobility Primer, 2017) 
60 Conversely to our high proportion of electric SUVs, our assumption of continued PHEV sales is higher than 

BNEF’s latest forecast. 
61 (Oak Ridge National Lab, 2016) 
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the full retirement of the particular car.  For these reasons, A&S, RMI, and other researchers believe that 

BEVs may have almost 2 to 2.5 times the useful life of an ICE when measured in miles, ultimately growing 

to 5x or 1 million miles.62    However, these estimates are for the lifetime mileage, whereas to calculate 

vehicle stocks we need calendar lives.   While it would be convenient to assume that longer potential 

mileage lives yield equi-proportionate calendar lives, many cars are retired due to accidents, structural 

deterioration, or other factors unrelated to potential mileage.  Morever, there is widespread agreement 

that the incorporation of autonomy and sharing, not yet factored in, will lead to more intensive vehicle 

use, offsetting a longer mileage life.  As we will be dealing with autonomy and sharing in subsequent 

sections, we examine vehicle lifetimes in more detail below. In the meantime, in this conventional 

ownership scenario, we judgementally reduce the amount of vehicles that retire in a given year by 10% 

as a nod to the greater durability of conventionally-owned and driven BEVs but do not adjust vehicle lives 

for PHEVs, which continue to have ICE components. Of course, as more field data is made available this 

estimate can be refined.63  

Our stock turnover model thus captures the four types electric vehicles mentioned above to estimate the 

total electric vehicle stock. Figure III.3 below shows the stock of electric LDVs in our high and low cases.   

Figure III-3: Total Stock of Electric Vehicles by Type, Conventional Ownership and No Autonomy 

 

                                                           
62 (Johnson & Walker, 2016) pg. 24; (Albright and Stonebridge Group, 2016) p. 58-59. 
63 If EVs lasted much longer in the fleet than we assume, our total EV stocks would not be much different through 
2050 since much of the stock growth occurs past 2035 (so vehicles are not replaced even under our current 
assumptions). The largest effect would be a reduction in average EV fleet EI as less efficient vintages lingered 
longer in the stock. This could bias our 2050 power use estimate downward – though we doubt by much. 
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As we did for electric vehicle sales, we also compared our stock projections to other sources and 

present this comparison in Figure III.4. GTM estimates that there will be 11.4 million EVs on the road 

by 2025, in line with our low case total.64 BAML forecasts that 60% of all vehicles on the road will be 

electric by 2050.65 Furthermore, an RMI estimate from 2011 projected that 157 million EVs would be 

on the road by 2050, an estimate that is quite similar to our low case and below our high case. In 

addition, RMI believes 66% of the fleet will be electric cars while the remaining percentage will be 

trucks/SUVs.66 While our modeling suggests the opposite breakdown, with trucks accounting for 

closer to 55% of the stock in 2040, the difference could easily be explained by the fact that RMI’s 

scenarios incorporate extensive autonomy and sharing; we make these adjustments below. At least 

as long as conventional ownership continues, we see no reason why Americans will lose their love 

affair with SUVs when electric models with 300+ mile ranges become widely affordable.    

 

Figure III-4: U.S. EV Stocks – All Types Comparison to other industry projections 

 
Source: ISE Analysis; GTM, RMI, E3, and IEA. 

                                                           
64 (Gavrilovic, The Impact of Electric Vehicles on the Grid: Customer Adoption, Grid Load, and Outlook, 2016) 
65 (Ma, Nahal, Tran, & Hill, Thematic Investing: Overdrive - Global Future Mobility Primer, 2017) 
66 (RMI) 
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To further support our projection of future EV stocks, we considered the regulatory environment 

around the U.S, as regulatory mandates alone will contribute significantly to near term EV growth. 

Overall, 8 states have announced an EV target, mandating a total of 3.3 million vehicles to be on the 

road by 2025.67 California alone has established a target of 1.5 million by 2025.68  The International 

Energy Agency (IEA) compiled a number of these mandates and used them to project that U.S. EV 

stocks will be 1.2 million by 2020, as compared to our projections of 1.6 million in our low case and 

3.6 million in our high case.69  

While our numbers appear to be higher than these regulatory actions in the near term, the 

momentum for long term carbon reduction goals cuts the other way. E3’s deep decarbonization 

report projects EV stocks out to 2050. In one scenario, they estimate the stock of EVs needed to 

decarbonize the LDV sector would be close to 320 million by 2050. In another scenario that uses a 

combination of EVs and fuel cell vehicles to decarbonize the LDV sector, E3 projects 200 million EVs. 

Both these scenarios require significantly larger stocks of EVs than presented in our low case. Our 

high case is slightly above E3’s fuel cell / EV scenario but almost 75 million vehicles below their EV-

only scenario 2050 stock estimate. 

B. VMT ASSUMPTIONS 
 

We next estimate how many miles each conventionally-owned electric vehicle in our stock will drive 

annually.  In 2015, Idaho National Labs (INL) performed a survey that tracked the driving patterns of close 

to 15,000 PHEV and 7,000 BEV owners; we rely on the annual eVMT estimates that resulted from this 

survey to inform our initial-year eVMT assumptions. Overall, the three BEV vehicle models INL tracked 

(Nissan Leaf, Ford Focus electric, and Honda Fit EV) had very similar annual eVMTs averaging  9,640 miles.  

Conversely, the PHEV vehicle models INL surveyed had a wide range of annual eVMTs depending on the 

specific vehicle model analyzed.  On the high end, the Chevy Volt had an estimated annual eVMT of 9,100 

miles while the Toyota Prius PHEV had an estimated annual eVMT of 2,500 miles. Other PHEV models 

                                                           
67 (IEA, 2016).  
68 Note the this represents a zero-emission vehicle mandate.  We expect the majority of those vehicles to be EVs. 

(Trabish, 2017). 
69 (IEA, 2016). 
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tracked, including the Ford C-Max Energi and Ford Fusion Energi, had annual eVMTs closer to 4,000 

miles.70  

The fact that these numbers are lower than the BEV estimates is not surprising. Ostensibly, one of the 

main advantages of PHEVs is their ability to travel longer distances by combining gasoline-powered 

engines with a battery pack. Due to the dual-drive trains, only a portion of these vehicles’ annual miles 

traveled are driven using electric power, hence the need for an eVMT designation. While the Toyota Prius 

PHEVs surveyed averaged 2,500 eVMTs, they averaged 15,000 annual VMTs in total. On the other hand, 

BEVs only have electric drive trains and all of their VMTs are electric.71   

The more surprising result was the large range in eVMTs between the different PHEV model types in the 

INL survey, though this outcome is most likely explained by the variance in battery size between the 

vehicle models. While the Chevy Volt has a 41 mile electric range, the Ford PHEV models have electric 

ranges closer to 21 miles and the Toyota has an electric range of only 11 miles. The U.S. Bureau of 

Transportation Statistics reports that Americans drive about 40 miles per person per day, an amount that 

would allow the Chevy volt user to drive on electric power throughout the day and then recharge 

overnight.72  The Ford and Toyota models could not operate in this way and thus require the use of 

gasoline more often to cover their mileage needs.  

It is difficult to predict which PHEV type will be popular in the future and thus difficult to determine what 

the “correct” eVMT assumption is for our analysis. For simplification purposes, we choose a mid-point 

value of 5,000 eVMT to represent our annual eVMT value for PHEVs.  We think this is a fair assumption as 

drivers of these vehicles will start to demand longer electric ranges. The Prius PHEV surveyed above has 

actually been discontinued by Toyota as of June 2015 and their latest model, named the Toyota Prius 

Prime, increased their electric range from 11 to 21 miles. 

The eVMT values for both PHEVs and BEVs, though, are noticeably lower than the average VMTs of ICE 

LDVs today. For ICE cars in 2015, the average annual VMT was 11,327 miles and for SUVs it was 11,855 

miles.73 Current models of electric vehicles often do not have the same drive range as the ICE equivalent 

                                                           
70 (Carlson, 2015) 
71 (Carlson, 2015) 
72 (U.S. Bureau of Transportation Statistics, 2001-2002) 
73 (U.S. Department of Transportation Federal Highway Administration, 2015) Table VM-1 
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vehicle due to the limitations of current battery technology. However, we expect the annual miles driven 

using electricity to increase as battery technology continues to improve and battery ranges increase.  In 

order to capture the effect of battery improvement for the future years of our analysis, we fit a curve to 

projected battery energy density increases and use the percent increase over time to gross up the total 

electric vehicle miles for both PHEVs and BEVs.  IEA expects almost a 68% increase in battery energy 

density by 2025, and we make the simplifying assumption that this density improvement will directly 

correlate with increased annual eVMTs for both BEVs and PHEVs.74 Figure III-5 below shows the energy 

density improvement for batteries expected in the near term with our mathematical fit towards the long 

term. These assumptions are consistent with forecasts by BAML that project that average EV battery 

capacity will allow for a 296 mile range on all EVs by 2030 and well below A&S’s prediction of 250 mile 

average range by 2020.75,76 

Figure III-5: Projection of Battery Energy Density Improvements 

 
Source: ISE Analysis; IEA data. 

 

                                                           
74 (IEA, 2016) 
75 (Ma, Nahal, Tran, & Hill, Thematic Investing: Overdrive - Global Future Mobility Primer, 2017) 
76 (Albright and Stonebridge Group, 2016) 
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We then use the annual VMT for ICE vehicles as the baseline distance the average electric car owner would 

drive in a year under conventional ownership prior to autonomy. In other words, in this scenario we 

linearly trend annual eVMTs for PHEVs and BEVs from their current average levels to the average VMT of 

conventional vehicles in 2015 as reported by the FHWA.   For BEVs, the large expected increase in battery 

energy density in the near terms leads EVs to achieve the same VMT as CVs before 2020. Therefore, in 

effect, we assume battery technology will not limit electric vehicle miles driven by BEVs from 2025 

onwards and they will drive as many annual miles as a traditional ICE vehicle. However, though the large 

increase in battery density does significantly increase PHEV’s annual eVMT, it does not reach the average 

VMT of an ICE vehicle as reported by FHWA within the time horizon we analyze. This result makes intuitive 

sense; if a car owner purchases a PHEV, we would not expect them to drive all their miles on electric 

power alone.   

In addition to the baseline effect of relaxed range constraints on electric mileage, the operating costs of 

EVs is lower than CVs. Through common fuel price elasticity effects, we expect EVs to ultimately be driven 

slightly more than CVs, all other factors equal. As a result, we adopt most of Kim, el al’s77 estimate of 10% 

additional VMT from electrification’s savings alone as a high case.  Based largely on data on typical EV and 

CV costs in (Walker & Johnson, 2016) and (Binny, Kockelman, & Musti, 2011) our own simplified 

calculations of EV drivers’ response to reduced fuel and operating costs is at this same approximate level 

even when slightly higher highway taxes are assumed.78 This increase begins to take effect on all BEVs in 

2025 and reaches 10% added VMT by 2040. In the alternative, we later assume that road pricing and other 

travel demand management policies erase the lower operating cost impact on VMT – clearly a lower 

bound.  

C. ELECTRIC VEHICLE ENERGY INTENSITY PROJECTIONS  

Even if we assume the ownership model will not change, as we assume in this chapter, EVs are likely to 

become steadily more energy-efficient over time. Present-day EVs have also been improving slowly but 

steadily over time and are already about three to four times as energy-efficient as their gasoline 

counterparts.   In this section, without assuming any further changes in autonomy, ownership, or sharing, 

                                                           
77 (Kim, Rousseau, Freedman, & Nicholson, 2015) 
78 See Workpaper D. 
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we consider trends in individual EV electric efficiency through 2050 as an input to our conventional 

ownership base case. 

 

It is important to note that we are not yet including a number of long-term factors affecting EVs at this 

point. First, a large growth in ridesharing would reduce the number of total VMTs versus less sharing, but 

would also tilt use towards a vehicle stock that could have a higher fraction of larger vehicles. Second, 

many researchers believe that, once AV penetration removes most human-driven vehicles from the roads, 

safety will improve so much that cars can become much lighter, shedding protective materials. This would 

create a quantum increase in AEV efficiency. In short, we are computing likely evolutionary improvements 

in EI for EVs that will evolve organically from today’s models. 

 

Figure III-6: Historic EV Efficiency Data 

 

Figure III.6 shows historic data on EV efficiency (kWh/mile) from two sources, Argonne National 

Laboratory’s Autonomie data base (labeled DOE) and EPA’s fueleconomy.gov. Fortunately, these data 

divide vehicles by size and type, allowing us to avoid confusing trends in fleet composition with trends in 
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efficiency by vehicle type. There is also surprisingly good agreement between the DOE and EPA data, 

with EPA light trucks looking much like DOE SUV-300s and EPA cars looking like DOE midsize autos – 

likely LEAFs, Volts, and Teslas. 

As the figures show, there is a relatively small historic sample of EV efficiency data and these data are 

somewhat noisy due to the fact that very few vehicles were manufactured in early years and the decision 

to offer even a single new EV for sale could greatly affect the average. Nevertheless, there has been a 

dramatic downward trend in EI in the past 20 years. We do not expect improvements to continue at this 

rate, but we do expect them to continue. 

In Figure III.7, we show the ANL Autonomie forecast of EI through the year 2050. ANL creates low, 

medium, and high-efficiency predictions for each type of vehicle. While it is likely that many vehicles in 

the fleet will be PHEVs, we forecast efficiency for BEVs and assume that PHEVs show the same percentage 

efficiency improvements.79 In effect, this forecast embeds an assumption that technology will continue to 

improve, but at a pace that declines slightly each year. This follows well-established theories of the returns 

to R&D and manufacturing learning curves, assuming there are no technology breakthroughs. While we 

agree that breakthroughs are certainly possible, we believe they are more likely to occur in connection 

with AVs, as explained in the nest chapter.  We also later employ a high-efficiency case to reflect the very 

real chance of faster technical improvements.80  

                                                           
79 We also assume that all BEVs will have 300 mile ranges by the mid-2020s so we focus only on BEV-300s. 
80 An extensive non-technical discussion of lightweighting suggesting even higher efficiency potentials is in (Lovins, 
2011) chapter 2. 
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Figure III-7: ANL Autonomie Forecast of EI Through 2050 

           (Source: Autonomie)81 

 

Figure III.7 shows that most of the many vehicles types follow similar efficiency trends. According to the 

model, by the year 2050 electric cars will achieve an efficiency rate of 0.2 kWh/mile, SUVs will sit around 

0.3 kWh/mile and pickup trucks will use about 0.4 kWh/mile, which is more or less equivalent to the 

efficiency of small SUV 100 (red circle) and midsize car 300 (blue diamond) right now. 

 

To reduce complexity, we choose one representative auto sedan and one SUV types as the two composite 

archetypes in our model. ANL’s medium and high-efficiency cases are plotted for both archetype vehicles 

in Figure III.8. In the figure we put unweighted average of Compact BEV-300 and Midsize BEV-300 into 

“Cars” and unweighted average of Small SUV BEV-300 and Midsize SUV BEV-300 into “SUVs”. The bars on 

                                                           
81 (Autonomie, 2016) 
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the figure represent the range of different technology level, where the negative bar stands for high 

technology level and the positive bar stands for ORNL’s low technology case. 

 

Figure III-8: Forecasted Composite Models from Figure 7 Trends 

 
 

 

The results in Figure III.8 track very closely with (EPRI & NRDC, 2015) results (see figure III-5); especially 

for passenger cars, where they estimate about 230 WH/mile in 2050. Their estimate for light trucks, 275 

WH/mile, is well below our low end (just over 300 WH/mile) due to a jump in efficiency between 2017 

and 2022 taken from AEO (U.S. Energy Information Agency, 2013) projections. 

D. CONVENTIONAL OWNERSHIP PRE-AUTONOMY RESULTS 
 

The combination of these assumptions represents the three main inputs to the kaya identity formulation 

presented in the above section of this report. Our EV projections, eVMT estimates, and expected vehicle 

energy intensities are multiplied by each other to calculate our conventional ownership base case (or 
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stage one) electricity consumption projections.  Table III.9 presents five key metrics for the years analyzed: 

(1) the total stock of EVs; (2) the portion EVs makeup of the total stock of LDVs;82 (3) the average VMT / 

vehicle for the EV fleet; (4) the fleet’s overall energy intensity; and (5) the total expected electricity 

demand.  

Table III-9: Estimated Electricity Consumption 

 

  

Overall, we project 2050 electricity demand of 890 TWh and 510 TWh in our high and low cases, 

respectively, without taking the 10% VMT increase into account. These figures represent roughly 23 and 

13%, respectively, of the current electricity demand of 3900 TWh and 20 and 11%, respectively, of EIA’s 

projected 2050 electricity consumption of 4,500 TWh.83,84  With the added effect of a 10% increase in 

VMT, the projected electricity demand is 970 and 560 TWh, comprising 22% and 12% of 2050 demand, 

respectively. One of our most surprising – and perhaps most incorrect – findings is that the interim results 

do not change very significantly when modified by the rest of our analysis. 

                                                           
82 Total stock of vehicles is taken from EIA’s AEO 2017 projection. 
83 (EIA, 2016) Table 2.2 
84 (EIA, 2017) 

Case Year

Total 

Number of 

EV in Service

Portion 

Stock 

Electric

Total 

Number 

of AV in 

Service

Fleet 

Average 

eVMT / 

Vehicle

Fleet 

Average 

Efficiency

Total 

TWh

Total 

TWh EV 

Bump

(%) (per yr) (kWh/mile) (TWh) (TWh)

2015 406,076 0.2% 0 7,179 0.32 0.9 0.9

2025 17,086,996 6.6% 0 10,075 0.34 59.0 59.0

2030 52,378,548 19.7% 0 10,734 0.33 187.9 194.0

2040 166,919,164 59.6% 0 11,039 0.32 593.0 651.9

2050 251,742,035 85.4% 0 11,231 0.31 886.2 973.8

2015 406,076 0.2% 0 7,179 0.32 0.9 0.9

2025 7,063,273 2.7% 0 10,061 0.34 24.3 24.3

2030 20,532,231 7.7% 0 10,729 0.33 73.6 76.0

2040 81,511,381 29.1% 0 11,049 0.32 289.2 317.9

2050 145,941,420 49.5% 0 11,236 0.31 511.7 562.3

Base Low

Base High
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On top of our interim electricity projections, it is important to highlight the other results from our 

conventional ownership analysis. In Table III.9, the VMT / vehicle changes asymmetrically year over year.  

The large jump from 2015 to 2025 is a result of the large increase in battery energy density that occurs 

between those two years. The relatively stable VMT / vehicle value from 2025 onwards shows the 

combined effect of the price elasticity effect result from cheaper EV operation as well as the assumption 

that PHEV models will likely never fully operate on electric fuel alone.  While final eVMT number is higher 

than that of a conventionally owned ICE model, it is not as high as it could be if the fleet only operated 

with BEVs.   

Furthermore, Table III.9 shows that the energy intensity of EVs does not decrease as dramatically as may 

be expected due to the projected improvement in battery technology. While it is true that our energy 

intensity improves year over year, the make-up of our electric vehicle stock also changes towards light 

trucks and SUVs which have considerably higher energy intensity than sedans. In effect, we find that the 

combination of these two trends basically cancel each other out, and the fleet’s energy intensity over time 

remains relatively stable and even may increase in the short term – unless and until autonomy allows for 

radical change in vehicle design. 
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IV.  The Impact of Autonomous Vehicles 

A.  INITIAL ASSUMPTIONS AND OVERVIEW 
 

 In this section we examine the power impacts of commercially available, fully-self-driving 

(“autonomous”) light-duty vehicles.   Of course, various levels of IT assistance to drivers is already sold in 

many LDVs, and it is universally agreed that successively more sophisticated systems will be sold each year 

until fully-autonomous, i.e. fully driverless vehicles are commercially available for use on designated 

roadways.85    We oversimplify by treating the transition to AVs as a bright line before and after Level 4 or 

5 AVs sold and allowed to be used with relatively few restrictions.   This may well occur at different times 

in different cities and states across the U.S.;  our projections are simply intended to show the national 

totals, increasing as the number of areas and vehicles sold both rise.    

As part of this gross simplification we ignore changes in VMT or EI induced by autonomous features in 

LDVs that fall short of L4/L5 autonomy.  Although it is possible that people will drive more in less-than-

fully- driverless AVs, or that these vehicles may have higher or lower EI than comparable CVs, we do not 

invest in trying to quantify these effects in the years before fully autonomous AVs dominate.   Also, 

partially and fully-autonomous commercial vehicles are already finding their way into many applications, 

and this trend is sure to continue, but we reserve this for later commercial and freight research.  Finally, 

as noted in the introduction, we grossly assume that all AVs are electric, significantly biasing our electric 

power demand upward. 86 

B.  TIMING AND NARRATIVES 
 

There is near-universal agreement that motor vehicles will ultimately be fully autonomous or self-driven.   

There is, however, a cacophony of opinions as to when and how the autonomy revolution will occur – not 

                                                           
85 Although there is agreement that driver assistance IT features will increase, a minority of experts believe that 

fully-driverless vehicles will never reach unrestricted commercial operation.   In this article we side with the 
majority on the question of whether driverless cars will ever be introduced but employ forecasts that show 
relatively slow growth. 
86 A few analysts predict that fully autonomous AVs may never be allowed to be sold to the general public. Should 
this occur, power demand will probably fall close to the range computed in the previous chapter. 
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to mention its implications for travel, the economy, and our built environment.   As the most recent U.S. 

