N\

g RUTGERS

Jana: Private Data as a Service

Anand D. Sarwate
Dept. of ECE / DIMACS
Rutgers, The State University of New Jersey

Rebecca Wright Anand Sarwate Dov Gordon Nigel Smart

Portland State

UNIVERSITY

galois

Dave Archer
Principle Investigator

Charles Wright

DIMACS

= KUTGERS

Data as a Service (PDaaS)

Data as a Service (DaaS) has proved very popular and
useful.

 Easy to use

« Standardized interfaces

« Fast

» Reliable: Atomicity, Consistency, Isolation, Durability (ACID)

What about using private data?
» Allows services to use data from multiple providers
« Creates challenges for modeling and guaranteeing privacy

 Either emulate centralized or decentralized/local model

— See Salil's talk yesterday
DIMACS

Use Case 1: Sharing for coalitions

Enterprise Privacy Models

. &0 Cross Enterprise

! * Independent organizations with no/limited trust;
addressing some common goals

* Ad hoc, federated data access model

Within Enterprise

I

* Trusted partners within a single
over-arching organization;
regulations restrict sharing

* Fixed, federated data access model

Trusted Broker @ ®
| (2] | (2]

* Mostly untrusted but with a common trusted party
* Centralized data model, with access controlled by trusted party

© 2017 SRl International. All Rights Reserved. Confidential SRI International©

Use Case 2: collaboration for health research

INSTITUTION m
Domestic DISTRIBUTIVE PROCESSING Global
(less restrictive) OF MULTIMODAL NEUROIMAGING (more restrictive)
AND GENETIC DATA

COINSTAC
Local Data PLATFORM

————— Project4
e XD
Project 6

% COINSTAC

DIMACS

)e

! W
T,

Goal: Data as a Service with a “privacy first” focus.

« Data providers can specify “privacy policies”

- Data analysis should use “privacy preserving” methods
 Developers should not have to reinvent the wheel

DIMACS

= KUTGERS

Key technologies to incorporate

« Secure data ingest

« Searchable encryption

« Secure multiparty computation
 Differential privacy

* Query processor to allow SQL-like query interface and
enforce policies

DIMACS

§Jana PDaaS

SPDZ

multi-party
Jana TI':S \ ?_pmssor_~
Client-side
Ingest Tool :
Random
eTriplos Entropy Intermediate
: Source Data Staging
'< \ 4 |
~— S
N~

SPDZ

ByteCode Authentication <
oo_-l Query
Re-writer /
MPC Compiler | :
4

Secret Shares

Re-written
Queries

Query ? Results

.-

CONFIG

Schema and
Encryptions

Jana
lient-side
Result
econstruction

' RUTGERS

THE JANA SYSTEM

DIMACS

,;6] KUTGERS

Jana capabillities

Functionality

— Generous subset of SQL
— RDBMS ACID properties

Privacy
— Data-in-transit: public key cryptography
— Data-at-rest: deterministic, random, searchable

— Computation: MPC + RDBMS using deterministic & searchable
encryption

— Results: differential privacy applied (if needed) while in MPC

Performance
— 10Ks of records moving to 100Ks, queries in seconds to hours

Deployment

— Web service with RESTful API, Docker appliance
DIMACS

§Jana PDaaS

SPDZ

multi-party
Jana TI':S \ ?_pmssor_~
Client-side
Ingest Tool :
Random
eTriplos Entropy Intermediate
: Source Data Staging
'< \ 4 |
~— S
N~

SPDZ

ByteCode Authentication <
oo_-l Query
Re-writer /
MPC Compiler | :
4

Secret Shares

Re-written
Queries

Query ? Results

.-

CONFIG

Schema and
Encryptions

Jana
lient-side
Result
econstruction

,;6] KUTGERS

Jana workflow

Data ingest:

« use public key encryptions of secret shares of data to protect
the most sensitive provider data

* use searchable encryption schemes when data may be less
sensitive

Query processing:
« analyst issues a query using standard SQL

« query re-writer breaks the queries into intermediate queries to
the DB and a MPC program to operate on data shares

« apply privacy policies of data holders

DIMACS

MPC: from SPDZ to SCALE + MAMBA

SCALE = Secure Computation Algorithms from
Leuven

/l\ /'\ * Improvements in crypto over SPDZ

« Easier to use: full integration of offline and
A online phases

MAMBA = Multiparty AlgorithMs Basic Argot
* Python-like interface

« Greater functionality including more complex
functions (e.g. trigonometric)

DIMACS

Run-time, seconds

80

60

40

20

I{UTGERS

Targeting SQL-esque functionality

Select, Project, Join, Union (SPJU) queries

Aggregate operators (including versions with differential privacy)
Subqueries (SQL IN statement)

Group By

Data types including Integer, String, Boolean, Fixed-point, Date

B Query re-writer [l RDBMS

SPDZ Compile M SPDZ Execute as: C h a I I e n g e .
L |
col erson.re: NC
nai ||
te.pel erson_id

 More complex queries can

\d take extra time for

||
Q6

T execution.