Department of Transportation long-range planning study concluded: 

Continued introduction of automation features to vehicles will likely lead to improvements in 
safety and eventually could enhance the capacity of our roadways. While the technical feasibility 
of these features is becoming increasingly apparent, the timeline for the mainstream adoption of 
automated features and the impact of these features on safety, highway capacity and travel and 
settlement patterns remains unclear. The advance of these potentially transformative 
technologies makes it difficult for transportation planners to plan for long-term transportation 
system needs.87 

On one end stand highly optimistic writers such as Arbib and Seba (A&S, also known as “Rethink X”) (Arbib 

& Seba, 2017) who predict that shared AVs will handle 95% of all passenger-miles by 2030, all but ending 

individual auto ownership.   A&S are not alone; (Albright Stonebridge Group, 2016) predicts almost 100% 

VMT as “transport-as-a-service” (TAAS) by 2035, while Rocky Mountain Institute (Walker & Johnson, 2016) 

(Barclays, 2015) and (Bank of America Merrill Lynch, 2017) also predict relatively rapid, high-dislocation 

futures.    At the other extreme, researchers such as (Litman, 2017) and (Niewenhuijsen, 2015) predict 

that 100% level 5 autonomy in the fleet will not occur until 2070 or later.88   In between, analysts’ 

estimates cover a very wide range of adoption trajectories between now and 2050, as illustrated in Table 

IV.1. 

 

 

 

 

 

 

 

 

 

 

                                                           
87  P.207 (U.S. Department of Transportation) P.207 
88 Specifically, (Niewenhuijsen, 2015) convened a Delphi panel that predicts only 50% L5 penetration in the fleet by 

2070, whereas (Litman, 2016) predicts 100% by this time. Niewenhuijsen’s own econometric prediction is that 75% 
of sales are L4 or L5 by 2050.   
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Table IV-1: Forecasts of AV Penetration 

 

The predictions in Table IV.1 are based on a wide variety of approaches, including consumer surveys, 

expert judgment and/or bass curve-fitting based on similar technologies and transport system changes, 

travel choice models, elasticity estimates driven by modal costs, and combinations of these and other 

approaches.   As noted in chapter I, analysts stress that so little is known about cost trends for AV purchase 

and operation, the timing and degree of realization of AV benefits, and the pace at which our 

infrastructure can accommodate AVs, that penetration predictions are almost wild guesses.   Changing 
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one or two key assumptions well within plausible ranges can change predictions dramatically, as when 

(Bansal & Kockelman, 2016) conclude that L5 vehicle penetration could be as low as 25% and as high at 

87% of the 2045 fleet.89 

Beyond differences in numerical outcomes, however, some of these estimates come with somewhat 

concrete scenarios or narratives90  as to how the AV market will unfold.   In particular, A&S advance a 

robustly-argued view that the motor transport market, which now largely involves self-owned vehicles 

and fleets driven by owners or employees, will shift to a TAAS model at an astonishing speed.   The A&S 

narrative is built around rapid reductions in the per-mile-of service costs of AVs, which will all be electric 

due to the large fuel and maintenance cost advantages and the ability to amortize ownership over a much 

longer mileage lifespan.    They foresee full regulatory approval of self-driving cars by 2021, after which 

time the TAAS firms quickly convert essentially their entire fleets.  By 2023, AVs are heading to what they 

call “mainstream adoption” and by 2030 shared AVs (i.e., TAAS) provide fully 95% of all passenger miles.   

The scenarios at the other end of the prediction spectrum are much more conservative in their views of 

the speed of cost reductions, the timing of regulatory approvals, consumers’ shift away from car 

ownership to TAAS, and the ability of urban infrastructure to accommodate AVs.   In direct opposition to 

A&S, IHS principal analyst Jeremy Carlson predicts that “ownership [of vehicles by individuals and firms] 

in mature markets will remain strong.”91 As an example of adoption paced by infrastructure, JN92 cites 

Shladover’s (Shladover, 2015) specific prediction that L4 AVs will permitted only on some urban streets in 

the 2030s, while it will take until the 2040s until L4 and L5 AVs are permitted everywhere.93     

Between these two extremes there are several general narratives with many variations. Boston Consulting 

Group (Lang, et al., 2016) posits three futures.   In the first, self-driving vehicles begin as self-owned luxury 

vehicles and gradually propagate into the LDV fleet as they become progressively cheaper.  In this future, 

ride- and car-sharing does not take off substantially, current ownership models remain dominant, and the 

                                                           
89 The variables Bansal and Kockelman changed were the rate of decline in AV costs and the willingness to pay for 

AV features.  See their Table IV.2.   
90 We use these two terms interchangeably.   
91  (IHS Automotive, 2016), p.3 
92 (Niewenhuijsen, 2015) 
93 For additional studies discussing infrastructure pricing, see (Underwood, Automated, Connected, and Electric 

Vehicle Systems: Expert Forecast and Roadmap for Sustainable Transportation), (Litman, Evaluating Public Transit 
Benefits and Costs: Best Practices Guidebook, 2017) and (Kim, Rousseau, Freedman, & Nicholson, 2015)– as well as 
Chapter VI. 
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size of the LDV fleet grows or declines very little.   Their second scenario, “Robo-Taxis Take Over,” is 

essentially the A&S scenario above:  extremely cheap TAAS using AVs and large ownership declines.   Their 

third scenario, “Self-Driving Vehicles Rule the Streets,” is essentially a hybrid in which cities and states 

accelerate self-owned AV uptake. 

Importantly, the extent to which any of these scenarios (or, more likely, something in between) comes to 

pass is very much a function of socio-political factors that simply cannot be estimated from any sort of 

economic or deterministic model.  If AVs capture the fancy of Americans and become the next “must 

have” technology, consumers will push policymakers to enable AV use and change the travel 

infrastructure, much as the “highway lobby” and car-loving Americans expanded roads and highways in 

the 1960s.   Conversely, an effective political campaign by incumbents, a highly visible cyber- or physical 

disaster involving AVs, and/or fiscal gridlock over the funding of AV infrastructure could easily delay AV 

adoption.94 

Given all these considerations, the work we find most persuasive is Lavasani, Jin, and Du’s (LJD) 95 

estimates of Bass or “S-curves” using parameters selected by comparing AVs to other types of 

technologies, similar and dissimilar, for which there are full adoption histories.    In brief, LJD fit a 

generalized Bass curve using parameters for the probability of adoption of AVs by initial users, an imitation 

factor that increases with penetration, an estimate of ultimate market size, the date of commercial 

introduction, the price difference between otherwise-similar CVs and AVs, and GDP growth.  The equation 

employed by LJD, the parameters they selected, and a summary of their reasoning for each, are shown in 

Table IV.2 below.96   

  

                                                           
94 This point is also made by (Bansal & Kockelman, 2016) p.61 
95 (Lavasani, Jin, & Du, 2016) 

96 The model equation is .  Source:  (Lavasani, Jin, & Du, 2016) and (Jin, 2017) 
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Table IV-2: Parameters for LJD Bass Diffusion Model* 

Parameter Value Summary Reasoning 

P – initial adoption probability .001 Roughly midway between similar factor for adoption 

of autos in 20th century and adoption of HEVs 

Q -  imitation factor  .34 Roughly the midrange of Q values from 8 studies of 

alternative vehicle adoption rates  

M – market size (vehicles) 87 MM 75% of 2015 U.S. households 

Price difference between CV 

and AV vehicles 

31% Assumed AV price premium 

GDP per capita 8.913 U.S. Data 

 

 

Figure IV-3: Forecasted AV market penetration curve 

 

Source: (Lavasani, Jin, & Du, 2016) Figure 2 

The results of LJD’s base estimate, shown in Figure IV.3, is that cumulative AV sales rise from 1.3 MM in 

2030, five years after introduction, to 70 MM by 2045 and saturation by 2060.   With the possible exeption 
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of the 2050 flattening out, this result looks reasonable from a variety of standpoints.   The commercial 

introduction date is close to the prediction of many observers, including Tesla’s founder, Elon Musk.   LJD 

thoughtfully selected parameters for their model based on the actual sales ramp for the Toyota Prius, the 

largest-selling breakthrough in motor vehicles in a generation, and then amped up adoption estimates 

using parameters taken from the adoption history of cellphones and internet.   Their estimates are 

consistent with IHS (2016), which projects 21 MM global AV sales (vs LJD’s 8 MM in the U.S.)   They are 

roughly between McKinsey high- and low – disruption forecast from 2016.97   A  

If there are items to question in the LJD forecast, it is the post-2045 flattening.   This is of course tied to 

their estimated total assumed market size of 87mm homes, which we believe is not strongly justified. We 

therefore continue AV growth linearly at the 2040-45 growth rate through 2050, the end of our forecast 

horizon.  

Figure IV-4: Technology adoption rates for 20th century technologies 

  

Source: (Davidson & Spinoulas, 2015) Figure 2.1 

 

Ironically, perhaps the most appropriate revolutionary transport technology to compare AVs to is the 

introduction of cars themselves.   The displacement of animal transportation by autos was as large a 

revolution in its day as autonomy will be in ours, and otherwise bears as much similarity to the 

introduction of autonomy.    As shown in Figure IV.4,98  autos took about 25 years to reach 60% saturation.   

                                                           
97 (McKinsey&Company; Bloomberg New energy Finance, 2016) Exhibit 6 
98 Figure 2.1 of (Davidson & Spinoulas, 2015) originally from Felton (2008). 
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This is important because, unlike most of the technologies in Figure IV.4, autos required the construction 

of a huge new physical infrastructure --  paved roads, parking lots, traffic signals, and so on.   Electric 

power was another technology requiring a new, capital-intensive physical network, and it, too, took about 

25 years to reach 60% of homes.   Cell phones, which took only 20 years to reach 90% saturation, needed 

another new infrastructure, but one that could lean heavily upon the existing power, telephone, and 

internet networks with relatively little physical disruption.  LJD’s estimate for AVs shows it reaching 60% 

saturation about 18 years after commercial introduction.   That’s about one-third faster than autos and 

roughly as fast as the internet and probably about as fast as can realistically be expected. 

 

LJD do not take an explicit position as to whether AVs will supplant all CV sales by then, nor a position as 

to whether all AVs will be EVs.  The EV question is not so controversial -- most observers think that almost 

all AVs will also be EVs by the 2040s if not sooner, and we agree.   However, their market size is based on 

a count of 75% of current U.S. households.   This implicitly rejects a scenario in which ownership plummets 

and robotaxis dominate all transport.   It also implies that the remaining households either drive non-

autonomous gasoline, hydrogen, or electric vehicles and/or use ridesharing.    One reason we do not worry 

about the ownership model is that the modeling exercises in the literature seem to show that a switch 

from personal ownership to an autonomous taxi (AT) fleets greatly reduces the total number of vehicles 

in the fleet but does not reduce overall VMT; see chapter V for further discussion of dynamic ridesourcing, 

sharing, pooling, and seamless mobility. 

C. VMT CHANGES FROM AUTONOMY  
 

There is widespread agreement that vehicle autonomy will trigger significant changes in the travel 

patterns of many Americans (along with changes in EI, explored later).    Some of these changes will reduce 

VMT, while others are expected to increase it significantly.99    Tables IV.5 and IV.6 show two taxonomies 

of AV VMT effects from (Kockelman K. M., et al., 2017) and (Litman, 2017) respectively.  

  

                                                           
99 From the energy standpoint, what counts most is the miles vehicles travel and the energy used per mile.   The 

number of passengers in the car is not important from the EI standpoint, except insofar as adding passengers in 
one vehicle causes a second vehicle to travel less.  If so, the effect is fully reflected in VMT, so for the moment we 
need not focus on passengers per vehicle or passenger-miles per se. 
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Table IV-5: Factors Influencing VMT 



59 
Electric_Transport_Draft _10_5_17 

100 

Table IV-6: Autonomous Vehicle Impacts on Total Vehicle Travel 

 

Source: (Litman, Evaluating Public Transit Benefits and Costs: Best Practices Guidebook, 2017). p 8.  

Many researchers have estimated some or all of these travel impacts.  As with forecasts of AV sales, they 

have employed every conceivable approach and arrived at an extraordinarily wide set of estimates.   At 

the high end, both KPMG (KPMG, 2015) and A&S estimate that the net effect of all these factors will 

                                                           
100 (Greater Ann Arbor Region Prosperity Initiative , 2017) 
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double VMT and passenger-miles (respectively) by 2050.   Albright-Stonebridge (2015) summarized the 

phenomenon of VMT increases from AVs as follows:  

Though this is the main view expressed by researchers, an increase in VMT should not be taken 
as the automatic result of AVs, since policymakers may be motivated to disincentive some or all 
of possible increase in VMT, using a range of policy tools enabled by ‘smart’ cars, such as taxation 
or fees on a per mile basis.   How much of a social and environmental impact shifts in VMT 
ultimately have depends on the size of the VMT increase, the resulting increase in demand for 
new roads and far-flung development (i.e. sprawl), and the emissions profile of Level 4 AVs.101 
 

Other researchers find much smaller effects, though most agree (or at least suspect) that the net effect is 

likely to be significant and positive. Contrarily, the most recent long-term plan from the U.S. Department 

of Transportation does not list autonomy as one of the most important drivers of increased VMT through 

2045 – instead emphasizing population growth, aging Americans, and telecommuting.102 

With some license, it is possible to parse the mileage effects of autonomous vehicles into a relatively small 

number of rough categories.    Appendix A shows each of these categories as a row, with   estimates of 

VMT impacts from different researchers shown in each column.   In order, the effects are: 

Row A:   Increased travel due to effective road capacity expansion due to automation; 

Row B:  Increased travel due to Lower costs of travel per mile, excluding the driver’s time;   

Row C:  Urban Travel induced by Decreased cost of Driver’s Time, incl. parking search; 

Row D:  Induced Intercity Mode Shifts Due to Decreased Drivers’ Time Costs; 

Row E:  Induced Travel Due to Lower Costs of Serving “Underserved Populations”; 

Row F:  Empty Travel by AVs; and 

Row G:  Reduced VMT Due to Automated Parking Searches; 

Row H shows aggregate VMT effects, when authors provided them, combining the effects they studied. 

There are at least two long-term effects of automation on VMT that are conspicuous in their absence from 

our table.   The table does not contain a row showing the effects of long-term urban design changes nor 

                                                           
101 Arbib and Seba p.21.  For a well-argued view that AV-induced VMT increases will be fully offset by other factors, 

see (Litman, 2016). 
102 (U.S. Department of Transportation), p.133 
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one for shifts to mass transit enabled by integrated multimodel systems – that use AVs for the “last mile.”     

For example, there is quite a lot of research suggesting that AVs will eventually enable narrower road 

lanes and greatly reduce total paved surfaces.   This would allow for greater density and more greenspace 

in urban areas, promoting lifestyles that rely less on motorized transport.   We defer further discussion of 

these topics to Chapter VII. 

While all of the numbers in the table are expressed as percentage increases in VMT due to one isolated 

factor, the table in Appendix A does not pretend to be a complete meta-study, and the entries reflect 

vastly different techniques, assumptions, and annual values that serve as the basis for the percentage 

result shown.   Interested readers will want to consult the notes to the table carefully, and often the full 

underlying source documents. 

The first effect shown on Row A is the effect of increased road capacity.  AVs will effectively increase the 

capacity of current roadways because AVs can travel smoothly at close intervals, navigate intersections 

automatically, and otherwise manage traffic more intelligently.   AVs will also be able to automatically 

reroute themselves (if allowed) to even out traffic flow.   In other words, roads will ultimately have greater 

throughput at faster overall speeds once autonomy is widespread.      

Part of this effect does not require that roads be congested; uncongested roads may also allow for more 

rapid travel, inducing greater demand.  Crossings, intersections, and merges may also flow more smoothly 

and quickly. Moreover, greater effective roadway capacity induces travel wherever roads are congested.  

Additional travel is induced until the roadways fill up to the same equilibrium level of congestion and 

travel times as was in place prior to the capacity expansion.103   

These effects are essentially impossible to quantify well, as to either magnitude or timing, because they 

are so dependent on the evolution of both the road system and AV penetration levels, area by area.   (Kim, 

Yook, Ko, & Kim, 2016) performed a fascinating simulation of the effect of closer vehicle headways on 

traffic speeds in Korea on “national highways” (similar to noncongested interstate highways in the US) 

and “expressways” (similar to US congested urban freeways) as a function of the penetration of AVs.  

  

                                                           
103 See (Litman, 2017) for a good recent survey of induced travel studies. 
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Table IV-7: Autonomous Vehicle Penetration and Vehicle Speed Increases104 

 

Table IV.7 shows the percentage increase in traffic speeds as the percentage of AVs in the traffic stream 

rises.   For 0.5 second headways, the table shows that speeds increase more than linearly as AV 

penetration increases.   Of equal interest, the simulated increase in speed (and therefore throughput) was 

quite large at 100% penetration – 67% and 39% for national highways and expressways, respectively. An 

increase in road capacity reduces congestion, inducing more people to drive and – at least in conventional 

vehicles – often equilibrates back at similar but enlarged congestion. Increased capacity due to AVs thus 

ought to increase VMT by allowing more vehicles to traverse the same route even if average speed does 

not increase. 

As Row A in Appendix A shows, apart from (Kim, Yook, Ko, & Kim, 2016) the few researchers who have 

attempted to isolate the VMT increases from effective capacity expansion have not found very large 

effects.   It is possible that these effects have been lumped into other categories, such as increased travel 

due to time savings or higher speeds, which in turn translate into time savings105.  Due to surprisingly few 

and small magnitude results in the literature and the possibility that capacity effects may be subsumed 

into the effects of other rows on the table, we do not adjust VMT separately for this autonomy effect. It 

does seem likely that the effects of increased capacity are likely to be felt mainly where AVs concentrate 

early, or when overall national concentrations begin to become significant. In our view, this is late in our 

forecast window, so in our view the downward bias from omitting this effect alone lies outside of our 

timeframe.      

                                                           
104 (Kim, Yook, Ko, & Kim, 2016) 
105 This would make sense because increased roadway capacity induces travel because it enables more cars to 

travel within the same time period, i.e. the value of increased capacity is the time savings it creates. 
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Row B of the table, reduced AV per-mile costs, requires a parsing of EV and AV effects.  Setting aside more 

rapid travel (row A) and the former-drivers’ time savings (Rows C,D), the main two sources of lower costs 

for passenger-owned  AEVs will be the fuel and maintenance savings provided by EVs (whether or not 

autonomous)  and ultimately lower insurance costs for AEVs (only).   The first of these savings was included 

in our conventional ownership base case above.   Some of the fuel savings are gas tax savings, and these 

are very likely to be replaced by some sort of fee in order to fund deferred road system maintenance and 

the costs of AV-specific infrastructure.    We examine the impacts of this possibility separately in Chapter 

VI. 

The net effect of all this is that only lower AV insurance costs, which are highly likely to be assessed as a 

lump sum, are a savings attributable to AVs alone. For quite some time these are likely to figure more into 

purchase decisions (hence AV adoption rates) rather than incremental driving. As a result, we do not 

adjust VMT for this effect. 

Most importantly, fully autonomous vehicles will induce greater travel by freeing up the time of the 

person who would otherwise drive the car (Row C).   This effect has captured the imagination of travel 

forecasters, who forsee an era when commuters use their time in vehicles to sleep, watch TV, work, and 

so on.  A&S (2017) talk about roving entertainment parlors and “Starbucks on wheels.”106 As travel planner 

Stelios Rodoulis puts it, “AVs will become a place of activity rather than just a means of transport.”107 

As a result of these new uses of former drivers’ time, automated vehicles may also change where people 

live and the distances they are willing to travel. This could lead to increased settlement of exurban areas 

and reductions in agricultural land and open space.108  Many researchers have observed that the time 

commuters are willing to travel to and from work has remained relatively constant across many decades 

and countries.   (Laberteaux, 2014) points out that workers have been willing to travel and average of 1.2 

hours/day for about the last 200 years.  Each time a new travel mode allowed for more rapid commuting, 

the average commuting distance has expanded until this average duration was reached.    Litman calls this 

effect “Marchetti’s constant.”109     

                                                           
106 (Albright Stonebridge Group, 2016) p.21 
107 (Rodoulis, 2014) p. 12 
108 (U.S. Department of Transportation), p.83-4.  
109 (Litman, 2014) 
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Estimates of the travel induced by freeing up drivers’ time vary mainly due to different estimates of the 

quality and value of the time in AVs relative, to time at home or the office, and to differences in elasticities 

of added travel due to reduced effective commute time.    A survey-based study by Milakis, et al. suggests 

that commuters are quite varied in their tolerance of different commuting periods, though travelers with 

the longest commutes were least happy.110   Dissatisfaction with longer commutes will undoubtedly 

decline significantly for some commuters while many others will probably not change their travel habits. 

Figure IV.8 shows one research team’s estimated changes in VMT as a function of AV penetration (which 

enables greater traffic flow efficiency) and the “value of travel time reduction.”   This value is expressed 

as a fraction of the driver’s wage rate, ie. a value of 0.5 on the horizontal axis means that an hour in the 

AV working or recreating is worth one-half the value of an unfiltered hour of work or recreation.  At that 

value of time, the figure shows a predicted 2.5% increase in VMT with 20% AV penetration and about 12% 

increase at 75% penetration.  

As shown in Appendix A, these differences yield a wide range of VMT increases, from 4% to 46%.    Without 

pretending to have anything approaching the mean of a well-defined distribution of outcomes, we adopt 

three time-savings VMT cases: low (+15%), mid (+20%) and a high sensitivity (+40%) discussed later, all 

referring to the ultimate 2050 VMT effect. These estimates do not yet incorporate the effects of pooling, 

which could affect this quite significantly, as discussed further below.111 

Figure IV.8 suggests that we should implement VMT increases from time savings proportionately to AV 

fleet penetration, back-loading these increases into the out years. In the present version of the model we 

do not do this. Rather we implement the ultimate level of VMT increases for each AV as it joins the fleet.112 

This boosts average annual VMT for each AV from about 11,700 to about 14,000 miles per year in the 

                                                           
110 (Milakis, Cervero, van Wee, & Maat, 2015) 
111  This estimate seems plausible based on elementary elasticity calculations.   (Litman, Evaluating Public Transit 

Benefits and Costs: Best Practices Guidebook, 2017) suggests that a shortcut for computing travel induced by time 
savings is to monetize the time savings and apply a long-run elasticity of -0.3.    Suppose the average driver 
commutes for one hour, the average wage is $20, all monetary vehicle costs equal $0.85/mile (Walker & Johnson, 
2016) Figure 8, and AVs effectively free up 66% of drivers’ former time behind the wheel.   Time savings are then 
30% of the cost of the trip and induced travel is + 9%.  Recognizing that these may be underestimates, the figure 
we employ is double this.  It is difficult to see this particular effect getting much larger than this. 
112 As an example, (Kockelman K. M., et al., 2017) p. 128 cost-benefit analysis of AVs assumes that VMT increases occur on a 

per-vehicle basis, changing relatively little between 10% AV penetration levels (+20%/vehicle) and 90% penetration levels 

(+10%/vehicle). 
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+20% case.113 This has little effect on our 2050 estimates, but could bias our near-term power estimates 

upward.    

Figure IV-8: (a) VMT change and (b) VHT change vs VOTT change by market penetration (no capacity change)114 

 

 

 

 

The same driver time savings effect is predicted to cause some travelers to shift from current intercity 

modes (primarily airlines) to self-driving cars for some intercity trips (Row D).  Stephens, et al115derive an 

upper bound estimate of 3% of current LDV VMT, but La Mondia, et al116 contains detailed Michigan state 

trip and survey data that allows for what we think is a more realistic calculation of about 0.6%.117    While 

                                                           
113 It is also interesting to consider how income inequality affects the value of time and thereby AV choice.  Highly-

paid, time-starved workers are much more likely to purchase full AVs and use the time productively while in them, 
but they also will be sensitive to the length of time in their vehicle even if they are working.   As Laberteaux (2014) 
predicts, the commuting VMT effect will probably be largest for the same low- to middle-class commuters who 
now commute long distances so they can choose communities and schools where they want to raise their families.   
114 (Auld, Karbowski, & Sokolov, 2016) p. 10. 
115 (Stephens, Taylor, Moore, & Ward, 2016) 
116 La Mondia, et al (2015) 
117 See Workpaper B for calculations based on LaMondia. 
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this is a relatively small VMT effect, Perrine and Kockelman118 speculate that AVs could cause as much as 

a 30% drop in airline revenues from these short trips.   Due to the modest projected size of this effect we 

do not add VMT increases beyond the three cases just discussed.  

The next element increasing travel is AV’s ability to provide travel to so-called underserved populations, 

namely the young, elderly, and disabled (Row E).   According to the National Academy of Science119, about 

3.6mm Americans use a wheelchair and 11.6mm more use a cane or walker.120  One third of all current 

Americans have a mobility disability, and this group is expected to grow by 77% by 2045.121 It should be 

noted that many members of these groups today ride in conventional taxis, chauffeured cars, or shared-

ride services.   Accordingly, a more accurate way to describe this factor is that autonomy will lower the 

costs of travel for these underserved groups, and through a traditional price elasticity effect these groups 

will use autonomous shared-ride services more intensively. 

Although autonomous taxis are expected to be cheaper and more ubiquitous (hence faster service) than 

human-driven taxis, it is worth noting that the absence of a driver will change the quality of service to 

these same underserved segments.   Some passengers benefit from the ability of a driver to help them 

into and out of cars, and parents may feel safer having someone else in the car with their dispatched 

child.   These considerations temper our willingness to endorse the high end of VMT gains for underserved 

populations. 

As shown along Row E, a number of researchers have estimated the percentage effect of this factor.   

KPMG and BGR use survey data and a literature review to estimate very large increases in travel by young 

non-drivers and the steadily increasing ranks of elderly Americans, yielding as much as 50% increases in 

VMT.   Analyzing NHTSA survey data and other calculations, Sivak and Schoettle (Sivak & Schoettle, 2015) 

and Harper, et al. come up with estimates in the 10-15% range. Without pretending to have any claim on 

accuracy, we judgmentally select relatively conservatives value of 8% and 15%, respectively, for VMT 

increases in our low and mid scenarios.   Because we think it will take a few years for these underserved 

                                                           
118 (Perrine & Kockelman, 2017) 
119 (Alonso-Mora, Samaranayake, Wallar, Frazzoli, & Rus, 2017) 
120 The Academy also notes that autonomous and shared mobility services may not be a service improvement for 
riders who need a drivers’ assistance to enter and leave the vehicle, and that other regulators considerations affect 
this balance. (p.86) 
121 (U.S. Department of Transportation) p.14.    
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populations to become comfortable with intensive AV use, we phase in these per-vehicle increases 

linearly over the first ten years of commercial AV use.   

Finally, Rows F and G show the final two isolated AV VMT effects reported in the literature, empty vehicle 

backhaul and reduced parking search.  These estimates come from one literature review (Stephens, 

Taylor, Moore, & Ward, 2016).   In view of the fact that these two effects are estimated to be very similar 

in size and of opposite sign, we treat them as net zero in our work and do not analyze them further.  

Table IV-9 summarizes our treatment of VMT increase factors.    

Table IV-9:Assumed VMT Effects of AVs 

 

Before leaving the topic of VMT, we note that the VMT effects here do not factor in several important 

effects likely to offset some and perhaps most of these increases: ridesharing, urban redesign for lower 

travel; telecommuting, and infrastructure pricing.   Each of these effects are explored in later sections.  

D. THE EFFECT OF AVS ON ELECTRIC INTENSITY 

Categorizing AV EI Effects 
 

Autonomy is predicted to affect greatly the amount of energy (most likely, electricity) used per mile of 

travel by any given vehicle type.   To illustrate, the question here is how much kWh use will differ between 

a fully-autonomous four-passenger sedan and a conventionally-driven four passenger sedan, both of 

similar size and user attributes and both driven between the same two destinations.  Once again, we note 

that sharing and new ownership models are not yet factored in; we are simply trying to get our arms 

around the impact of autonomy on per-mile vehicle kWh use.    

impact Timing Impact Timing

0 +5%

+ 15%
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vehicle +20%

Linear Phase in 2040-

2050

+ 8%

per 

vehicle +15% per vehicle

+23% +40% per vehicle

Increased Access

Total

AV VMT Effect
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Road Capacity Effect

Lower Time Cost for Driver 
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There are a variety of reasons why electricity use per mile is predicted to differ.   Although the effects are 

sometimes categorized and often named differently, five multi-faceted and somewhat overlapping 

categories stand out in the literature:     

● Traffic Smoothing- reducing braking and acceleration in urban areas at low as well as high average 
speeds; 

● Intersection Management – reducing braking, acceleration, and stops due to better intersection 
management; can be considered a subelement of traffic smoothing; 

● Higher Average Speeds -  faster travel on uncongested highways at speeds where aerodynamic 
drag takes a measurable energy toll; 

● Platooning – multiple cars or trucks driving close enough together at high speeds to reduce drag 
on the vehicles following the leader; 

● Rightsizing/Performance -  designing and manufacturing AVs that have smaller powertrains and 
therefore smaller batteries than conventional counterparts; and 

● Lightweighting -  designing and manufacturing AVs that have lower weights due to the absence of 
conventional vehicle safety equipment and therefore higher efficiencies. 

 
These are far from distinct categories.   There is a fine line between improving electric efficiency by 

avoiding braking and acceleration and reducing it by enabling traffic to go fast enough to increase 

drag.  Similarly, it may be impossible, either in retrospect or prospect, to separate the EI effects of 

rightsizing vs lightweighting.    

The results of literature reviews examining the size of these effects are summarized in Table IV-10.    Note 

that all these effects do not assume or require any differences in vehicle form factors, occupancy per 

vehicle, or trip choices.   This is purely the result of an AEV operating differently than a CV with an 

otherwise identical carrying capacity.    One additional category, onboard electricity loads unique to AVs, 

is discussed briefly below. 

As distinct from some of the AV effects on VMT, autonomy’s EI effects appear to be sensitive to the 

fraction of AVs in the fleet in their locality.  Kyung-Hwan Kim, et al’s 122  simulated effects of AV 

concentration on average travel time, shown in Table IV-7, demonstrate that urban travel time savings 

increases nonlinearly with AV concentration.  This roughly corresponds to the traffic smoothing element 

of EI; the higher average speeds in Kim’s simulations are the result of fewer slowdowns and 

stops.   Intersection management will also improve as the fraction of AVs improves, and rightsizing and 

downweighting will occur more as CVs decline as a percentage of the fleet.    More completely, AVEI 

                                                           
122 (Kim, Yook, Ko, & Kim, 2016) 
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benefits appear to vary with a combination of AV concentration and traffic conditions, as noted in this 

communication from Prof. Christos Cassandras: 

Under heavy traffic conditions, the benefit of CAVsis minimal and may even hurt because of the 
conservative way that CAVs operate to ensure safety. 

Under light traffic conditions, the benefits of CAVs manifest themselves with as low a penetration 
rate as 10%, which is really encouraging if we can confirm it. In terms of energy consumption, the 
improvements are of the order of 40%. 

As traffic intensity increases, the critical penetration rate also goes up. There is a critical traffic 
level at which one needs 100% penetration to match conditions under non-CAV presence. It is still 
too early to tell whether this “critical level” is high enough to argue that most of the time such 
heavy traffic conditions do not occur. One argument to make is that if we can lower congestion 
while traffic is still relatively light, then the probability of reaching that “critical level” is 
reduced!123 

When examining AV EI effects, we must therefore be attentive to at least these three parameters:   the 

point at which AVs are concentrated enough to begin to change EI; the terminal level of EI changes when 

AVs saturate; and the shape of the curve between them.   We discuss each of these below, but our 

approach to these parameters is mainly to use the literature to give us a final level of EI effect at AV 

saturation and then use linear phase in effects from the inception of commercial AVs in 2025.  We do not 

adjust for the average level or variability of traffic on any road segments.  

  

                                                           
123 Email from C. Cassandras; posted online with workpapers. 
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Table IV-10: Estimates of Energy Intensity Impacts of AVs 

 

Traffic Smoothing 
 

The first category is traffic smoothing, also various called – or combined with – “Eco-Driving,” increased 

capacity, or increased traffic throughput.    AVs are expected to move more efficiently than human-driver 

cars, collectively as well as individually.  Due to their ability to see and respond to traffic conditions 

immediately and smoothly break to stop, turn, and avoid collisions, AVs are expected to be able to 

accelerate less often, and perhaps less quickly, and brake less often and less severely than otherwise-

identical CVs. They should thereby require less juice than a CV to traverse an otherwise-identical route 

with otherwise-identical traffic – although, once AVs get to an as-yet unknown tipping point, traffic will 

not be otherwise identical.    

To make matters more complex, there appears to be evidence of an opposing effect of AVs on EI during 

the period before AVs are plentiful enough to significantly improve throughput, namely AVs leading to 

greater initial congestion. This effect would occur in the early stages of AV introduction, when commuters 

immediately realize that they have more productive time while commuting and therefore are more willing 
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to travel further and a little longer, hence less concerned with traversing congested routes.   The effect 

would presumably be erased as the number of AVs and the amount of AV-dedicated infrastructure 

increases to the point where the added initial congestion is erased by added throughput capacity.  

In a fascinating exercise, (Auld, Karbowski, & Sokolov, 2016) (AKS)124 document this phenomenon using 

an activity-based transportation model of the Ann Arbor, Michigan urban area.   The model simulates 1.2 

million trips with on an average day for the 290,000 travelers in Ann Arbor’s county.   The model also 

allows travelers to choose more or longer trips in AVs in response to them reclaiming the value of the 

time they would have spent driving.   Former drivers can alter their routes and/or trips in response to their 

newfound time, with their cost of time during travel reduced by assumed levels of 25% to 75%.    

This trip choice model produces an extremely detailed profile of each trip, namely the speed profile of 

each trip on a minute-by-minute basis as that trip proceeds through congested and uncongested roads 

and intersections.    AKS then link these time-and-speed trip profiles to Argonne National Lab’s Autonomie 

vehicle energy use simulation software, which translates each trip for each vehicle into an extremely 

detailed accounting of kWh use during that trip.   AKS model a number of scenarios with different 

penetrations of AEVs and different time values, comparing the simulated kWh used per mile (factoring in 

speeds, stops, etc on the trip profile) for otherwise identical vehicles.    

Remarkably, the AKS simulations showed that AVs induced so much more travel on Ann Arbor’s roads that 

congestion increased markedly – and the increase went up, not down, as the penetration of AVs rose.  For 

the highest levels of induced travel, caused by drivers valuing their in-vehicle time at 75% of their wages, 

total travel increased about 5% but time in vehicles increased 7.5%, meaning that the average speed of 

travel declined (i.e., congestion increased).   Even more remarkably, AKS tried simulations in which they 

assumed that high penetrations of AVs allowed the effective capacity of Ann Arbor’s main roads to 

increase as much as 77%.  Even then, they found that induced travel caused so much congestion on 

secondary and feeder roads that average kWh per mile increased slightly.    

These results are obviously for only a single study with tremendously complex and sophisticated models.    

However, the literature on this topic shows surprising agreement with the proposition that’s AVs will 

initially make congestion worse, or as Davis and Spinoulas125 put it, “things will get much worse before 

                                                           
124 (Auld, Karbowski, & Sokolov, 2016) 
125 (Davidson & Spinoulas, 2015) 
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they get better.” These authors divide the future into three stages: minority AVs in the fleet – majority 

but not universal AVs, and a fully-AV fleet.   Congestion increased in phase 1, begins to get lower in phase 

2 as infrastructure also changes, and is much better by phase III.   As noted earlier, Underwood126 also 

discusses stages like this quite extensively.   Accordingly, it is difficult to apply their numerical results with 

great confidence.   However, it is not difficult to accept the premise that AVs will initially increase 

congestion, lower average speeds, and modestly increase kWh until AVs increase and we build and 

manage an infrastructure that enables the efficiency benefits of traffic smoothing to be realized. 

Perhaps a better way to say it is this: On all congested roads there is now an equilibrium amount of 

congestion, balancing drivers’ time value and other operating cost penalties against alternative routes 

and the value of travel. With AVs, the initial effect will be to unbalance that equilibrium between CV 

drivers, who “pay” all the value of their driving time, and AV drivers who do not.   Given the significant 

driver time savings full AVs will enable, it may take decades before anything approaching a new 

equilibrium is established while the AV/CV composition of the fleet, traffic management techniques, 

passenger demographics, and consumer tastes all rapidly evolve.      

As shown on row A of Table IV.10, the three researchers who have studied the early literature on traffic 

smoothing estimate ultimate savings of ten to fifteen percent off a (usually implicit and/or vague) no-

autonomy base case. Understandably, these studies don’t appear to reflect the AKS effect of initial 

congestion increases. For our purposes, however, we cannot ignore this effect, as (assuming it is 

widespread) it could initially increase realized EI even as AEVs get progressively more efficient.    

We choose to reflect all of this in our estimates in the following way. For the first ten years of AV 

introduction, to account for added congestion we reduce the otherwise-projected technology-based 

improvements in all EVs’ EI by 50%. We do this for all EVs, whether autonomous or not, as they’ll all be 

stuck in the same AV-induced traffic.  Starting in tenth year, we linearly restore the lost technical efficiency 

improvements in the EV fleet over the next ten years.    

With respect to longer-term improvements in EI due to traffic-smoothing, we adopt Stephens, et al’s 

estimate of 15% reduced EI once AVs reach saturation, which we assume occurs around 2055.   This 

estimate is most recent, and it also attempts to reduce savings during periods that are already 

                                                           
126 (Underwood) 
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uncongested.  Beginning in 2035, we linearly phase-in EI improvements for traffic-smoothing over a period 

of 20 years, ending with a total effect of 15%.   Obviously, these are all barely-educated guesses, but we 

believe they adjust power use estimates in a directionally-appropriate manner.   

Better Intersection Management 
 

When intersections become properly outfitted, AVs will also able to navigate crossings, turns, and merges 

with fewer stops, starts, and slowdowns, further reducing energy use.127 Among the authors in Table IV-

10, only Stephens, et al. 128  examined this category distinctly (see Row B). From their review, they 

concluded that EI should decline by a midpoint estimate of 4% for all “city driving.” Estimates in this 

research these are highly uncertain, as we are only now at the earliest stages of developing strategies for 

managing intersections and traffic with connected vehicles. As noted above, professor Cassandras 

sometimes finds intersection-based savings of 40% 

We adopt the Stephens midpoint estimate as the ultimate value of EI savings in our study.    We apply this 

by weighting each year’s linearly phased-in value by the 72% of driving estimated to be urban in that 

year.129   Recognizing that it will take time to retrofit intersections and that savings estimates will increase 

as AVs become more commonplace, we implement this improvement in EI, on a per-AV basis, starting in 

2035 and ramping up linearly to the full effect in 2055.   

Faster Travel 
 

There is also a second countervailing effect of AV intelligence, or more precisely a combination of an EI 

and travel-induced offset.   Drivers who use navigation software today know that they often recommend 

longer routes that are less congested and therefore have lower travel times.   AVs will be able to 

continuously analyze traffic route alternatives and similarly divert to alternate longer but quicker paths, 

implying higher average speeds (though presumably fewer stops and starts).  Both the longer distance 

                                                           
127 Although a case can be made for separating the effects of better intersection management from other aspects 

of traffic smoothing, we combine the two effects together in one category.   
128 (Stephens, Taylor, Moore, & Ward, 2016) 
129 See this website for specific cite of table IV-10:  https://www.fhwa.dot.gov/policyinformation/statistics/2015/  

https://www.fhwa.dot.gov/policyinformation/statistics/2015/
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and the higher speed imply higher electricity use for the same origin-destination pair, perhaps offset by a 

smoother trip.   

We treat the VMT portion of this combined effect as part of AV-induced travel, discussed in the section 

above.   However, higher average speeds can significantly affect realized EI.  Results of the AKS simulation 

aside, most researchers think that AVs will enable cars to travel faster with equal or greater safety, 

especially during periods when congestion does not limit traffic speeds.  Since AVs should ultimately 

reduce congestion once they dominate the roads, the ability to travel more quickly should gradually 

become more common as the AV fleet grows.   Again separating out higher travel distances (a VMT effect) 

due to rerouting, this effect will also increase electricity use.   Of course, the degree of the increase 

depends on both the magnitude of the average speed increase and the aerodynamic properties of future 

AVs.   While there is no doubt that manufacturers will continuously improve aerodynamic performance, 

most researchers agree that such improvements are unlikely to offset speed-induced EI increases during 

periods where these increases occur. 

As shown on Row C of Table IV-10, there is quite a range of estimated effects from average speed 

increases, with (Stephens, Taylor, Moore, & Ward, 2016) estimating an upper bound of 8% EI increase 

(after weighting across different types of driving) and the other two literature reviews finding effects of 

20 to 30%.  However, as with eco-driving, only Stephens, et al. apply the increases to non-peak hours.   In 

effect, these authors recognize that congestion is likely to be the limiting factor for speed during peak 

hours for some time to come, negating AVs’ ability to travel more quickly with better safety when roads 

are congested.   We agree with this view and adopt Stephens et al’s estimates, phased in linearly for AVs 

only over the years 2030-2035.  

Platooning 
 

The fourth major category of AV EI impacts is reduced aerodynamic resistance via platooning.   This is 

projected to be a large source of energy savings for large trucks, but the effect extends to passenger 

vehicles traveling at high speeds on limited access highways.   This effect has been studied extensively and 

documented in practice; the main uncertainties around this effect is when passenger AVs will be 

technologically ready to platoon, the extent to which the practice will prove practical on a large scale, and 

the speeds at which the platoon will operate.    
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As shown in Table IV-10 Row D, energy savings estimate again show a large difference between MWL and 

BGR’s earlier upper-bound estimates and Stephens, et al’s estimates weighted by driving type.   We again 

adopt Stephens’ estimates and phase them in linearly between 2030 and 2035.    Note that the EI increases 

and reductions from faster travel and platooning are assumed to occur over the same time period and 

partially cancel each other out. 

Rightsizing, Performance Reductions, and Weight Reduction 
 

The fourth major type of AV EI impact is a composite effect that will occur only as soon as manufacturers 

and consumers begin manufacturing AVs that carry an amount of passengers and freight equivalent to a 

CV in vehicles that are smaller and/or lighter.   This is expected to occur from reduced size and weight of 

AVs when crash survival is no longer a major design imperative and downsizing of the engine and 

powertrain become feasible, enhanced by possible reductions in acceleration capabilities since AVs should 

have less need for rapid acceleration.     Stephens, et al summarize these effects nicely: 

Current vehicle designs typically use engines with power capabilities far in excess of the power 
needed to meet average driving demands (because sizing is instead driven by customers’ desire 
for fast acceleration performance). CAVs; powertrain sizing could therefore not only be reduced 
in response to smaller vehicle sizes, but also in response to relaxed demands for fast vehicle 
acceleration capabilities. An engine sized closer to a vehicle’s average power requirements would 
spend more time operating in its region of highest fuel efficiency, thus improving the overall 
vehicle fuel economy.130  
 

These effects are sometimes vaguely referred to as “rightsizing,” but one should be careful to separate 

out the phenomenon of matching the passenger and cargo size of a vehicle to each trip, which is enabled 

by various types of sharing and not a change in vehicle EI.   While attempting to include only vehicle EI 

changes, we follow the literature reviews shown in Table IV-10 and lump these categories together on 

Rows E and F. 

As these rows show, researchers believe that there is enormous potential for weight reduction and 

powertrain resizing in “crash-free” personal transport.    These improvements are by definition over and 

above the EI improvements to all vehicles, which are expected to come partly from increased use of lighter 

materials.   Unlike the prior rows, the authors largely agree, based on a wide variety of evidence that the 

                                                           
130 (Stephens, Taylor, Moore, & Ward, 2016) p.8 



76 
Electric_Transport_Draft _10_5_17 

upper-bound potential for weight- and power-related improvements is in the vicinity of 50%.   Also unlike 

many of the other effects, these improvements apply to the average vehicle regardless of when, how, or 

where it is driven. 

The difficulty in applying this factor to electricity use lies in the timing of these improvements.    The 

technology to reduce weight in vehicles is widely known, but current consumers mainly seem to want 

heavier cars loaded with safety features, many of which themselves add further weight.   We do not expect 

that consumers’ desire for safety shifts over the coming decades.  Accordingly, AVs will have to be 

prevalent enough in the overall fleet to change consumers’ perceptions of the safety value of weight 

relative to the cost of that weight in higher vehicle purchase and operating costs.    Segregated 

infrastructure may eventually help here, too, as a lighter vehicle that encounters only other AVs on the 

high-speed portion of its trips may be more acceptable.    

The exception to this overall picture is that the onset of AVs may lead manufacturers to make specialized 

lower-speed, lower-weight cars especially aimed at urban-core autonomous taxi fleets.   Because these 

vehicles would be used overwhelmingly within cities for low and medium-speed travel, consumers may 

prefer a lower price point to greater weight and size.   Although some future owners will undoubtedly buy 

these for their own use, we explore this shift in fleet EI the following chapter.  

With respect to self-owned vehicles, we note that the long-term response of U.S. drivers to lower CV 

capital or operating costs has consistently included the purchase of larger, heavier, less-fuel-efficient 

vehicles.   Stephens, et al131 also observe that autonomy could also reverse some of these EI benefits by 

allowing vehicle owners to afford larger AEVs than they would otherwise buy – a topic they note has not 

yet been studied. However, at some point AVs will become prevalent enough that manufacturers will be 

comfortable marketing lighter but equally safe vehicles to individual owners.   At this point, the entire 

fleet can begin to realize very substantial efficiency gains.    

It is sheer speculation to assume the period in which this might occur, but (Underwood, Automated, 

Connected, and Electric Vehicle Systems: Expert Forecast and Roadmap for Sustainable Transportation)’s 

thoughtful discussion of the staging of AV fleet changes supports a start date of the year 2040. 132   

                                                           
131 (Stephens, Taylor, Moore, & Ward, 2016) p. 24 
132 Underwood’s ( (Underwood, Automated, Connected, and Electric Vehicle Systems: Expert Forecast and 

Roadmap for Sustainable Transportation), p. 48) discussion of the stages of AV introduction supports this view.   
(Rodoulis, 2014) puts the start of lightweighing at 2040. (Kockelman K. M., et al., 2017), p. 123 shows assumptions 
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According to our penetration estimates, by 2040 about 23% of all vehicles will be autonomous in our base 

case (2025 introduction) and 6% if AVs do not enter until 2030.   At this point we assume that some 

consumers will start to recognize the value of downsizing and policymakers will start rewarding 

manufacturers with future equivalents of CAFÉ credits.   The phenomenon will undoubtedly begin in urban 

areas, where lighter conventional cars are most often seen today, and spread gradually to all vehicle types.    

We employ two cases, one in which the initial one-fifth of the savings (i.e. 10%) occurs linearly over the 

decade 2040-2050 (i.e., 1% a year) and a second in which the savings grow more quickly, i.e. 1.5% per 

year.    

Onboard Electronics and Appliances 
 

Autonomous vehicles will need to carry onboard control and communications electronics, a power use 

that does not appear to be reflected in the EI’s forecasted by Oak Ridge above.   In additional, passengers 

who do not need to drive will undoubtedly use more electronic devices more intensively during travel 

time, perhaps including appliances such as coffeemakers and microwave ovens.   One writer envisions a 

traveling Starbucks Coffee Café on wheels, which sounds quite attractive provided one can power 

machinery decent portable expresso machine.   

As to additional appliance plug loads, the effect does not look to add substantially to vehicle power use, 

at least until weight downsizing has taken effect well into the future.   A 300-watt plug load operating 

continuously over a one-hour commute would use less than the power required to move a current Nissan 

Leaf one mile.   Over an hour commute a car goes perhaps 30 miles, so this would be a 4% increase in EI 

for heavily-loaded EVs. 

As of result of these figures, we do not adjust our EI estimates for onboard electronics.   These electronics 

will certainly increase energy use, but these increases are likely to be overshadowed by other larger 

effects in both the positive and negative direction.   We acknowledge that this slightly biases our power 

demand figures downward. 

  

                                                           
that AVs will reduce overall crashes by 50-90% with only 10% AV penetration, but by about 87.5% with 50 % 
penetration.  
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The Net Future Energy Intensity of AEVs   
 

Table IV-11: Summary of  Treatment of EI effects of EIs. 

Effect Impact Timing 

Traffic Smoothing -15% 50% reduction in technology 
improvements in EI for the first 
10 years, then linear phase- in 
from 2035 

Intersection Management -4% Linear phase-in for urban EVs 
starting in 2035 and fully 
implemented by 2055 

Higher Average Speed +8% Linear phase-in from 2030-2035 

Platooning -2.5% Linear phase-in from 2030-2035 

Rightsizing/Weight Reduction -50% Phased in linearly at 1% per year 
or 1.5% per year starting in 2040 

 

Table IV-11 shows the assumptions we make regarding AV EI changes in table form. In Figure IV.11, we 

superimpose each of these effects on our conventional ownership base case EIs for EVs.   Recognizing that 

both the magnitude and timing of these effects are simply directional guesses, the results in figure IV. 12 

look plausible to us. After initially making fleet energy efficiency slightly worse, AV-enabled EI savings 

reduce autonomous electric SUV EI to 0.3 kWh/mile by 2050; sedans reach about 0.18 kWh/mile. These 

are not bold, revolutionary increases, but they are large enough to offset a good portion of autonomy-

induced VMT growth. With stronger policies or market trends that made AVs more common sooner than 

2050, accelerated AV infrastructure, and policies that encourage rightsizing and lightweighting, the 

literature clearly indicates greater technical potential than we employ. Therefore, AV EI could be 

significantly lower in 2050 or the years following. 
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Figure IV-12 
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V. Pooling, Sharing and Seamless Mobility Networks 

A. INTRODUCTION 
 

In this section we consider a third layer to our electric power forecasts, the impacts of the many emerging 

shared and pooled modes and businesses, including various forms of what are being called mobility 

networks.    It is important to bear in mind that sharing the use of a vehicle by dividing its exclusive use 

between two families in succession is very different than two riders who are strangers “sharing” a single 

ride between two points. Casually, we refer to the latter as pooling rather than sharing. The impacts of 

sharing and pooling on VMT and EI are different.   As showing in Table V-1 the terminology in this area is 

diverse and overlapping. 

Table V-1:Shared Versus Pooled Modes 

133 

Although ridesharing in various forms has long been a small part of U.S. transport, and larger in some 

other parts of the world, the topic is gaining enormous attention now for two primary reasons.  First, in 

many realms outside of transportation there is a shift from the one-time sale of a hardware products 

hardware to the sale of products from that hardware commonly called an “as a service” (AAS) model.   

                                                           
133 As Susan Shaheen noted in an email correspondence dated 7/21/2017-8/2/2017, “To call a paid/commerical 

trip ridesharing is incorrect. Ridesharing has long been defined in policy/regulation as an incidental trip (it would 

have happened by the driver anyway). There is no commercial transaction (i.e., not a paid driver) involved in 

ridesharing (maybe a few bucks for gas, tolls, wear and tear). Ridesharing does not require commercial insurance.” 

Other Terms Simple Definition Examples

Shared Modes

Ridesourcing, 

Ridehailing, 

TAAS, MAAS, 

Dynamic 

Ridesourcing

The same vehicle is used for 

successive trips that are 

independent of each other

Car-sharing services such as zipcar, 

ridesharing or ridesourcing companies 

such as taxis, Lyft

Pooled Modes
Ridespitting, 

TAAS, MAAS

Combining independent 

passengers going between two 

similar origins and destinations 

into the same vehicle

Traditional Carpools, Uberpool, Lyft 

Line, shared taxis ("Ridesplitting")
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This model has spread progressively into many industries and is especially popular among millennial 

consumers, some of whom embrace values in which ownership of things is less preferred than buying 

service from shared or third-party-owned assets.134  Already, average U.S. household vehicle ownership 

went flat around 2000 and declined 5-6% from 2006-12.135   This has led some observers to declare that 

auto ownership will give way to a shared, AAS model, 136 and that the U.S. will reach “peak car ownership” 

as early as 2020.137 

In addition, a new-generation-of-transportation-network-companies (TNCs), also referred to as Mobility-

or Transportation-as-a-Service (MAAS or TAAS), have rapidly grown to become some of the largest 

transportation firms in the world.   The firms, currently led by Didi and Uber, were not initially pooled 

modes, and the energy impacts of their non-pooled business should reflected in the VMT and EI forecasts 

in the EV and AV layers in Chapters III and IV.    However, these firms now also offer a ridesplitting or 

pooled service.  Thus, well-established and well-funded players appear poised to pursue pooled TAAS and 

disrupt the ownership model.      

The onset of shared/pooled modes is made more complex by their interaction with autonomy.   Today, 

carsharing and ridesharing occur in conventional vehicles (albeit with ever-increasing levels of driver-

assist technologies).   Once commercial autonomy arrives, most analysts predict that conventional 

carsharing will decline as customers shift to on-demand autonomous taxis (ATs); those who continue to 

share cars will share mutually- or fleet-owned AVs.   Carpooling, which is already a pre-AV mode with 

modest and declining U.S. use, will lose its drivers and thereby ostensibly become cheaper and more 

heavily used, including as part of multi-modal mobility networks.   

 

Some experts also predict that the onset of autonomy will itself cause a downsizing of the average size of 

vehicles in use.  In Chapter IV we noted that we did not expect this to become widespread among self-

owned AVs until the concentration of AVs was high enough to reduce the chance of a CV-AV collision at 

                                                           
134 See (Bank of America Merrill Lynch, 2017) p.172-174. 
135 Per-capita figures from (Litman, 2016) Figure 7; per-household (Bank of America Merrill Lynch, 2017) p. 153, 

citing “McKinsey and Sivak et al”). 
136 “Cars are going to undergo a lot of changes in the coming years.  One of the biggest: you probably won’t own 

one.”  (Higgins, 2017).   (Bank of America Merrill Lynch, 2017) p.153 quotes GM President Mary Barra as saying 
“We do believe the traditional ownership model is being disrupted.”  
137 (Johnson & Walker, 2016) cited in (Bank of America Merrill Lynch, 2017) p. 161. 
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high speeds, perhaps sometime in the 2040s.   However, we expect that autonomous vehicles specifically 

designed for intracity use, aka autonomous taxis, could immediately enter the fleet with a lower EI than 

conventional vehicles.   In other words, by shifting the average composition of the entire vehicle fleet with 

unusual rapidity, the onset of ATs could shift the average EI of the total fleet as the number of ATs grows.   

We acknowledge this possibility, but we do not adjust for it.  

 

Finally, many experts foresee a future network of “seamless mobility,” where rail transit modes feed 

public and private buses, mini-buses, vans, and purpose-built city cars with varying sizes and on-demand 

routes that intersect frequently with transit stations. Shaheen, et al (Shaheen, Chan, Bansal, & Cohen, 

2015) and Ciari and Becker (Ciari & Becker, 2017) among others call this “shared mobility,” an “innovative 

transportation strategy that enables users to gain short-term access to transportation modes on an as-

needed basis”.   In this vision, only the final part of the system consists of light-duty vehicles, and then 

only when demand levels do not allow larger microtransit HDVs.    

In these “seamless” mobility systems (SMSs), the goal is to shift the same overall passenger-miles into 

vehicles “sized for purpose” and therefore much more efficient per PM.   Operated efficiently, the overall 

total EI per passenger-mile for such a seamless mobility system is a blend of future fixed-route mass transit 

EI, bus and mini-bus EI, and LDV EI, all operating at high load factors.   Overall energy savings in the shift 

to seamless mobility can therefore be viewed as either VMT reductions in LDV modes offset by much 

smaller VMT increases by higher-capacity, higher-load factor modes, or by a weighted average shift in 

overall EI per passenger-mile.   We examine guesstimates of these overall effects in section F below. 
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Table V-2: Forms of LDV and Shared and Selected Non-Shared Mobility 
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Table V-2 shows a taxonomy of the prominent shared and pooled modes. The upper block of 

rows are current modes that use conventionally-driven vehicles.   These modes will continue to 

exist until such vehicles are completely eliminated, assumedly beyond our forecast horizon, but 

many are projected to decline as travelers shift to similar modes that use AVs.   The most 

widely-predicted qualitative effect of autonomy on each of the top-block modes is summarized 

in the sixth column of the table and discussed below.   

As in previous chapters, the ultimate objective of this section is to attempt to bound the impact 

of pre- and post-autonomy shared and pooled modes on VMT and EI by mode and time frame.   

Consistent with our layered methodology, the impacts we seek are changes to eVMTs and EIs by 

mode from the estimates already adopted in Layers 1 and 2.    

B.  NON-POOLED DYNAMIC RIDESOURCING 
 

The first row of the table is the well-known mode technically known as dynamic ridesourcing (DRS) or 

ridehailing, more commonly known as “taxis and ubers” or as transportation network companies TNCs.138  

These B2P platform firms use firm-owned, driver-owned, or driver-leased fleets to sell on-demand rides 

on a per-ride basis.   In their original form they are shared but not pooled vehicles.    

Non-pooled ridesourcing (confusingly, a “shared” mode) has been around since the birth of the taxi 

industry in the 1920s.   However, during only in the last few years, smartphone-enabled TNCs (real-time 

or dynamic ridesourcing, or DRS) such as Lyft have emerged and grown extremely quickly.   Since our VMT 

and EI predictions are based first on traditional annual vehicle VMT, then on the boost due to 

electrification, and then on the boost from autonomy, it is possible that they do not capture the impacts 

of this new pre-autonomy mode. 

The data on these modes is, so far, largely private, and there is some disagreement over the effects of 

the non-pooled version of DRS on VMT.   There is general agreements that DRS acts to both increase and 

decrease VMT in a large number of ways, before and after autonomy.   Rodier, Alemi, and Smith (RMS)  

                                                           
138 Traditional ridesharing has been around for decades, using mechanisms such as bulletin boards.  Dynamic 

ridesourcing is the formal name for rides in “shared” vehicles that can be arranged on-demand using smartphones.   
See (Agatz, Erera, Savelsbergh, & Wang, 2009) for a formal description of dynamic ridesharing.  
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(Rodier, Alemi, & Smith, 2016) whose Table 1 is reproduced as Table V-3  below, divide the VMT impacts 

of DRS into six categories:  auto ownership, trip generation, mode choice, destination choice, route 

choice, and urban form.    Within each category, most of these impacts have several subcategories.   As 

shown in Table V-3, even within one category the subcategories often have opposing impacts on VMT.  

For example, under route choice, the table notes that LDV VMT may either increase or decrease 

congestion and prompt longer routes, as well as increase VMT through diversions to pick up passengers.    

Many analysts argue that the short-term net effect of these influences is to divert some trips that would 

otherwise have occurred via transit, bikes, or walking, thus increasing VMT.   An unpublished doctoral 

dissertation by Alejandro Henao found that   34% of DRS passengers would have walked or biked, had the 

TNC option been unavailable. 139   When including the VMT the driver incurred cruising without a 

passenger, Heneo computed an 85% increase in VMT in Denver for TNC vehicles.  In other words, vehicles 

driven by TNC drivers add 85% more miles in a day than would be driven by the driver of that vehicle using 

it only for non-TNC use, plus the travel by each of that driver’s passengers in whatever mode they would 

otherwise have chosen. This is obviously a very large effect per TNC vehicle, but it is based on a very 

limited sample. 

Other studies also show a sudden but substantial diversion from transit into TNC vehicles. Former N.Y. 

Transport Commissioner Bruce Schaller estimated recently that 43,000 TNC vehicles provided as many 

trips in 2016 as the City’s 13,437 taxicabs.140   Although data are apparently not public on the percentage 

of these rides that were shared, Schaller estimates that the TNCs induces 600mm miles of additional LDV 

VMT, after deducing for pooling and the diversions from taxis.   Schaller writes that, “Results in this report 

thus show that current volumes of pooled rides combined with exclusive ride trips are producing large 

overall increases in mileage – not reducing congestion of carbon emissions.” 141   Indeed, Schaller believes 

that TNCs are largely responsible for ending a twenty-year trend towards increased transit ridership in 

New York.  A similar trend towards lower transit ridership has been seen in California mass transit, 

consistent with the growth of non-pooled TNCs, but Taylor (2017) suggests that immigrant car ownership 

rather than TNCs are the primary cause.            

                                                           
139 (Henao, 2016) 
140 (Schaller Consulting, 2017) p. 1 
141 (Schaller Consulting, 2017) p.11 
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There is also significant belief in the fact that the long-run effect of non-pooled TNCs may be to lead to 

lower car ownership and long-term reduced VMTs by those who would have otherwise purchased a car 

and then experienced lower out-of-pocket costs per mile driven. One oft-cited study by (Fagnant & 

Kockelman, 2015) modeled a scenario in which all riders in the central portion of Austin, Texas used SAVs 

for transport – not rideshared, but available on demand for all trips in the urban core.   The authors found 

that one SAV could replace 11 conventional vehicles – a remarkable reduction that many other studies 

confirm.   However, and more importantly from our standpoint, total VMT was increased versus the non-

shared scenario.  (Zhao & Kockelman, 2017) repeat this finding and cite more examples of VMT increase 

in their literature review.142 

However, there is not yet complete agreement that non-pooled TNCs increase short-term VMT relative 

to the status quo.   “Depending on the specific circumstances and characteristics of the local context,” 

Circella, et al143  write, “on-demand ride services may act as a VMT-additive or VMT-subtractive force.”    

Many researchers also remind us that these non-pooled modes can become pooled modes on a moment’s 

notice – or more systematically, if policies encourage or mandate pooling – offsetting these VMT increases 

(although not always entirely, as we will see in the next section).  

A very distinguished Committee for Review of Innovative Urban Mobility Services was recently convened 

by the National Academy of Science.   After examining the available evidence on the effect of ridesharing 

on VMT, the Committee agreed that there are the multiple opposing effects shown in Table V-3.  “It is too 

early to determine which of these competing forces will predominate, and effects are likely to play out in 

different ways depending on local circumstances.” 144   This statement alone would warrant an assumption 

of zero VMT impact from ridesharing as a rough middle course.145 

                                                           
142 (Fagnant & Kockelman, 2014) note that the net total energy impacts of SAVs may still be lower than CVs due to 

the large reduction in energy required to create a car fleet only 1/11th the size of a CV fleet.   As our focus is 
electricity for transport itself, we neither examine nor dispute this.   We also note that studies that assume 
mandated or otherwise high levels of ridesharing within AT fleets clearly find reduced levels of VMT  (see, for 
example,  (Rodier, Alemi, & Smith, 2016) and the references cited therein).   
143 (Circella, Tiedeman, Handy, Alemi, & Mokhtarian, 2016), p. 39 
144 (Transportation Research Board, 2015) p.101  
145 Further anecdotal support comes from the U.S. Department of Transportation’s recent major long-term travel 

forecast and policy study, which did not cite ridesharing as an important trend affecting future travel.   (Circella, 
Tiedeman, Handy, Alemi, & Mokhtarian, 2016) 
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Finally, after full autonomy enters we have already accepted the view that non-pooled AV fleets will 

prompt a significant increase in VMT through price reductions, reclaimed time, and other factors.   In a 

way, what we are exploring here is the precursor effects occurring now in vehicles that are almost entirely 

non-EV and human-driven, but nonetheless are inducing more travel in somewhat similar ways. 

Even accepting the proposition that non-pooled, pre-autonomy TNC vehicles are triggering greater VMT 

prior to autonomy, we cannot determine the size of the effect on power use without determining (1) the 

number of TNC vehicles that will be non-AV EVs in every year prior to universal full autonomy; and (2) the 

net added VMT per such vehicles induced by non-pooled TNC service.   Clearly, this product is effectively 

zero today because so few TNC vehicles are EVs today.   Until EV ranges and charging procedures get much 

better, we do not see EVs as good candidate vehicles for TNCs.   In addition, the per-vehicle incremental 

VMT will be much less than the induced travel by AV TNC fleets, as time savings from not driving are 

already a part of current TNC modes.    

Given the current disagreements over both the sign and magnitude of the effects of non-pooled, pre-

autonomy DRS on VMTs we omit any added effect from our VMT calculations.   Certainly we do not expect 

significant power use increases for TNC fleets until EVs get larger ranges.  At that point, we are prepared 

to believe that there will be a pre-autonomy boost for power use from non-pooled, TNC-induced travel, 

and that our transport power use predictions starting in the mid- 2020s (when long-range EVs that are 

not AVs may start to become common) are biased downward.  

We can use Schaller’s results to get an idea of whether this “EV VMT bump” will have a significant impact 

on power demand. If we assume all 600mm incremental VMT are supplied by Nissan LEAFs at 0.33 

kWh/mi, the incremental demand is 198 GWh. This is an insignificant fraction of total U.S. power use, but 

that is really not the point.   This demand is in fact concentrated entirely in the service area of Consolidated 

Edison, whose 2016 sales were about 20,000 GWh. If we were to convert all TNC vehicles in the New York 

to EVs, Con Ed sales would increase by about 1% - a noticeable, if not large, amount in an era where 

electricity sales are largely flat. 
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Of course, the entire TNC fleet could take longer to electrify because these vehicles are driven more 

intensively than private cars and therefore need much more frequent charging.146   Nonetheless, more of 

these vehicles will gradually become EVs, and may be used for ridesourcing or ridesplitting before 

driverless AVs are widespread.   We think it is likely that electric utilities in large urban areas will get a 

slight bump in electric sales from DRS-induced VMT (above current trend) as EV DRS expands in dense 

urban and suburban centers.   This is likely to occur prior to the much larger multifaceted increase in VMT 

from widespread AVs that we think will start ramping up in the 2030. However, this bump should work 

itself down to zero as the entire TNC fleet converts to electric AVs, as our modeling predicts will occur in 

the 2030s onward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                           
146 NYC Tax and Limousine Commission (New York City Taxi and Limousine Commission, 2013) provides a detailed 

analysis of the difficulties converting the NYC taxi fleet to electric drive; similar considerations apply to TNC fleets.  
However, new and faster charging are in the works, and we fully expect many TNC EVs by the mid-2020s. 
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Table V-3 – Dynamic Ridesharing Services: Potential Outcomes and Effects on VMT/GHGs 

 

Source: (Rodier, Alemi, & Smith, 2016) Table 1 

 

Effects of DRS on EI 

While the VMT kaya term is clearly very sensitive to pooling, its implications for EI are not so clear.  A high 

proportion of pooling might cause vehicle owners to upsize their vehicles, shifting the fleet to somewhat 

larger but fewer vehicles.  Greenblatt and Saxena147 estimate that adding a second person to a single-

occupant average vehicle increases the vehicles energy consumption by 0.6%, without assuming any 

vehicle size changes.     Additionally, LDVs dedicated to pooling might be designed differently – e.g., 

contain separated passenger compartments or be simply larger – which could affect vehicle EI.  In this 

limited context, consistent with Greenblatt and Saxena, we believe that the EI impact of sharing and 

                                                           
147 (Greenblatt & Saxena, 2015), Supp Paper, p.5 
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pooling alone is unlikely to be large (nor easily predicted). Accordingly, we leave LDV EI as we have 

computed it so far for each vehicle type over time, including the multiple effects of autonomy.     

C.  TRADITIONAL CARPOOLING 
 

The first pooled form of transport (row II) is an aggregation of the most traditional forms of 

carpooling and vanpooling, including the type of ad-hoc ridesharing known as casual carpooling 

or slugging.148    

These forms of pooling have been occurring for many years, though they have declined 

substantially in the past few decades.   A recent workshop at the UC Institute for Transportation 

Studies reached the rather stark conclusion that “carpooling is a failure for commute trips,” 

dropping from 36% of commute trips in 1980 to 9% today.149 These declining impacts on VMT 

are presumably already embedded in VMT forecasting models.   Although travel-to-work patterns 

may change through better telework options and urban design, both explored in Chapter VI 

below, there is no particular reason why electrification alone would change travelers’ willingness 

to carpool.150   As a result, we see no reason to modify our VMT or EI figures to account for this 

small, and declining pooled mode. 

 

 

 

                                                           
148 Slugging occurs when travelers who want transport across a specific route stand in a designated location and 

drivers who wish to pick up such passengers voluntarily do.  It typically occurs in commuting corridors where (1) 
many sluggers are likely to be workers with similar backgrounds going to similar locations, giving a modicum of 
assurance of mutual safety, and (2) adding a second occupant to a vehicle allows the driver to use HOV lanes.   Of 
course, slugging now uses apps, see http://wtop.com/dc/2016/05/looking-carpooling-slugging-theres-app/  accessed 
6/21/17.    
149  (University of California Davis Institute, 2017) 
150 If anything, the significantly lower per-mile operating costs of EVs would discourage these modes.   In fact, the 

10% eventual increase in VMT from electrification implemented in Chapter III stems partly from formerly 
carpooled traffic.  

http://wtop.com/dc/2016/05/looking-carpooling-slugging-theres-app/
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D. CAR-SHARING AND VMTS 
 

 Two pre-autonomy modes involve car-sharing.  In these modes, travelers do not solicit a ride, 

they rent a vehicle from a dispersed fleet under more flexible terms than traditional car rentals.  

The key distinction between Rows IV and V is that travelers reserve vehicles from a business-

owned fleet in Row IV, making the mode B2P, whereas the car-sharing arrangements in Row V 

involved individually owned vehicles that owners are willing to let others share for a rental fee – 

a model similar to AirBnB.   Once autonomy hits, we assume that both forms of car-sharing 

decline as autonomous DRS grows, as explained further below.  

Much has been written about car-sharing disrupting the traditional ownership model. For example, the 

Rocky Mountain Institute151 predicts that by 2035 U.S. auto sales will decline by about 33%, from about 

18 to 12 million vehicles per year.  Bank of America/Merrill Lynch cites a Boston Consulting Group 

prediction of an even larger possible sales decline, 59%, and cites other estimates that vehicle demand 

will peak in the 2020s.152   Barclay’s automotive group predicts that the total U.S. LDV fleet will decline to 

103mm (mainly shared) vehicles from 246mm today.153    

Several market research firms and consultants argue that the U.S. market will not embrace car-sharing at 

the higher levels seen in Europe and emerging in Asia.  As an example, over a year after BAML’s citing 

their work, the Boston Consulting Group wrote:  

The US is different. Because residents of the country’s sprawling and sparsely populated interior 
regularly drive long distances, the potential for car sharing is almost nil across most regions. Car 
sharing stands a much better chance of catching on in densely populated urban centers such as 
Boston, New York, and San Francisco. But the comparatively low total cost of vehicle ownership 
and the convenience of driving one’s own car will encourage many people in the US to purchase 
a new car rather than forgo ownership.154  
 

                                                           
151 (Walker & Johnson, 2016) p.20 
152 (Bank of America Merrill Lynch, 2017), p.23 
153 (Barclays, 2015) 
154 (Lang, et al., 2016) p.9 
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Similarly, market researchers at the Kelley Blue Book find that only 15% of car-sharing users report that 

sharing is an alternative to ownership.155   The converse view is expressed by (Bank of America Merrill 

Lynch, 2017), who writes: 

 “Peak Stuff”: it’s all about experience and sharing 
We are seeking a dramatic shift in consumer preferences towards prioritizing experiences and 
the purpose of goods and services over materialism – as well as new ownership preferences as 
“access” and “rental”. Over the past 50 years, the US economy has shifted focus from 
manufacturing goods to providing services – from 62% services in 1970 to more than 90% by 
2012. This is reflected in General Motors employing c.600,000 workers in 1960 vs. Facebook’s 
c.13,000 and .57,000 today.156 

 
However, BAML also agrees that car-sharing will decline with the onset of autonomous taxis, and 

emphasizes growth in Europe and Asia over the Americas in the meantime.157   Car-sharing has been 

growing much more rapidly outside the U.S., although even here Ciari and Becker (Ciari & Becker, 2017) 

note that the only country with seamless nationwide car sharing (Switzerland) has only achieved a 2.5% 

market share.158 

The focus of our work is the impact of carsharing, whatever its level, on total VMT.   If drivers travel as 

much in cashared vehicles as in self-owned cars these high levels of fleet declines have zero effect on 

transport power use – the same number of miles are driven in fewer shared cars.159    

There is a wide spectrum of opinion concerning the VMT impacts of car-sharing.  It is generally agreed 

that there are two general effects: (1) VMT are increased by drivers who otherwise could not afford access 

to cars; and (2) VMT are decreased by drivers who forgo purchase of a car (perhaps a second car) and 

therefore drive less, and also drive less because the costs of ownership are no longer sunk (i.e. per mile 

out-of-pocket costs are higher).   However, the magnitude of these two effects are disputed (see (Martin 

                                                           
155 Kelley Blue Book, 2016, p.14 
156 (Bank of America Merrill Lynch, 2017) p.172 
157 (Bank of America Merrill Lynch, 2017) p. 167-170 
158 (Ciari & Becker, 2017) section 4.1.1 p.57.  While it is well beyond our scope to resolve this debate fully, our 
estimates of the potential size of the market for carsharing do not jibe with very high levels of fleet decline.   Three-
and-a-half million carsharing drivers might take as many as 28MM vehicles off the road, but this is about 10% of the 
U.S. fleet.    
159 Interestingly, in this simple example (to a first approximation) long-term electricity for manufacturing is also 

unchanged; half as many cars are made twice as frequently.   More generally, however, all of the modes in this 

chapter have the directional effect of lowering the size of the LDV fleet and therefore lowering manufacturing power 

use. 
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& Shaheen, 2011); (Lovejoy, Handy, & Boarnet, 2013)) cite literature showing 27 to 68% declines in VMT 

by car-sharers. A more recent survey by Stocker and Shaheen160 reports reductions of 27% to 43% (as does 

Martin and Shaheen,161 also widely cited); Chen and Kockelman162 also endorse this view.   In contrast, Tal 

and Cohen-Blankshtain and Sperling163 express doubts that car-sharing VMT savings are large.  Tal and 

Cohen-Blankshtain note that most VMT impact predictions are based on user surveys that over-predict 

the true effects of sharing, especially in the long run.164  These effects put a lower bound of net zero VMT 

savings from car-sharing, approximately balancing the increase (1) and decline (2) above.  

We can use a back-of-the-envelope calculation to show that carsharing’s impact on power use will almost 

surely be small.   At present, U.S. car-sharing services are enjoying something of a boom, gaining about 

100,000 new customers a year.   If we assume this growth continues unchanged for the next 20 years car-

sharing membership will total about 3.4mm drivers.165   If we further assume that these ~3.5MM drivers 

reduce their VMT by 80% - an extreme upper bound from Martin and Shaheen – 31 billion vehicle-miles 

will be avoided.  While this is certainly a positive outcome from every standpoint, this represents less than 

1% of what is likely to be more than 3 trillion-miles of total LDV travel by 2040.   Assuming further that 

the EI of shared EVs is 20% lower than non-shared EVs,166 the saved electricity is about 11,2000 GWh, 

probably less than 0.21% of electricity use in the 2040s.167      This result is consistent with a more 

sophisticated calculation by Chen and Kockelman.168  Thus, car-sharing will not alter transport electric 

                                                           
160 (Stocker & Shaheen, 2016), p.11 
161 (Martin & Shaheen, 2011) 
162 (Chen & Kockelman, 2016) 
163 (Tal & Cohen Blankshtain, 2011) and (Stevens M. R., 2017). 
164 (Tal & Cohen Blankshtain, 2011) 
165 Susan Shaheen Carsharing Trends and Research Highlights (Feb., 2017) powerpoint for the EPA, accessed 

August 28, 2017. Current car-sharing membership in North America, including Canada, is short 1.5mm drivers.   
Shaheen and Cohen report car-sharing statistics regularly in the Innovative Mobility Carsharing Outlook available at 
ttsrc.bnerkeley.edu 
166 As shown in Figure EI-1, there is a maximum of about a factor of Z in EV EIs, converging gradually over time.   

(Lovejoy, Handy, & Boarnet, 2013) p.3 note that shared vehicle fleets tend to have newer (hence more efficient) 
cars that average self-owned vehicles.  The same point is made by Chen and Kockelman (2016) 
167 The details of this calculation are: 80% reduction in 11,400 miles/yr for 3.4mm drivers is: 

31 bN VMT avoided @ .33 kWh/mile – 10.230 BN kw 
The remaining 20% of car-shared driving is 7.75 bN VMT driven at EI 20% below an average .33 kWh/mile 
= 511mm kWh 

168 In brief, these authors use estimates of the ultimate market penetration of car-sharing among all U.S. 

households (10% in their medium scenarios), reduced VMT for each sharing driver (31%), a 24% increase in fuel 
efficiency for shared vehicles, and allocation of reduced rides to other modes of travel.  Fuel energy reduced (by 
gasoline vehicles, presumably) in the middle scenario was about 5% of all “local household transport-related 
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demand by much unless membership growth well exceeds current rates and its drivers drive significantly 

less than they otherwise would, and/or car-sharing drivers share EVs substantially smaller than they’d 

otherwise own.169 

E.  PRE-AUTONOMY POOLED DYNAMIC RIDESHARING OR RIDESPLITTING 
 

The next mode to examine from Table V-2 is the growth of pre-autonomy pooled dynamic ridesplitting 

(Row III) and its consequent effect on VMT and EI. With respect to VMT, there are two conflicting effects.   

If two taxi riders going between exactly the same two points rideshare the entire trip, there is roughly half 

the VMT of the two alternative taxi rides.   The larger the number of riders sharing their route, or 

equivalently, the more that ridesplitting increases average vehicle occupancy, the greater the VMT 

savings.   This effect is the core environmental and congestion benefit of pooled DRS. 

There is, however, an offsetting effect of unknown size.    In Section B above we explored the proposition 

that non-pooled DRS is already induce greater passenger-miles of LDV travel than would occur without it.   

Here we must add to the uncertainties regarding non-pooled DRS VMT uncertainties the additional, quite 

significant factor that pooled DRS rides are substantially cheaper than non-pooled rides.   Through the 

price elasticity of demand we can expect positive added travel, tipping the scales further in the direction 

of added VMT.   Nonetheless, as shown below, the net overall effect of pooled DRS (as distinct from the 

uncertain non-pooled version) is generally regarded to be lower VMT.   

There is little disagreement that shared rideservices are substantially cheaper than individual non-pooled 

service.    BAML170 estimates the cost difference as over 50%, from $2.75/mile to $1.32/mile, while others 

say that TNC pooling discounts are closer to 25% on average.   (They will become cheaper still when 

driverless, but we discuss these effects in the following section.)  Thus, the net additional effect of 

ridesplitting on VMT depends on the VMT reductions when drivers combine otherwise overlapping trips 

less the new shared VMT coming from passengers diverted from transit or who would not have traveled 

at all. 

                                                           
energy use.” Translating the latter to a percent of total U.S. power demand would reduce this percentage by about 
three quarters, into the range of 1-2%.  Chen and Kockelman (2016). 
169  
170 (Bank of America Merrill Lynch, 2017), p.13 
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To our knowledge, no one has publicly forecasted the long-term penetration of pooled DRS in a manner 

resembling the EV and AV sales forecasts discussed above.    Many analysts postulate a level of ridesplitting 

to see what the effects might be, but these are not forecasts or even market potentials.171  BAML reports 

broad survey-based global data from the Boston Consulting Group (BCG) claiming that 45% of passengers 

under 30 are “willing” to share a ride in a self-driving car, and that Uberpool has reduced VMT by 100 MM 

VMT over two years in 36 global cities.172    Yet, the UC Davis Pooling and Pricing Workshop concluded that 

“Americans still dislike riding with strangers.”   The Albright-Stonebridge Group (2016) concludes that:  

Until autonomy is safely available, very small increases in overall utilization will come from 

incremental improvements by mobility services to attract customers: more convenience from 

TNCs such as better ETAs, corporate payment integration, carpooling options, or additional 

features such as car-seat availability; or convenient point-to-point car sharing with multimodal 

integration or valet services; or transformational change in utilization will only be possible once 

autonomous technology and related enabling policies are in place.173 

Without recognizing the distinction we make here between pooled TNC and SMS-based ridesplitting, a 

few researchers have made very rough upper-bound estimates of the impact of pooling.  Interestingly, 

almost all of these apply after the onset of full autonomy.  Some of these estimates provide little detail, 

which others are based on hypothesized levels of pooling.   BGR (2014) place an upper bound (i.e. 

ultimate level) of -12% of VMT from all forms of pooling and Stephens, et al (2016) find a lower bound of 

zero and an upper bound in the same range, 300 to 400 MM VMT saved from an average of 5.6 Trillion 

VMT.174  Greenblatt and Saxena (Greenblatt & Saxena, 2015) hypothesize a 10% shift from single- to 

double-occupancy in autonomous vehicles and find a 3% decrease in total energy use, corresponding 

largely to a 3% decline in VMT. 

                                                           
171 For example, in Paul Hawken’s recent compilation of climate mitigation measures, both ridesharing and 

carsharing are assumed to increase pooling among U.S. commuters from 10% to 15% and increase average carpool 
size from 2.3 to 2.5 persons by 2050.  (Hawken, 2017) p. 145. 
172 (Bank of America Merrill Lynch, 2017) p. 167.  BCG itself declined to forecast ridesharing, while going on to 

forecast modest amounts of carsharing, but noted that ridesharing would divert customers away from carsharing.    
Similar survey data for universities is in (Rodier, Alemi, & Smith, 2016) p. 122.  
173 (Albright and Stonebridge Group, 2016) 
174 (Brown, Gonder, & Repac, 2014) Table 1 (j); (Stephens, Taylor, Moore, & Ward, 2016) Table 2; (Greenblatt & 

Saxena, 2015) p.860.  From Stephens Table 2, we subtract the upper and lower limit estimates of Total VMT in the 
Full – With Rideshare from the the Full – No Rideshare and compare them to the average of the VMT range of 2.7 
to 8.5 TN miles total in the With Rideshare scenario. 
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Most of these forecasts appear to suffer from an omission of the additional VMT induced by the fact 

that pooled rides are 25% or more less expensive, and from the fact that congestion may be reduced, 

thereby encouraging more and longer trips (see Table V-3).  “Although no direct empirical evidence of 

the effect of pooling on induced travel is available to date,” RAS (2016) note, “solid empirical evidence 

shows that reduced congestion lowers the cost of driving and increases the quantity of vehicle travel.”175 

The proposition that ridesplitting has modest and somewhat small net impacts on VMT comes from RAS’ 

own comprehensive simulations of urban travel in San Francisco.      They simulated travel in San 

Francisco using the activity-based travel model of the Metropolitan Transportation Commission of the 

SF Bay area under three sets of assumptions concerning pooling.   In the minimum scenario, riders 

coming and going over points separated by not more than one mile not more than 15 minutes apart 

were assumed to be entirely pooled up to a maximum of 20% of all trips.    Under the moderate case, 

the max wait time was 30 minutes and the maximum origin/destination proximity was five miles.  RAS 

included greater travel induced by lower congestion, though apparently not greater travel induced by 

lower pooled ride prices.   

In the moderate ridesplitting case – 30 minute and 5 mile buffers, respectively – pooling reduced total 

VMT by 8.9%, even when accounting for induced travel from lower congestion.   However, in the 

minimum case, with 15 minute waits and a one-mile buffer, total VMT savings was insignificant.   RAS 

also found that pooling was greatly increased by VMT fees of 10c a mile, equivalent to a “gas tax” on EVs 

of almost 100% at 30 cents/kWh power.    

In the end, we are not convinced that pooling by itself will make large inroads into VMT in the absence 

of strong promotional policies.   If we simply use a published Uber statistic of 21 MM VMT avoided in 

the first three months of 2016,176 assume that it correctly adjusts for all the net induced and reduced 

driving effects in Table V-2, and add 20% for non-Uber pooling, the annualized effect at .33 kWh/mile 

(i.e., 100% electric miles) is only 33 GWh less power use.  Even if this were to grow at a rate of 10% per 

year through 2050, a factor of 28 growth, power savings would be 927 GWh, less than 0.3% of current 

                                                           
175 (Rodier, Alemi, & Smith, 2016) p. 123. 
176 https://www.nytimes.com/2016/03/31/technology/car-pooling-helps-uber-go-the-extra-mile.html  accessed 7-
19-17 

https://www.nytimes.com/2016/03/31/technology/car-pooling-helps-uber-go-the-extra-mile.html
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U.S. power use.   However, combining pooling with transit and other policies to encourage seamless 

mobility systems may yield a different result; we examine this possibility next. 
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F. SEAMLESS MOBILITY SYSTEMS 
 

A variety of terms are used to refer to transportation information and payment platforms that enable 

travelers to find and use trip-specific combinations of traditional transit and new pooled and non-pooled 

TNC modes to provide rapid, easy travel.    The typical vision for these systems is that a traveler uses 

their smartphone to book a trip “on demand;” a special-purpose, highly efficient taxi picks up the 

traveler(quite possibly pooled with another traveler) and takes them to a bus and/or rail mass transit 

system; they travel on this as far as they can towards their destination; and then another urban taxi is 

waiting for them at the transit stop they exit to bring them “the last mile.”  We refer to these systems as 

Seamless Mobility Systems (SMSs), but they are also often referred to as integrated multimodal systems, 

shared mobility, and more broadly as transport-as-a-service or mobility-as-a-service, though the latter 

terms include companies that provide only LDV transport.    The goal of SMS systems is to make urban 

travel between most points nearly as fast and convenient as, and cheaper than, driving or taking a TNC 

car. 

Researchers differ on the essential features of an SMS, but four main elements are quite prominent 

((Kamargianni, Li, Matyas, & Schafer, 2016); Mani (2014)): 

● Information integration.   A single smartphone app or website has all the information 

necessary to plan and schedule any trip and guide the traveler during the trip; 

● Payment integration.   The same (or another seamless connected) application allows the 

traveler to pay for the entire trip with a single payment; 

● Operational integration; schedules and operating processes are coordinated to make 

transfers between modes quick and easy; and 

● Physical or infrastructure integration.   Transfer hubs such as rapid transit stops are also 

built to facilitate quick and easy mode transfers. 

As of this writing there are no cities that often complete SMSs, but the leaders of many non-U.S. cities, 

including Paris, Athens, Mexico City, and Helsinki have reportedly made vows that translate as strong 

support for shifting in-city auto travel to SMSs.177   Kamargianni, et al (2016) examines ten emerging  

                                                           
177 Gordon Sander, Christian Science Monitor, 6/23/17   https://www.csmonitor.com/World/Europe/2017/0623/An-

offer-Finns-can-t-refuse-Helsinki-woos-car-owners-to-give-up-their-autos. Accessed 7/29/17. 

https://www.csmonitor.com/World/Europe/2017/0623/An-offer-Finns-can-t-refuse-Helsinki-woos-car-owners-to-give-up-their-autos
https://www.csmonitor.com/World/Europe/2017/0623/An-offer-Finns-can-t-refuse-Helsinki-woos-car-owners-to-give-up-their-autos
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efforts to adopt elements of SMSs, one of which, the SHIFT program, is operating already in Las Vegas.178  

Many more U.S. cities are making progress implementing one or more of these elements.   In Chicago, a 

single transport smart card pays for both transit and some carsharing companies, and in San Francisco 

one payment card applies to over 20 transit systems and some parking.179 

The Effects of Seamless Mobility Systems 

SMSs take passenger- and vehicle-miles away from trips in LDVs and shift them to a combination of 

modes that are naturally pooled and far more energy-efficient, especially traditional mass transit.   The 

first- and last-mile portion of the SMS trip, expected to occur in LDVs or mini-buses integral to the SMS, 

is also likely to be more efficient than ordinary LDV travel because many of the vehicles used by the SMS 

would be optimized to operate on low-speed urban roads and would pool passengers.   In our Kaya 

identity framework, SMSs do not change passenger-miles travelled much up or down; instead, they shift 

travel to modes with much lower EI per passenger.   They can be seen as a strategy for substituting a 

flexible but overall more efficient mix of modes/technologies for the current less integrated and 

efficient mix dominated by single-occupant LDVs.   

There is no requirement that SMSs use EVs or EAVs, but the general view is that such systems naturally 

lend themselves to these vehicle types.   As emphasized by Johnson and Walker (2016) and A&S (2017), 

EAVs are ideally suited to intensive fleet use because (a) they will initially have higher fixed costs but 

much lower operating costs per mile than CVs; and (b) they are likely to be much more reliable than CVs 

in intensive use, with lower maintenance costs, higher availability, and much longer lifetimes.    

Moreover, most first- and last-mile travel will go back and forth to transit hubs where electric charging 

will probably be available, so range and charger locations should not be an issue.   The Albright-

Stonebridge group puts it even more strongly, arguing that SMSs simply won’t grow quickly until full 

driverless technology is available: 

Until autonomy is safely available, very small increases in overall utilization will come from 

incremental improvements by mobility services to attract customers: more convenience from 

TNCs such as better ETAs, corporate payment integration, carpooling options, or additional 

                                                           
178 Mani (2014) examines multimodal integration as of that date in London, Paris, Singapore, Hong Kong and New 

York City.  He notes that two cities, London and Singapore, have authority over all modes of travel in their cities 
and therefore do not need a new mandate to plan and implement SMSs. 
179 For example, (Dinning & Weisenberger) p. 124 review current examples of payment integration in U.S. transit 

systems.  
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features such as car-seat availability; or convenient point-to-point car sharing with multimodal 

integration or valet services; or transformational change in utilization will only be possible once 

autonomous technology and related enabling policies are in place.180 

Nonetheless, there are already several encouraging trends with today’s technologies.   We have already 

noted the progress many U.S. and foreign cities have made creating parts of SMSs with current 

technologies.   In addition, after a long period in which auto use went up much faster than transit 

ridership, traditional U.S. transit PMs increased about 1.66% per year over the decade 2005-15, twice as 

fast as population and three times faster than automobile miles.181   Many cities have responded by 

adding to their transit systems, including some 41,000 miles of new track between 2000 and 2010.182   

Still, it should be noted that many transit systems in the U.S. are in dire financial shape and have large 

deferred maintenance problems.  

If we were able to predict the degree to which SMSs will penetrate American cities between now and 

2050 it would not be too difficult to quantify their effect on electric power use.   If we know the rough 

number and average length of trips that an SMS will cause to be diverted away from autos and the 

approximate mix of alternative trip modes we can calculate the approximate impact on transport 

power.    For example, if an average 10-mile auto trip in a single-occupancy electric SUV (.5 kWh/mi) can 

be diverted to one pickup mile in an efficient electric sedan (.3 kWh/mi), 8 miles on an electric urban 

subway (.06kWh/mi183), and a final mile in another efficient EV, the total electricity demand for this trip 

would decline from 5kWh to 1.08 kWh, a reduction of 78%. 

However, unlike innovations such as driverless cars, SMSs are almost entirely a policy-driven 

phenomenon that need not await either electrification or autonomy.   The barriers to implementing 

SMSs today in major cities are not technological, they are institutional, commercial, and economic.   To 

implement an SMS a city needs to raise the investment necessary to create a full-scale seamless system 

and find ways to integrate operation and payments between multiple public agencies and private TNC 

firms – a very large institutional challenge. 

                                                           
180 (Albright and Stonebridge Group, 2016) p. 47. 
181 American Public Transit Association, 2016 Factbook, Figure 2. 
182 American Public Transit Association, 2016 Factbook, Appendix A. 
183 Andrade et al. 2014 http://seekdl.org/upload/files/20141111_053056.pdf 
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Predicting the growth potential for SMSs is therefore an exercise that is proportionately more weighted 

towards predicting municipal transport policy leadership and less a function of technology and cost 

shifts, recognizing nonetheless that SMSs and autonomous taxis have very strong synergies.   While we 

have no formula for making such predictions, it seems possible to bound the potential for SMS 

transformation  simply by looking at current U.S. public transit systems and examining some possible 

growth rates.   Because bus and rail transit systems are, by definition, the backbone of SMSs, one city’s 

SMS cannot grow much faster than transit ridership.      

According to the American Public Transit Association, U.S. transit ridership increased 18% in the decade 

following 2005 to 59.6 billion passenger-miles.   If this trend were to continue to 2050, ridership would 

increase 73% (population would increase greatly during this period as well).    Suppose that a strong 

push for SMSs across the U.S. doubled or quadrupled this growth, to about 150% or 300% ridership 

increases.  Obviously this would mean that many urban transit systems would expand dramatically 

during the next 30 years, doubling or tripling their capacity and reach, requiring many billions of dollars 

of public or private investment.   However, APTA statistics show that in the 10 largest US SMSAs about 

13% of commuters use transit, more than double the U.S. average, and that in some areas almost one 

third of all commuters use transit.   If these numbers can be achieved in some cities without SMSs, it 

seems possible that well-run SMSs could push U.S. transit use quite a bit higher.184   

The approximate transport power implications of this concerted policy push can be easily bounded.   To 

get an upper bound on the reductions in power demand that this SMS growth would enable we first 

assume that, in the absence of strong SMS policies transit ridership remains flat at 60 billion PMT.   We 

also simplify the calculation by assuming that SMS systems shift average LDV auto miles to transit miles, 

ignoring the first and last mile LDV use (or, equivalently, assuming its EI equals transit EI per PM).   

Finally, we assume that the power used for transit is zero, so that a shift of one passenger from an 

electric LDV to an SMS saves 100% of the electricity used by the LDV but does not increase power use 

                                                           
184 A simulation of alternative transport scenarios for Lisbon, Portugal conducted by the OCED’s International 

Transit Forum (2015, p.21) modeled city travel on a typical weekday with and without a “high capacity” transit 
system that was part of a seamless mobility system.   The high-capacity transit scenario was able to reduce total 
VMT by 30 to 45%.  This suggests that urban travel could be diverted significantly to a much larger transit system, 
at least in one European city.  
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for transit.   Obviously, all of these assumptions are made to simplify the calculation, not because they 

are realistic. 

The result of this simple calculation shows that a doubling of transit ridership growth rates, which would 

yield 150 billion transit PMT (triple 2015 levels) would save less than 30 billion kWh (TWh) at 0.33 

kWh/mile, a little under 1% of current U.S. power.  Quadrupling the growth rate to yield a 300% increase 

by 2050 would save 60 TWh, about 2%. The calculations of these results are shown in workpaper C.  So, 

while SMSs seem to be an excellent idea that could significantly affect commuting in large urban areas, 

they will affect power use significantly only in American cities that make a concerted effort to greatly 

reduce or even eliminate intracity car-only trips.     

 

VI. “Wild Card” Factors  
 

In this chapter we consider a handful of factors that will influence future LDV travel in especially 

unpredictable ways:  (1) Road Infrastructure Costs, including AV-specific infrastructure, and the manner 

in which LDV travelers will or will not pay for it; (2)  telecommuting, e-commerce, and other electronic 

substitutes for personal or business travel; and (3) redesign of urban areas to reduce the need to travel.   

While each of these factors may be reflected to a degree in our baseline view of flat per-capita VMT 

growth, and are also clearly related to changes in our three Revolution layers, they share the attributes 

of being especially uncertain as to their impacts.   Accordingly, before finalizing our projections we 

consider whether we can learn enough to modify our power demand estimates, or at least determine 

the likelihood of significant upside or downside potential.   

A. INFRASTRUCTURE AND ROAD PRICING  
 

The system by which vehicle users pay for building and maintaining roads is another major facet of 

transportation that will be disrupted by the Three Revolutions.   As it stands, the U.S. road system is 

underfunded, deteriorating, and getting progressively lower proportions of its funding from “user fees” 

of any kind.   The growth of EV mileage, currently miniscule, will greatly exacerbate this situation and 
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likely force a reset of the US approach to collecting revenues from vehicles to pay for roads, which we 

generally refer to as road user charges (RUCs). 185 

U.S. roads, which currently cost about $103 billion a year, now get less than 50% of their funding 

revenues from user fees; the remainder comes from other revenue sources that are far more politically 

contentious and less predictable.186  Meanwhile, the federal Highway Trust Fund is projected to have a 

deficit rising to over $80 BN by 2025, while the 2017 Infrastructure Report Card estimates that the 

backlog of road and bridge  “capital needs” is $836 billion;  other sources call for spending of up to $177 

billion/year.187  Meanwhile, about 10% of the 607,000 bridges in the U.S. are classified as structurally 

deficient and the overall U.S. road infrastructure is ranked 18th in the world.188 The situation in the states 

is sadly similar; a 2009 report for the State of Texas found a gap of more than $150 billion between 

estimated road infrastructure needs through 2030 and all federal and state tax revenues for 

transport.189   

It is important to understand that most of these funding and shortfall estimates do not appear to 

incorporate two important developments.  First, the advent of AVs will create pressure to better 

maintain existing roads.   At least with current technologies, AVs rely on well-marked and well-

maintained roads for safe, reliable operation.   A recent report for the U.K.’s Royal Automotive Club 

(Johnson, 2017) provides a fascinating window into how maintenance needs will change as progressive 

levels of autonomy migrate into the fleet: 

There are a myriad of other implications for road infrastructure, some requiring detailed highways 
engineering expertise to articulate. For example:  

● A fully automated transport system can be expected to reduce the need for sharp braking 
and could be operated on a surface with only a modest level of friction. Potentially this 
could allow current Polished Stone Values and texture depth requirements to be relaxed 
(Dunford et al., 2014).  

                                                           
185 We assume that the infrastructure required to charge EVs is installed by a combination of utilities and third 

party providers, but that the cost of this infrastructure is paid for through inclusion in the costs of electric power 
and/or dedicated costs to EV users.   Accordingly, this section is about changes to physical and IT systems triggered 
by AVs.   For more on EV infrastructure and its funding, see, e.g. (Melaina & Helwig, May 2014)  (Fitzgerald, Nelder, 
& Newcomb, 2016)  
186 U.S. National Economic Council  (hereinafter USNEC)  (2014) p. 103;  U.S.DOT 2016A p. 203 
187  (American Society of Civil Engineers, 2017) pp. 19,20; (Mendez, Monje, & White, 2017).  For a good discussion, 

also see (Kahn & Levinson, 2011). For current press coverage, see (Appelbaum, 2017). 
188 (U.S. Department of Transportation) 
189 (Texas Department of Transportation, 2009)Figure 2 p. 9. 
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● Lamb (2015) notes that because CAVs will run consistently in the same lane positions there 
will be greater wear and tear in the wheel tracks, and that either the road area beneath the 
tracks will need to be strengthened, or maintenance repairs will need to be more frequent.  

● The lane-keeping assist systems which are now a feature of certain cars are reliant on road 
markings to accurately determine the boundaries of lanes, implying that these markings 
therefore need to be maintained in good condition for the system to work.  
 

With regard to the latter, as levels of automation increase, the need for the maintenance of 
these kinds of markings may become less important, as communication networks start to 
provide all the information required for the CAV to know where it is. However, contrary 
arguments have been put forward by a number of commentators. For example, Weeratunga 
and Somers (2015) argue that static communications will need to be maintained to a much 
higher standard than currently. In any case, until level 5 CAVs are commonplace, maintenance 
standards will need to be updated and aligned as systems evolve.  

Experience in other transport sectors, such as aviation, suggests that the approach to 
maintenance has to change as automation increases, and maintenance costs typically increase – 
partly because the infrastructure has to be better maintained for safety reasons, and partly 
because it becomes more sophisticated, meaning that the maintenance workforce has to be 
more skilled and, therefore, charges more for its services (Bernhardt & Erbe, 2002). 

Beyond increased maintenance, all levels of government will soon begin to face demands to redesign 

and remodel parts of the road system and related parts of cities to accommodate AVs.  As the Eno 

Center on Transportation recently wrote ( (Lewis, Turner, & Rogers, 2017) p.17),  

For example, a predictable driving environment, such as well-marked traffic lanes, is necessary 
for current AV technology, so cities and states need to improve lane striping and signage. 
Construction workers and emergency vehicles could communicate with AVs via a smartphone 
app or some type of wireless signal, rather than using hand gestures or sirens and flashing lights. 
Traffic signals may need to be reconfigured to either communicate wirelessly to approaching 
vehicles or to ensure that, no matter the position of the sun, AVs can view and register the 
traffic light.  

Improving roadways to better accommodate AV technologies poses significant costs, which is 
challenging especially for cities and states already struggling to upkeep infrastructure. Whether 
it is better roadway conditions or advanced sensors and transmitters, the upgrades could cost 
states and localities millions or billions of dollars in repairs and upgrades. At the same time, full 
AV deployment may reduce revenue streams such as parking fees and traffic fines that help pay 
for such upgrades or fund other public expenses. 

Remarkably, there are virtually no published estimates of the cost of roadway revisions needed to 

accommodate AVs;  the experts we spoke with on this topic uniformly agreed that the numbers were 

likely quite large but simply impossible to estimate at this early stage.   However, we can gain a glimpse 

from some of the pilot programs underway.   In England, Johnson (Johnson, 2017) noted: 
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It is difficult to judge the costs of adapting existing infrastructure for CAV use because so little 
information on costs is available, but, for reference, Highways England spent £3.0bn in 2015/16, 
including £1.9bn on its capital programme (ORR, 2016). As an indication of the potential scale of 
costs, it cost Highways England £90 million to adapt a 7-mile stretch of motorway for hard 
shoulder running at the M4/M5 interchange, and the 27 miles of the M6 toll road cost £900 
million to construct.  

 Korea, which spent 10 BN Euro on annual transport investment and maintenance total in 2013, has 

recently announced its intention to retrofit its entire highway system at an estimated cost of about 

US$62 billion.190   In the U.S., the state of Ohio will reportedly spend about $2BN to retrofit “smart 

mobility corridors”, including 35 miles of four-lane highway between Dublin and East Liberty, Ohio.   

Although the outlays apply to more than this corridor, if we use only this mileage this amounts to $57 

MM/mile of highway.  If this were to apply to the entire U.S. highway system (164,000 miles) the cost 

would be more than $9 trillion.    

These estimates appear to apply almost entirely to highways.  In urban areas off the highways, 

infrastructure changes are also certain to be initially expensive, though perhaps later offset by savings.  

Apart from increased maintenance of local roads to allow AVs to operate, local transport officials will 

have to accommodate both AVs and CVs on the same roadways for several decades.   This will call for 

retrofitting traffic signs and signals for AVs while maintaining the current ones.  Similarly, many routes 

may initially work better if AVs and CVs are given separate lanes, entrances or exits, and dropoff and 

parking areas.   For the decades during which both types of cars are on the road but shifting steadily in 

their proportions, road transport planners, builders, and operators will be under constant pressure to 

create two parallel, linked, and steadily shifting urban road infrastructures – a costly proposition.191      

This does not refute the fact that complete AV fleets could eventually enable lower overall roadway 

capital and operating costs.   Many observers note that all-AV fleets will make much more efficient use 

of the road system and thereby reduce the need for total roadway surfaces.   In addition, AVs can be 

much lighter, reducing roadway wear and tear.   Many other features of the roadway system might 

                                                           
190 See  https://stats.oecd.org/index.aspx?datasetcode=itf_inv-mtn_data acc. 8/17/17 for total Korean outlays;  see 

South Korea to Build Smart Highways for Driverless Cars,  GovInsider, https://govinsider.asia/smart-gov/south-
korea-to-build-smart-highways-for-driverless-cars/ acc. 8/7/17    
191 See, among others, Alessandrini, et al (2014) and (Litman, Smart Growth Reforms: Changing Planning, 

Regulatory, and Fiscal Pracices to Support More Efficient Land Use, 2016) for discussions of the the likely evolution 
of urban roadway infrastructure as AVs increase in the fleet. 

https://stats.oecd.org/index.aspx?datasetcode=itf_inv-mtn_data
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ultimately become cheaper or more efficient.192   In the interim, however, the costs of transitioning the 

highway and local roadways to accommodate AVs are clearly many billions of dollars.   These added 

costs make it that much more likely that the U.S. and other countries will transition away from their 

current reliance on petroleum fuel taxes to some other approach to RUCs. 

B. POSSIBLE RUC DESIGNS AND LEVELS 
 

The cost of new and maintained roadway and related infrastructure, and the means of paying for it, are 

gigantic questions overhanging the future of U.S. transportation.    These questions have been among 

the most durably controversial domestic policy topics since the end of World War II,  perennially 

debated by transportation economists, policymakers, and road stakeholders (one representative of the 

American Trucking Association recently noted that he has testified in Congress in favor of RUC changes 

31 times).193    Now, as EVs (and subsequently AVs) destabilize the U.S.’s longstanding political solution 

to road funding, forecasting the eventual outcome is little more than a guessing game.      

However, there is no shortage of studies, proposals and pilots from which a solution can be drawn.194  

With respect to form, most of the proposals that would be perceived as a road use charge (i.e., 

potentially affect auto use on the margin) fall into one of these categories: 

a) Tolls and Congestion pricing, meaning fees that are assessed by time period and road 

section when and where congestion occurs, or for a pre-designated area such as central 

London;  if the fees apply only to specific roads, and are not time-dependent, they are 

usually called tolls, but tolls are now often computed dynamically to mimic congestion 

pricing; 

b) Pure VMT charges, i.e. charges based only on total miles traveled on roads; 

c) Hybrid systems that include both congestion and distance pricing;  

                                                           
192 See (Rodoulis, 2014) for a good qualitative discussion.  
193 The seminal economic works date back to Pigou and Knight in the 1920s; more modern contributions include 

(Small, Winston, & Evans, 1989) (Langer & Winston, 2008); the literature is nicely surveyed by R (Rouwendal & 
Verhoef, 2006).   See (Viegas, 2001) for a good articulation of why road pricing alone is usually too narrow a 
concept upon which to base urban transport policy decisions.  
194 In addition to the following, see Appendix A of Sorenson (2010).  



107 
Electric_Transport_Draft _10_5_17 

d) Fixed fees, such as higher annual registration fees or special charges; 

Some taxonomies call the use of public-private partnerships a different alternative to funding roads, but 

from the standpoint of drivers paying the costs of driving, these are simply financing mechanisms;  they 

must recoup their investments from road users or non-users somehow.    

The use of tolls is widespread and growing throughout the world, including semi-private tollroads.   

Meanwhile, tolls are increasingly becoming time-varying.   Congestion pricing has been used in Central 

London since 2003, raising GBP 1.2 billion of revenue, reducing traffic accidents 40% and increasing 

average speed from 8.6 to 20 mph.195   Singapore and Stockholm have also adopted center-city 

congestion fees, and as of this writing, New York Governor Andrew Cuomo is considering introducing 

congestion pricing in Manhattan.196    

Pure VMT charges have been proposed frequently, including by then-U.S-Secretary of Transportation 

Mary Peters in 2008, who described them as inevitable, and by the U.S. National Surface Transportation 

Infrastructure Financing Commission.197   In 2009 a broad coalition of government and NGO agencies 

known as Moving Cooler engaged Cambridge Systematics to examine, among other policies, a 

nationwide VMT fee starting at the equivalent of a $.60/gallon fuel tax and rising to $1.25 by 2050.   In 

that same year the Netherlands proposed such a fee, but later rejected it in favor of a gateway toll 

system.   A federally-sanctioned study of a national VMT fee was prepared by (Hanley & Kuhl, 2011); the 

U.S. Government Accountability Office (GAO) studied VMT fees in 2012; Oregon implemented a 

voluntary VMT fee to replace gas taxes in 2015; and California completed a road charge pilot in March 

2017 and is now compiling the results.198  Lawmakers in Massachusetts introduced a legislative proposal 

for a VMT fee of no less than 2.5 cents/mile in January, 2017.199 

The fourth approach, annual registration fees, is becoming fairly widespread in U.S. states; whether it is 

a stopgap measure or long-term approach remains to be seen.   According to the New York Times, ten 

                                                           
195 (Thorpe, 2017) 
196 (Russell-Carroll, 2014) re: Singapore and London. (Langer & Winston, 2008) propose a nationwide system of 

congestion fees that raises $120 billion a year, more than current total roadway spending in the U.S.   
197 National Surface Transportation Infrastructure Financing Commission (2009); (Grush, Hassan, & Khalsa, 2009) 

p.1.    
198   U.S. Government Accountability Office (2012); (Oregon Department of Transportation, 2017); (U.S. Library of 

Congress, 2014);  https://www.californiaroadchargepilot.com/about/pilot-status/  acc 8/17/17 
199 Senate Bill 1945, filed 1/19/17, Section 63E. 

https://www.californiaroadchargepilot.com/about/pilot-status/
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states have adopted lump-sum fees of up to $200/year to replace lost gas tax revenues, and four more 

are considering it.200   As this approach is neither mileage- nor efficiency- specific, it would not (at least 

in theory) alter either VMT or EI among EV owners.   Other approaches such as feebates have more 

complicated effects, and approaches such as development impact fees are not properly considered 

RUCs.201      

Back-of-the-Envelope Impact Calculation 

We do think that added roadway user fees (much less their specific level and form) are an assumption 

consciously considered in either the EV forecasts we use, our baseline assumption regarding VMT, or the 

three layers of adjustment we have made for EVs, autonomy, and shared/pooled modes.   It is therefore 

incumbent on us to try to determine the extent to which an increase in RUCs for EVs and AVs, which we 

agree is inevitable, would affect our estimates. 

From the standpoint of EV electricity use, the salient questions involve the extent to which added RUCs 

of whatever kind affect VMT and EI, including price-induced reductions in travel, shifts between modes 

and long-term design changes that reduce EI.   There are hundreds, if not thousands, of permutations as 

to how a revised system of road charges could affect each of these dimensions of travel, especially when 

federal approaches layer on separate state and city charging schemes.  For example, a schedule of VMT 

fees fixed for all LDVs and charged by the mile would reduce driving but incent no improvements in EI;  

tolls that single out SOVs would encourage pooling;  feebates would induce faster improvements in EI; 

congestion pricing would lower VMT at certain times and places;  and so on. 

Creating a sensitivity calculation for this factor is particularly difficult because we know almost nothing 

about either the magnitude of the outlays needed nor their design and incidence.   More completely, we 

do not know: 

(a) The rate at which spending will increase or decline for maintenance of the current roads; 

(b) The cost of local or intercity infrastructure specifically added to accommodate and realize the 

benefits of AVs, alongside added infrastructure to relieve congestion; 

                                                           
200 (Tabuchi, 2017) 
201 (Forkenbrock & Hanley, 2006) 
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(c) The level of spending on mass transit and seamless mobility systems and the portion of this that 

will be collected from some form of road user charges; 

(d) The portion of the charges in (a)-(c) that will be paid for via collection approaches directly tied to 

vehicles or travel, versus paid for from private funds, general tax revenues, and other 

mechanisms not perceived as a cost of travel.  

(e) Of the portion collected directly from travellers in one form or another, the time-shifting and 

shaping of collections by the use of financing mechanisms;   

(f) How all the time series of charges in (e) will be apportioned between LDVs and freight vehicles; 

(g) How the charges in (e) will be apportioned between different types of LDV vehicles;  and 

(h) The degree to which the charges will be perceived, and paid for, per mile of operation versus 

paid for in ways not perceived as short- or long-term prices for the use of roads, such as 

registration fees. 

Recognizing this massive uncertainty, do not think it is practical to attempt a detailed analysis of the 

wide range of possible RUC outcomes and the range of their impacts on VMT and EI.   However, we 

believe we can get a rough, order-of-magnitude range by examining two simple pricing scenarios:   a flat 

2.2 2017 cents per mile charge and a larger 2.4 cents per mile ($.60/gal @ 25 mpg) escalating to double 

its level in real terms by 2050.   The first level of charges is similar to the GAO’s estimate of the level 

needed to maintain current roads, indexed for inflation.  It also happens to equal Jenn, Azevedo, and 

Fischbeck’s (Jenn, Lima Azevedo, & Fischbeck, 2015) sophisticated calculated lifetime-equivalent 

payment for a current EV and is below the recent Massachusetts proposal.   The second level is similar 

to the 2009 Moving Cooler proposal, translated to a pure VMT fee.    

Based on a review of the literature, we employ a long-run RUC elasticity of -0.2 as our base case and 

later explore sensitivities with a level of -0.35. Using current average electricity rates (which we assume 

are constant in real terms through 2050) and 2050 estimated EIs, the 2050 reductions in VMT are about 

24% and 42% for elasticities of -0.2 and -0.35, respectively, for the $0.048/mile RUC. Obviously those are 

extremely crude order-of-magnitude estimates for a single terminal year, but we believe that they are 

an improvement over an assumption of few user changes occurring by 2050. 
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In both cases, this simple VMT fee is intended to serve as a proxy for an inevitable mix of RUC fees, 

including urban area-specific congestion pricing, the extensive use of time-varying toll segments, VMT 

fees, pay-as-you-drive insurance, and fees indexed to vehicle efficiency or occupancy, such as feebates.  

The general effect of all these measures will be to reduce VMT and increase EI, at least in the long run, 

as would occur with our simple VMT fee. We find a total cost of $0.052 per mile in 2017, and costs of 

$0.045 and $0.040 in the high and low cases, depending on assumed EI improvements out to 2050.202  

VMT fee elasticities are slightly less straightforward, but still relatively easy to implement. Several 

researchers have calculated both short- and long-run elasticities for various aspects of travel cost. When 

instituting a VMT fee, fuel elasticities and toll elasticities could be comparably relevant, as both are 

related to distance traveled. VMT elasticity to fuel price is, however, more directly related to total miles 

traveled over a period of time as a VMT tax is less spatially restricted than a toll system. A toll is 

necessarily tied to a specific piece of infrastructure and incents users to either choose a different form of 

transportation (public transport or pooling) or use an alternate route. Fuel prices or VMT fees, on the 

other hand, are independent of the path taken and their effect can therefore be directly tied to total 

VMT. 

According to Deakin et al. (Deakin, Harvey, Pozdena, & Yarema, 1996) short-run travel is relatively 

inelastic to price, with elasticities in the -.1 to -.3 range for driving costs. Deakin notes that long-run 

elasticities have a wider range of outcomes, with anywhere from -.05 to -.8 depending on the specific 

circumstance. In our (admittedly limited) review of elasticity studies, results seem to converge around 

the .2-.3 range. In a 39-year cross-sectional times series of US states, Small and Van Dender (Small & Van 

Dender, 2007) find that the long-run VMT elasticity to fuel price is -.21. In a review of long run time 

series for fuel price elasticities, Lee (Lee, 2000) finds long-run travel elasticities are around -.33. In their 

study using a sample from the National Highway Travel Survey, (Binny, Kockelman, & Musti, 2011) find a 

mean elasticity of -.25 for fuel costs. Consistent with this range, in conducting a sensitivity analysis of 

costs and benefits to road pricing, Langer and Winston  (Langer & Winston, 2008) use VMT elasticities of 

-.1, -.3, and -.5 in their analysis.  

                                                           
202  The details of this calculation can be found in Workpaper E. 
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We agree that a sensitivity approach to potential VMT effects of a VMT fee is in order.  Based on the 

literature, we therefore use a high case and a low case for elasticity; the low case being -.2 and the high 

case being -.35. 

Snapshot results of the effect on VMT in the year  2050 can be expressed in a 4x4 matrix, below: 

 

Table VI-1: VMT reductions in 2050 based on Electric Intensity, Road Price, and Elasticity 

 

The result is a 10% to 42% reduction in VMT in the year 2050 when the full effects of our four VMT fee 

scenarios are applied. However, we use only the -.2 elasticity for our two base scenarios. 

Impacts on EI 

Any form of road pricing that affected LDVs in proportion to their efficiency would induce greater EI in 

the long run.    As we have already created an accelerated-EI scenario, we believe we have already 

illustrated one possible level of the effect of RUCs on EI.   The effect of an RUC scheme that provided an 

EI incentive would, in our view, accelerate the likelihood, and perhaps the timing, of our high-EI 

scenario.   

 

C. ELECTRONIC SUBSTITUTES FOR TRAVEL 
 

As electronic communication becomes better and cheaper, perhaps soon incorporating virtual reality 

(VR), it is possible that travel to physical workplaces will diminish in favor of tele-work or 

telecommuting.    Similarly, the continuing rapid expansion of e-commerce, now reaching into groceries 

and other goods not thought to be suitable for e-commerce, raises the possibility that people will make 

fewer physical shopping trips, lowering total LDV travel while concurrently increasing freight deliveries.    

-.35 Elasticity -.2 Elasticity

High Base  EI

.048$ RP -42% -24%

Policy Case EI

.022$ RP -17% -10%
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Telecommuting using past and current communication technologies, some of which are far inferior to 

methods available today, has been studied extensively, with mixed results.   In its last national long-term 

study, the U.S. Department of Transportation concluded that: 

Looking ahead to the next 30 years, the most influential factors affecting commuter travel are 
likely to be two trends highlighted earlier: the size of the workforce and the growth in flexible 
schedules and teleworking. The portion of Americans in the workforce is expected to decline as 
the population ages, moderating growth in the number of commuters. The continued growth in 
teleworking and the use of flexible schedules will also serve to moderate demand for 
commuting, particularly at peak travel times. These changes may combine to slow growth in 
congestion in metropolitan areas.203 

Three of the study’s authors, Vendez, Monje and White204 further note that telecommuting is growing 

faster than any other actual method of physical travel to work.    

With the ongoing explosion in mobile connectivity, this trend seems to be evolving.   The latest Gallup 

Survey of the American Workplace has replaced the term telecommuter with “remote worker,” 

reminding us that workers may be working from anywhere, not just home.   Gallup’s numbers bear this 

out: the number of companies offering “flexibility” as to work location has tripled since 1996, and the 

number of workers who take advantage of this is now an astonishing 43%, up from 39% in 2012.   The 

number of workers working entirely remotely increased 5% since 2012 to 20%.205   Circella, et al206 also 

reports robust growth in telecommuting, especially among millennials, although the percentage of 

families who report that they telecommute regularly is only about 4%.         

This observed increase in remote work is among the factors baked-in to the very low growth in FHWA 

forecasts of VMT growth and the even lower (i.e., flat to declining) forecasts of VMT growth by 

forecasters like (Litman, 2016). However, and despite the ongoing improvements in connectivity and 

communications quality, we find it difficult to add an additional decrement to VMT from telecommuting. 

This is because there is surprisingly strong agreement in the literature we can find that telecommuting 

has a complex of effects that, in the aggregate, do not seem to change long-term total travel very much. 

 

                                                           
203 (U.S. Department of Transportation) 
204 (Vendez, Monje and White, 2017) p.6 
205 (Gallup Organization, 2016) p. 149ff 
206 (Circella, Tiedeman, Handy, Alemi, & Mokhtarian, 2016) p.31 
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In some studies of telecommuting, the total annual VMT of telecommuters declined, but in others the 

VMT saved from a daily commute were replaced by shopping, errands, and family-oriented trips.   For 

example, Lyons (2002) reports on findings by Hjornthol (2002) that “the net effect [of telecommuting] 

gives no reduction in travel activity.   Stationary communication seems to be a supplement to activities 

based on mobile technology, but it gives people more spatial and temporal options.”    

Circella, et al’s (2016) very recent summary of the topic provides a thoughtful summary: 

For many years, information communication technology (ICT) has been seen as a trip 
replacement strategy and thus a solution for many societal problems, including urban 
congestion, dependence on non-renewable energy sources, air pollution, and 
greenhouse gas emissions, as well as rural underdevelopment, reduced economic 
opportunity for the mobility-limited, and the struggle to balance job and family 
responsibilities. Certainly, technological solutions such as telecommuting can function as 
a substitute for commute trips (Zhu 2012) and can replace some [sic] travel, but at the 
same time  they can generate additional travel as well. Mokhtarian (2009) discusses a 
number of reasons for which  ICTs can respectively have no relevant effect on travel 
(neutrality), generate new travel (complementarity), alter travel that would have 
occurred anyway (modification), or reduce travel (substitution), (Salomon and 
Mokhtarian 2008). 
 

Perhaps the best encapsulation of the topic comes from a 1997 quote by Mokhtarian, who says: 

“…the idea that telecommunications technology could substitute for travel dawned on people soon after 

the invention of the telephone…Historically, transportation and communications have been 

complements to each other, both increasing concurrently, rather than substitutes for each other.  And 

we have no reason to expect that relationship to change.”207 

We reach a similar conclusion regarding electronic retailing or e-commerce (we blend the two concepts 

here, focusing on their collective impact on LDV travel).   Intuitively, one would think that increased 

online commerce would reduce the 20% of all trips reportedly devoted to retailing, with a corresponding 

increase in the volume of retail delivery freight.   While the latter does appear to be occurring, the 

Department of Transportation208 reports that it has not yet detected any reduction in shopping trips.    A 

host of studies by travel researchers conclude that electronic shopping complements rather than 

                                                           
207 (Mokhtarian, 1997) as quoted in (Lyons, 2002) p. 342. 
208 (U.S. Department of Transportation Federal Highway Administration, 2015), p.19 
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replaces physical shopping, with offsetting effects that include the fact that e-commerce enourages 

large, distant distribution and retail centers and thus longer shopping trips when they occur.209 

D. THE BUILT ENVIRONMENT AND VMT 
 

Here we explore the extent to which additional alterations in the built environment could affect 

trends of vehicle miles traveled, beyond the assumptions and calculations that have been made 

so far in this paper. The built environment can affect people’s mode choice for daily 

transportation needs, as well as housing choice and preference and travel distance to work, 

school, and basic amenities. Strategic choices regarding the built environment, therefore, could 

impact the number of vehicles, as well as distance traveled per vehicle. 

There are two bodies of literature relevant to potential VMT impacts of the built environment. 

The first is literature surrounding the effects of built environment on congestion; the second 

pertains to literature examining the effects of urban characteristics. These two complimentary 

but distinct sets of work highlight a broader divergence in long-term land-use opinions/trends. 

Highway Expansion 

Broadly, congestion management for roadways has most frequently taken the form of roadway 

expansion to ease traffic flows. Unfortunately, according to Outwater et al. (2014) “experience 

shows that supply-side solutions to traffic congestion provide mobility benefits that are mostly 

short-lived”. As congestion eases, reduced congestion lowers the cost of driving and increases 

the quantity of vehicle travel (CARB 2014a). This effect results in an initial mean short-term 

elasticity of road investments of between .3 and .6. 210 

Further, with later “induced growth” – structural shifts in land use development – vehicle travel 

has been shown to increase or even return to previous levels of congestion, locking in low-density 

development for decades to come. To that effect, the Victoria Policy Institute found that even in 

                                                           
209 See, for example, (Visser & Lanzendorf, 2004)), (Weltevreden J. , 2006), (Fichter, 2003), (Mokhtarian P. L., 
2004), (Anderson, Chatterjee, & Lakshmanan, 2003)), and (Rotem-Mindali & Salomon, 2007).  
210 (Handy & Boarnet, 2014); Cervero 2002b in (Outwater, et al., 2014) 
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relatively slow-growth regions with modest congestion problems, highway capacity expansion 

increases suburban development by 15-25% (Litman, 2017). Other researchers have found long-

run elasticities of .6-1 for highway expansion and VMT, indicating that highway expansion could 

have no discernable impact on long-term congestion. 

A marked increase in roadway expansion could therefore increase total vehicle miles traveled. 

However, the baseline assumptions of our model are built from FHWA assumptions for traffic 

growth over the next 35 years, and these assumptions are derived from a baseline that includes 

increased highway growth. We therefore find no need to further modify our model to account 

for highway expansion. 

Urban Design 

Urban design has for years been proposed as a solution to urban sprawl (Kenworthy & Laube, 

1996) a phenomenon that many in the field of urban planning, as well as in nonprofit and 

government circles, view as negative.211   Documented negative effects of sprawl (or “costs”) 

include traffic congestion, increased infrastructure expense, inconvenient and uncomfortable 

travel conditions, pollution emissions, excessive energy consumption, inadequate mobility for 

non-drivers, and reduce physical fitness and health outcomes.212 The policy objective of land-

use-based mobility has been to reduce these additional costs, many of which arise directly from 

traffic congestion or vehicle miles traveled in traditional ICE vehicles. As a result, the potential to 

moderate travel demand by changing the built environment is one of the most heavily-

researched subject in urban planning 213 , often motivated by the desire to reduce the 

environmental and health impacts of travel.214  

The wide range of potential impacts on VMT is further complicated by the many variables that 

constitute the built environment. Cervero and Kockelman (1997) initially identified ‘3 Ds’ – 

                                                           
211 (Bolick, 2000); (Cervero & Murakami, 2010) 
212 (Litman, 2014); (Salon, Boarnet, Handy, Spears, & Tal, 2012) 
213 (Ewing, et al., 2015) 
214 (Boarnet & Crane, 2001) 



116 
Electric_Transport_Draft _10_5_17 

density, diversity, and design – that influence travel behavior, in an attempt to categorize 

explanations as to why the built environment should affect travel demand. At its base, the 

“density” theory of why built environment should affect travel demand is an intuitive one; a given 

trip becomes shorter as a destination becomes nearer.215 More compact development also has a 

number of related attributes, such as less parking, better transit, more diverse land uses, and 

bicycle- and pedestrian-friendly urban design, many of which could discourage vehicle use, and 

which are treated separately as “diversity” and “design”.  

Cervero and Kockelman later expanded their variables to include destination accessibility and 

distance to transit, which are two diaggregated components of the initial “density” variable.216 

These variables remain the cornerstone of research into the effect of built environment on travel 

demand and vehicle miles traveled, and a subset of the variables (or some variation on them) has 

been used to quantify the relationships between the build environment and travel behavior, with 

researchers often converting statistical models based on these variables into elasticities (Stevens 

2017).  

1. Urban VMT Effects in Academic Literature 

While causal explanations for why the built environment should affect travel demand are logically 

sound, what has been less clear in the literature is the extent to which a difference in built 

environment affects overall vehicle miles traveled. 

According to Ewing et al., “the vast majority” of [disaggregated travel studies] show significant 

relationships between development patterns and travel behavior (Ewing, Bartholomew, 

Winkelman, Walters, & Anderson, 2008). Cervero and Murakami (2009) find moderately strong 

negative elasticity between population density and VMT per capita in an analysis of 370 urban 

areas in the US, with the elasticity of population density and VMT/Cap of -0.381 (Cervero & 

Murakami, 2010). They note that the largest VMT reductions would come from creating compact 

                                                           
215 (Boarnet & Crane, 2001) 
216 (Ewing, Bartholomew, Winkelman, Walters, & Anderson, 2008) 
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communities which have below-average roadway provisions, more pedestrian/cycling 

infrastructure, and in-neighborhood retail activities which invite non-motorized travel.   

In a meta-analysis of the build environment travel literature conducted by Ewing and Cevero 

(Ewing & Cervero, 2010), the paper found weighted average elasticities of between -0.00 and -

0.22, with destination accessibility most strongly related to VMT, concluding that “almost any 

development in a central location is likely to generate less automobile travel than the best 

designed, compact, mixed-use development in a remote location”. A second meta-analysis of 

compact development studies was conducted by (Stevens M. R., 2017). While Stevens finds 

elasticities of up to -0.63 (between distance to downtown and VMT, controlling for self-selection 

bias), the conclusion he makes is the opposite of that of Ewing & Cervero, concluding that “if 

anything, planners should probably assume for now that compact development will have a small 

influence on driving, until and unless they are given a compelling reason to believe otherwise.” 

Stevens argues that while “it is possible that the benefits of building compact communities do 

exceed costs when all benefits and costs are accounted for … the burden of proof is arguably 

upon planning researchers … to demonstrate that the benefit of planning interventions outweigh 

the costs.” Regardless of the interpretation and cost/benefit ratios of compact design, in general 

the academic literature does suggest a potentially significant reduction in VMT related to various 

changes in built environment. Ewing notes that “based on the planning literature…compact 

development has the potential to reduce VMT per capita by anywhere from 20 to 40% relative 

to sprawl”, which is consistent with our review.  

The correlation between urban form and reduced VMT may be confounded by self-selection bias 

as well, with people who are more willing to use public transportation more likely to live in urban 

environments.217   If true, this phenomenon would result in an overstatement of the impact of 

built environment on personal vehicle use. This appears not to be the case, however, as the Ewing 

& Cervero (2010) meta-analysis found that controlling for self-selection bias appears to increase 

the absolute magnitude of elasticities, indicating that any effect from TOD on VMT could be 

                                                           
217 (Circella, Tiedeman, Handy, Alemi, & Mokhtarian, 2016) 
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greater than indicated. Even so, considerations must be made for the existing conditions of land 

use and transportation infrastructure in accounting for compact development in transportation 

modeling. Ewing et al. (2008) notes that “the cumulative effect of compact development also 

depends on how much new development or redevelopment occurs relative to a region’s 

redevelopment pattern.” Taking into account predictions of regional growth rates and housing 

stock replacements, Ewing et al. predict that compact development has the potential to reduce 

total US VMT by 10-14%. 

2. Land Use VMT Effects in Policy Literature  

We are not ready to accept this conclusion as a final estimate of the potential influence of urban 

design. The reasons for this are several-fold -- not least of which being that planning agencies 

and departments across the US are vastly heterogeneous. While some cities and government 

agencies have actively fought against urban sprawl, implementing policies that include road and 

parking pricing, mixed use zoning, investments in alternative planning modes, household travel 

planning programs, and overall aggressively seeking to increase urban density, a majority of other 

urban areas are becoming less dense (Kolko, 2017). 

In addition to this heterogeneity, so-called “Smart Growth Principles” (many of which correlate 

to the 5Ds described earlier) present several barriers that make them challenging to implement, 

and “trying to implement those policies requires adopting a whole set of additional policies that 

are much less appealing to most Americans” (Downs, 2007). In light of these barriers, we do not 

think it is most likely to assume that the entire U.S. achieves the full potential of 10-14% reduction 

in VMT possible through aggressive planning policies. 

Our review of policy-oriented literature reflects this. According to a 2012 report by Cambridge 

Systematics, “an integrated set of land use strategies achieves cumulative GHG reductions 

from .3 to 2.1 percent improvement over the baseline” (Cambridge Systematics, 2009) implying 

only slightly higher baseline VMT improvements.218 In a model simulation of eight pilot test 

                                                           
218 As noted in Ewing et al. 2008, a 30% reduction in VMT would be expected to produce a 28% reduction in CO2, 

factoring in penalties from cold starts and lower vehicle operating speeds. 
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scenarios, (Outwater, et al., 2014) found that in the application of eight different scenarios (the 

most dramatic of which include a 30% shift in growth from suburban areas to denser, urban core 

areas and adding integrated transportation services), the maximum reduction in VMT was -9% 

amongst the five locations simulated, with most effects being much lower (in the 1-2% range).  

In sum, our review of the literature indicates that the upper bound of VMT effects from strict 

urban planning mandates across the US would be 9%, with a more likely scenario in the 0.3-2.1% 

range. Accounting for ride sharing and seamless mobility (as is done in Chapter V above) 

incorporates some, but not all, of the potential VMT impact of land-use based mobility initiatives 

(Zhang, 2004). That being said, we recognize that transit oriented development and Smart 

Growth policies are, for the most part, less dramatic scenarios than that forced in the “ride 

sharing/seamless mobility”. We therefore assume that the VMT result of a concerted nation-

wide effort towards compact urban design policies would save an additional 2% of VMT by 2050 

in addition to our seamless mobility scenario. We add these savings in our “policy case” scenario 

presented in the following chapter. 

E. CONCLUSION 
 

The three “wild cards” we have surveyed have generally done a poor job of living up to their label.   Of 

the three, we have concluded that electronic travel substitutes are unlikely to result in significant VMT 

differences not already captured in the range of outcomes in the three layers of modeling above.   As 

this factor is  more likely to reduce travel than increase it relative to our forecasts, our decision to ignore 

it presents an unknown upward bias in our power demand numbers.  Our review also indicates that 

urban design will, at most, add 2% on top of our existing scenarios.  As urban redesign is largely policy-

driven, not an exogenous factor, our non-policy scenarios amount to a prediction that the most likely 

outcomes exclude a significant policy shift that could, if adopted, reduce travel.   

Charges for the use of infrastructure in a manner that affects driving is also a true wild card.   It is far 

beyond our ability to predict how the U.S. federal government and the states will cope with the 

deterioration of existing roads and the need for infrastructure to service AVs.   Even today, well before 

the advent of AV-specific infrastructure, these questions push the U.S. Congress and many states to the 
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political breaking point.   About all that can be said of this wild card is that it, too, presents almost 

entirely downside risk to transport power demand.   Today, no LDV pays anywhere near its full share of 

the cost of roadway infrastructure; total infrastructure funding is far short of funding needs; and as yet 

electric vehicles pay even less than gasoline cars.   Regardless of whether infrastructure becomes 

increasingly privatized or built and maintained via public-private partnerships, it is hard to see anything 

but an increase in the marginal price signal experienced by EVs and later EAVs.    We thus construct two 

very simple scenarios in which U.S. policy shifts to implement some form of price signal above 

experienced by all LDVs and calculate that these would have the effect of reducing VMT by 8.5% to 

32.3% 

VII. Results and Observations 
 

A. Exploring the Range of Outcomes Via Scenarios 

The authors of the hundreds of pieces of research we have relied upon have each made dozens of 

assumptions underlying their work.219    As we have compiled this research we have made dozens more.   

Were we to catalog these comprehensively, we would end up with a huge list and an infeasibly large 

number of possible scenarios and sensitivity runs that could be examined. 

However, over the course of our research a handful of assumptions stand out as particularly important, 

either because they describe an important fork in the development path for U.S. passenger transport or 

because they have relatively strong and direct effects of LDV power use.   Remembering that we have 

excluded the possibility of hydrogen fuel,220  Table VI-1 shows the remaining variables we place in this 

category.    

Even the greatly foreshortened list in Table VII-1 contains a large set of variables.   Based solely on our 

judgement, we create two “bookend” scenarios that we think are near the edges of the probability 

space in which the true future outcome resides.    We perform a number of sensitivity studies around 

the two main scenarios, described in more detail later in this chapter.   Table VII-2 shows these scenarios 

                                                           
219 As noted in Section I, we have made no attempt to ensure that underlying assumptions in these diverse works 
are consistent with each other or with our own parallel assumptions.    
220 More accurately, assumed that either hydrogen fuel does not affect EV sales as we have projected them, and/or 
that the production of hydrogen is done with on-grid electricity in the U.S. and used by FCVs with approximately 
the same total power requirements per mile as electricity is delivered to and used by EVs.  
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in abbreviated form; Appendix B contains a detailed description of all scenarios and sensitivity 

calculations.  
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Table VII-1: Variable Summary 

Variable Name Description High Low Notes 
EV Sales The rate of EV sales, or more completely, 

the growth of LDV EVs in the fleet; 
High Low *See Ch. III for a 

description of our EV 
sales methodology 

Cheap EV The extent of the mileage effect from 
lower EV operating costs; 

0 -10%  

AV Entry Year The year in which commercial fully-
autonomous AV sales begin; 

2025 2030  

AV VMT Effects The overall (net) long-term effect of AVs 
on VMT (due to a number of effects, each 
with their own ranges and uncertainties), 
and how in the aggregate this phases; 
this is aggregated with “Cheap EV” for a 
total high factor of -50% 

-23% -40%  

AV Sales The rate of AV sales, or more completely, 
the growth of LDV AVs in the fleet; 

Base *See Ch. IV  

AV EI The overall (net) long-term effect of AVs 
on realized kWh used per mile from 
various effects, and how this phases in; 

-21.5% -13.5% * Sum of effects of 
traffic smoothing, 
intersection 
management, faster 
travel, and platooning 

Energy Intensity The level at which EVs (whether 
autonomous or not) increase their energy 
efficiency; 

High Low  

Rightsizing/weight 
reduction 

Whether and when AVs allow a further 
substantial gain in EI due to 
lightweighting and/or rightsizing, 
implemented as a per-year increase 
starting in 2040;  

-1% -1.5%  

Pooling/Shared 
VMT Reduction 

Whether Pooling, Sharing, or Seamless 
Mobility Systems will reduce future VMT 
as well as shift it to higher-density 
modes; 

0 -2%  

Urban Design Whether redesign of our urban areas 
reduces VMT;  

0 -2%  

Road Pricing The form in which road pricing is adopted 
over the next decade or two; 

$.022 $.024  

Road Pricing 
Addition Through 
2050 

The increase in real road pricing cost by 
the year 2050 

$0 $.024  

Elasticity The sensitivity of driving in EVs and 
electric AVs to road prices. 

-.2 -.35  
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Table VII-2: Scenario Descriptions 
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We label the first scenario our High Base Case because it contains what we subjectively see as an overall 

combination of future events that represent the highest electricity use scenario we think could 

realistically occur: high EV sales; early AV entry; high ultimate increases in VMT from EV price reductions 

and AV time reductions; no reduction in VMT from pooling; base case improvements in energy intensity 

for EIs generally and small (1%/year) additional lightweighting efficiencies for AVs; road charges equal to 

current average total levels, escalating with inflation (applying uniformly to all EVs and AVs); and 

relatively low travel sensitivity to road pricing.           

From the standpoint of environmental policies and technical efficiency improvements, it is fair to regard 

this as a pessimistic – and, in total, not entirely likely -- case.  Americans react to cheaper operating costs 

for EVs by driving them 10% more, and then drive another 40% more when full AVs become available – a 

combination of time savings for commuters, increased recreational travel, and increased access to travel 

by underserved populations.    For increases anything like this huge increase in driving to occur over the 

next 32 years, urban sprawl must continue unabated, immigration must remain strong, millennials must 

go back to the suburbs as their families grow, and AVs must demonstrate that they can deliver much 

more throughput on congested roadways without forcing higher road user costs on AV passengers.    At 

the same time, lightweighting of AVs occurs at a slower rate and we do not boost the efficiency 

advantages of AVs even though they are driven much more.    

We do not think it likely that all of these factors will occur together, making this something of an upper 

bound.   With the possible exception of extreme VMT increases from autonomy, we would be surprised 

if any of these factors had larger positive effects on power use, while we have made consistently 

conservative assumptions regarding the factors that reduce power demand.   In addition, we assume all 

AVs are electric, an assumption biasing our results upwards.  

At the other end of the spectrum we design a strong environmental policy scenario, or Policy Case for 

brevity.   This case assume that federal, state, and/or local policies cause nearly every variable that leads 

to lower travel and/or higher efficiency to change to what we believe is possible.221    This includes 

                                                           
221 Arguably, the one environmental policy lever we do not employ is mandatory pooling, ridesplitting, or 
carsharing.  While we do assume a huge increase in seamless mobility systems, which pool passengers in LDVs for 
the “last mile,” we do not include policies that force higher average occupancy per se or higher carsharing.   Both 
of these may come about from higher road prices, but not (in our scenario) from policies directed specifically at 
these variables.   
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unspecified travel demand management policies that reduce the increase in VMT from lower EV costs to 

zero and the increased VMT from AVs to 23%, after which we further reduce driving from the response 

to road pricing for all vehicles that begins at 2.4c/mile in 2025 and increases to double that level in real 

terms by 2050.222 In addition, we increase mass transit by a factor of four, assume high efficiency gains 

for EVs, assume AV lightweighting begins in 2040 at 1.5%/year, and assume urban redesign further 

reduces travel 2% by 2050.  Under current political conditions it is quite unlikely that all of this will 

occur, but technology breakthroughs or a stronger public support for climate policies as climate change 

worsens in the coming decades makes this a worthwhile bookend to our forecasts. 

B. Main Scenario Results  

Table VII-3 summarizes LDV transport power demand from our calculations for the milestone years 

between now and 2050. As the table shows, 2050 LDV power use is approximately 1140 TWh and 570 

TWh, in the High Base and Policy Cases, respectively. As these cases are intended to approximate upper 

and lower likely boundaries, the results are surprisingly close together. Whereas the earlier literature 

surveys described in Section II found upper and lower bounds differing by as much as a factor of ten, our 

calculations suggest that the difference between our likely boundary cases is only about 600 TWh, 15 

percent of today’s power use.     

  

                                                           
222 As noted earlier, this is approximately the policy scenario from Moving Cooler. 



126 
Electric_Transport_Draft _10_5_17 

Table VII-3: Electricity Consumption Summary 

Electricity Consumption Summary 
                

                

Case Year 

Total 
Number 
of EV in 
Service 

Portion 
Stock 

Electric 

Total 
Number 
of AV in 
Service 

Fleet 
Averag

e 
eVMT / 
Vehicle 

Fleet 
Averag

e 
Efficien

cy 
Total 
TWh 

    
  (%)   (per yr) 

(kWh/
mile) 

(TWh)
    

            

2015 406,076 0.2% 0 7,179 0.32 1 

2025 
16,890,7

19 6.5% 0 9,087 0.34 53 

2030 
52,379,5

66 19.7% 
3,182,83

3 10,290 0.35 187 

2040 
166,979,

970 59.6% 
65,615,6

83 13,420 0.33 742 

2050 
252,371,

537 85.6% 
180,263,

265 16,927 0.27 1140 

                

2015 406,076 0.2% 0 7,179 0.32 1 

2025 
17,086,9

96 6.6% 0 8,508 0.31 45 

2030 
52,378,5

48 19.7% 196,278 8,826 0.30 140 

2040 
166,928,

240 59.6% 
17,786,5

50 8,865 0.29 435 

2050 
251,932,

162 85.5% 
128,559,

496 10,038 0.23 570 

                

 

To put this range of power demand in perspective, the U.S. generated 4,085 TWh of electrical energy in 

2016.223   Absent increases from electric transport and the conversion of other end uses such as heat 

from carbon fuels to electricity, the approximate level of growth in power sales in the U.S. is roughly 

zero (0.8%/year in EIA’s latest forecast, including EVs).    Even in our high use case, adding 1000 TWh to 

U.S. supplies in the next 32 years would add about 0.6% to annual electricity sales growth.   Since we 

                                                           
223 U.S. DOE (2017) p.131. 

Base 

High 

Policy 

Case 

Base 

High 

Policy 

Case 
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have not yet examined the electrification of freight transport or other sectors, forecasted power sales 

for a widely electrified 2050 economy will boost annual growth above this figure.   However, carbon 

pricing and other climate and energy efficiency policies could easily reduce the baseline growth of 

electric power.    

All in all, electric and autonomous passenger vehicles will represent a large and very important new 

demand for power, but not one that will be difficult to supply from carbon-free sources.   In 2015 the 

U.S. electric power industry added 18,754 MW of all types of generation, a level quite representative of 

the last 20 years.   At a 50% average load factor, this generation would supply 82 TWh, about of tenth of 

what LDVs will need by 2050, but added in just one year. 224  Wind and solar 2015 additions alone will 

supply about 36 TWh of power; if this level remained unchanged for the next 32 years these sources 

would provide 1150 TWh of additional power in 2050, coincidentally roughly equal to our High Base 

case.225     

Put in another perspective, the U.S. DOE reports that it expects wind and solar (“variable renewable 

electricity”) will double their total current output of about 300 TWh between now and 2030 under a “no 

clean power plan” scenario, and with no other changes in federal or state carbon or renewables policy.   

Most of this doubling will occur by 2024, when current tax credits expire, and under traditionally 

conservative EIA cost estimates for wind and solar.226  One additional doubling in the 20 years between 

2030 and 2050 would equal nearly all LDV power use, and it is highly likely that the rate of wind and 

solar growth will far exceed one doubling in 20 years.         

We do not mean to imply that the growth of electric transport poses no issues whatsoever for the U.S. 

power sector.   As noted in Chapter I, the size of EV loads poses enormously important challenges for the 

redesign and management of a larger, two-way distribution system with intelligent charging, reformed 

rate structures, and new distribution regulation and business models.   As new supplies are created, the 

overall power grid must make a transition to carbon-free operation in what Smil (2016) and others note 

is shorter period than all other similar energy transitions have occurred.    And all this must occur in the 

                                                           
224 https://www.eia.gov/electricity/annual/html/epa_04_06.html  acc. 8/30/17 
225 https://www.eia.gov/electricity/annual/html/epa_04_06.html   acc 8/30/17.    In this calculation wind capacity 
additions of 8,214 MW are assumed to operate at 40% capacity factors and all solar power (3320 MW) has an 
assumed CF of 25%. 
226 U.S. DOE (2017) p. 57 

https://www.eia.gov/electricity/annual/html/epa_04_06.html
https://www.eia.gov/electricity/annual/html/epa_04_06.html
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context of higher demands for power grid resilience against ever-strengthening climate extremes, 

cybersecurity threats, and changes to the industry structure and business models.    By any measure, this 

is a turbulent landscape.    Our only point is that, as the industry copes with its many challenges, 

supplying LDVs in the aggregate with carbon-free power looks manageable, and indeed provides the 

industry with significant added revenues that will undoubtedly prove useful.      

Although all our calculations treat the U.S. as a single aggregate, our calculations and the literature both 

support the view that there will be a very high potential for variation in transport power demand growth 

by region and urban vs. rural areas.  Rural areas that electrify more slowly due to the longer average 

distances driven and less density in charging infrastructure may see gradual, small EV demand growth, 

while urban areas that make a concerted effort to shift all transit and autos to electric rapidly will 

exceed national average demand growth significantly.    Urban areas that make a concerted effort to 

reduce all non-pooled auto travel through redesign and seamless multimodal systems, but meanwhile 

electrify as rapidly as possible,  will be somewhere in the middle.  

C. Factor Analysis and Sensitivity Calculations 

In Figures VII-4 and VII-5 we deconstruct 2050 LDV electricity use in our High Base and Policy Cases, 

respectively.    Starting from the left, the first bar in Figure VII-4 is a contrived starting point that shows 

the energy that would be used by our projected 2050 EV fleet if those vehicles were unchanged in their 

annual average travel from today and they used today’s average electricity per mile.   For reference, 

these figures are 252 MM EVs  (85% of the total LDV fleet) and 180 MM AVs (61% of fleet); 11,400 miles 

driven per year; and a weighted average of efficiency of .41kWh/mile.   The second bar on the chart, EV 

VMT, shows the added power from the presumed increase in travel induced by lower EV operating 

costs.   Of course, this increased travel applies only to each EV as it enters the fleet.   Similarly, the third 

bar shows the increased energy from the substantial added AV travel in this scenario, applied to each AV 

as it enters the fleet.    
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Figure VII-4: High Base Case Waterfall 
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Figure VII-5: Policy Scenario Waterfall 

 

These are the main factors driving electricity use up; the remaining factors have the opposing effect.  

The fourth bar, EV EI, shows the reduction in power use attributable to the low case improvements in EI 

efficiency through 2050 forecasted by the National Academy of Engineering.   The fifth bar, AV EI, shows 

our highly conservative estimates of efficiency improvements specifically enabled by AVs, such as 

platooning.   The final bar shows the very modest effects of charging all vehicles a current 2.2 cents per 

mile for road use, indexed to inflation at an assumed long-run VMT price elasticity of -0.2.   The chart 

shows that even the modest low-end efficiency gains projected for EVs and AVs wipe out the rather 

significant increases in per-vehicle VMT by 2050, whereas road pricing has a relatively small effect at this 

case’s assumed level and elasticity. 

The decomposition of the Policy Scenario in Figure VII-5 suggests an even greater importance for 

potential efficiency improvements.   The leftmost base bar on this figure is conceptually the same as the 

base bar in Figure VII-4, that is, the projected 2050 EV and AV fleet in 2050 operating at today’s mileage 

and efficiency levels (the size of the two base bars differ by a few TWh due to some small technical 

features of the scenarios).227  In this scenario there is no increase in VMT due to EVs per se, so only one 

factor, increased VMT from AV entry (second bar on the chart), increases power use above the base bar 

level.    Having started commercial sales five years later, the 2050 AV fleet is only 128 MM vehicles (50% 

                                                           
227 The difference is that in the High Base case L5 AVs enter commercial sales in 2025, versus 2030 in the Policy 
case. 
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below the High Case AV level), and these vehicles are driven only 23% more (rather than 40%), so it is no 

surprise that the incremental power demand from this factor is 164 TWh, versus over 400 TWh in the 

High Base Case. 

Conversely, the factors that reduce power use are larger in this scenario.   Higher EV EI reduces demand 

by 370 TWh, enough to offset not only this scenario’s increases from AV travel, but almost enough to 

offset the much higher AV VMT increases in the High case.   Paradoxically, AV EI savings are lower in this 

case than in the High Case, partly because we change the per-vehicle AV EI very little between these two 

scenarios and partly because the lower penetration of AVs in this scenarios allows for lower AV-induced 

efficiencies.   Road pricing that increases slowly in real terms has a larger effect than in the High Case; at 

the same assumed elasticity of -0.2 the effect is just over 20% of ultimate total demand.      

Table VII-6  shows 2050 total LDV power use in a series of sensitivity calculations.  In order of 

appearance, the sensitivity scenarios examine the start date for AV sales, high vs. low EV sales, road 

pricing elasticities and a revised scenario (“EV mandate”) in which all new internal combustion (ICE) auto 

sales are halted after 2040.   As expected, the table shows that EV sales are a very important driver of 

power demand, swinging 2050 demand by about 200 TWh in the policy scenario and 300 TWh in the 

High Base scenario.   While this is a very significant difference, it again highlights the fact that the 

ballpark in which 2050 LDV power demand will play is somewhere in the vicinity of 600 to 1200 TWh.    

The remaining sensitivities do not change the character of the main scenarios, including the case in 

which ICE sales stop in 2040; this scenario adds only about 50 TWh (5%) to 2050 power use.      
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Table VII-6: Sensitivity Calculations 

Sensitivity Cases 

AV Start Date 2025 2030 

  High Base 1140 1032 

  Policy Case 583 570 

        

EV sales  high low 

  High Base 1140 741 

  Policy Case 570 380 

        

Road Pricing Elasticities 0.35 0.2 

High Base       

  $0.022 1083 1140 

  $0.024 924 1050 

Policy Case       

  $0.022 600 653 

  $0.024 454 570 

        

EV Mandate On Off 

  High Base 1188 1140 

  Policy Case 604 570 
 

 

D. Concluding Observations 

It is beyond both our means and expertise to provide anything approaching a complete discussion of the 

implications of our findings for energy, transport, and climate policy.   Instead, we provide a small set of 

policy observations that speak mainly to the primary focus of our analysis, the intersection of transport 

changes and the power industry.    

With respect to our electric power demand results, many of our observations echo the words of far 

more seasoned transport researchers, whether in the relatively recent Three Revolutions literature or 

transport policy discussions going back decades.   In spite of the massive uncertainties surrounding the 

future of transport, only a few dimensions of the coming disruptions seem amenable to policy measures 

large enough to influence power demand by large amounts.   First among these is obviously any policies 

that shift LDV transport away from ICEs in any mode, but especially in LDVs.   On this point there is a 
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somewhat unusual confluence of support from clean energy and climate policy advocates and the great 

majority of the electric power industry.     

Beyond electrification of LDVs per se, the policy approaches to reducing carbon seem to divide into 

these categories: 

(A) shift drivers – and later, single occupants of AVs -- out of SOVs and into either pooled rides 

or, much better, integrated multimodal on-demand mobility systems, via any number of 

policy tools;   

(B) encourage or require electric LDVs to become more efficient more quickly than otherwise, 

much as CAFE and ZEV standards have forced ICE fleet efficiency gains; or 

(C) Harvest the vehicle and system efficiency improvements theoretically offered by AVs as 

soon as possible after they are introduced. 

Obviously, in our framework, category A shifts travel to more efficient modes, and reduces VMT 

generally, while categories B and C reduce EI. 

 In the realm of Category A, there are only a handful of well-known policies, albeit each with thousands 

of variations, that could make a big difference.   Widespread (probably federal) road pricing changes 

could significant affect LDV travel through own-price effects and also shift travel to more efficient 

modes.   The fact that half of federal roadway spending is now made from general revenues amounts to 

an astonishingly large, under-recognized, and regressive subsidy to auto travel and its carbon emissions 

today, and to EV and AV use tomorrow.   It is encouraging to see New York considering congestion 

pricing anew.   

The other policy levers that show useful potential are the creation of seamless mobility systems, 

harnessing the incredible power of IT, connectivity, and analytics to provide urban travel that is nearly as 

fast and convenient as autos, along with new urban designs that reduce travel.   Although it is difficult to 

see these ideas scaling to the point where they could change power use or carbon by very large 

amounts, they remain important because they have an unmatched portfolio of co-benefits:  better 

health, improved land use, improved affordable housing and job access, and an overall improved urban 

social fabric.    
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The second category of policies, efficiency improvements, are a familiar refrain in U.S. transport policy.   

CAFÉ standards have demonstrated that the technical efficiency of autos can improve dramatically when 

stimulated by policies, albeit not without a hiccup now and then.  Replicating this trajectory for EVs and 

AVs has the potential to save trillions of dollars of power system costs as well as significant carbon in the 

years before full grid decarbonization.           

From the policy standpoint, the autonomous vehicle revolution is exceedingly complex.   In their early 

years, we agree that it is likely that AVs will cause more driving, sprawl, and congestion, supporting the 

somewhat widespread view that “things will get worse before they get better.”  In the longer run, wisely 

deployed autonomous vehicles could enable vast energy efficiency improvements through both better 

system management and lightweighting of an accident-free fleet.   It may also free up large amounts of 

urban pavement, improve mobility for some underserved populations, and significantly lessen 

unproductive time behind the wheel.    

This is an area where much more work is needed.   We need much better data on the realistic changes 

we will need to make to our road and communications infrastructure to accommodate AVs at each 

penetration level, and how these changes can be staged so they need not be completely redone as the 

AV fleet grows.   We also need better data on how these vehicles will co-exist with conventionally-driven 

cars and trucks and how efficiency and safety improvements can be accelerated in the presence of 

mixed fleets.   Finally, there is almost no data on how much the infrastructure changes for AVs will cost, 

much less on how we will finance them.   The interrelation between these little-explored but critically 

important variables is illustrated in figure VII-7. 

With the possible exception of the latter, enormous amounts of research are now underway. In the 

meanwhile, rapid and complete electrification and a carbon-free grid remain the cornerstones of 

transport decarbonization – a task that looks, in the aggregate, entirely manageable for the U.S. electric 

supply industry.  

 

 

 

 

Figure VII-7: Key AV Relationships from the Standpoint of Power Demand 
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