JOIN communi ity ON community.community_id = person.residence

|] — JOIN person2s diseasestate ON person2s diseasestate.person _id = person person _id
I WHERE person: 2diseasestate.diseasestate ='D'AND
Q7 Q8 Q9 Q10

Q9: Q8, but less selective query —> more result rows

Q10: Q8, with even more result rows (but still not very many!)

Query

,; = KUTGERS

Differential Privacy

x —»> Q(Y\X)\\/‘\ .
.Y —| Adversary X
x' = Q(Y\X/)I/TE

« Want to support core functions for SQL
* Need to generate noise that is friendly to MPC

« Extending query support to allow analyst to specify accuracy
or confidence interval (“accuracy-first”)

DIMACS

,;6] KUTGERS

Some Research Questions

* Problem: We want symmetric encryption that can be
efficiently computed “inside” the MPC.
— Results: MPC-friendly symmetric encryption [GRRSS16]

 Problem: Want to better understand the privacy implications
of using order-preserving encryption.
— Results: How (in)secure is order-revealing encryption? [DDC16]

— Ongoing work to try to fully characterize tradeoffs and develop best-
possible solutions.

 Problem: The noise for differential privacy, as well as many
functions we might want to compute make use of non-finite-
field operations.

— Goal: MPC-friendly differential privacy
— For noise, currently using variant of [DKMMNOG].

[]
DIMACS

Order-Revealing Encryption (ORE)

[AKSX'04,BCLO’09]

2n
k(y)
2m)
y Ex(x)
X
0 o
message space ciphertext space

DIMACS

Order-Preserving Encryption
(OPE): A symmetric encryption
scheme that is deterministic and
strictly increasing.

ORE generalizes OPE. Both enable
efficient computation of range
queries on encrypted data.

ORE/OPE are inherently less secure
than standard encryption, subject to
chosen-plaintext attacks.

Research approach: Construct
ORE schemes with best-possible
security against passive attackers
who only capture ciphertexts.

|deal Leakage

Data: Lat./long. for 21,000 road intersections (27 bits)
If bounding box is known: can guess 30% of points to within 50km

DIMACS 18

Problems with ORE [DDC16]

11200002000
100 97 15 100 100 100100
84.05
2 80 79.)
%
2 60 55.6 - |
<
40 |
\2 20 20.4 22
5 - . .
0 |5 6.5 m
0 ' O
0.2 0.5 1 2 5 10 20

accuracy of attack in KM

« Correlation causes information leakage, even for ideal ORE.
« Leaky ORE may be much leakier than previously thought.

 We should consider other primitives and different approaches
for database protection (and cryptanalyze them).

DIMACS

I{UTGERS

Time (seconds)

Searchable encryption using POPE Trees:
leakage vs. performance

Database Index Performance on Lookup (average of 10 queries)

Number of Rows

DIMACS

' RUTGERS

DIFFERENTIAL PRIVACY IN
JANA

DIMACS

] KUTGERS

Overview of differential privacy research

 Computed in SPDZ MPC engine in order to maintain privacy

* Aggregate query operators automatically replaced by DP
variants by query re-writing as required by access control
policies

» Supported operators

— DP_COUNT (of fields matching where clause and sub-selects)

— DP_HISTOGRAM with user-provided buckets

— DP_SUM

— AVG but our fixed point representation makes this mostly useless

DIMACS

] KUTGERS

Example: differentially private COUNT

« Two versions of each operator

— Take a provided noise magnitude and implicit 95% confidence interval
to compute the noise. Epsilon can be computed from this input

— Take a provided epsilon and compute noise based on it and sensitivity

« COUNT has sensitivity 1

— Add noise from a “discrete Laplace” distribution (2-sided geometric)
— Similar to the approach in [DKMMNOG]

« How do we do this in SPDZ or SCALE?

— Need to use random number generation using biased coin flips

DIMACS

,; = RUTGERS

Discrete Laplace distributions

A geometric distribution (flip coins of bias p)

P(G=Fk) =(1-p)"'p

0.6 |
0.5}
0.4}
03}
0.2}

0.1

0.0 I?Q..

DIMACS

= RUTGERS

Discrete Laplace distributions

Two sided geometric distribution (add one coin of bias 0.5 to

choose the sign:

DIMACS

P(Gr =) = (1)

1

k| -1

0.6 |
0.5}
0.4}
03}

0.2}

0.1t I
0.0

p

g RUTGERS

Discrete Laplace distributions

Add one more coin to of bias a to pick k = 0:

e = log

DIMACS

= RUTGERS

Discrete Laplace distributions

1 biased + 1 fair + more biased coins for geometric distribution

0.6 -
0.5
0.4}
0.3}
0.2 |
0.1

8 -6 —4 -2 0 2 4 6 8

DIMACS

mw KUTGERS

Going from accuracy to privacy

Interpreting the DP privacy risk may be challenging:
* ¢+ sensitivity determine the noise distribution
« error + confidence level determine the noise distribution

P(|Z] > A) >1—q
* Numerically solve for required p.

« Example: want COUNT to be within = 10 with 90%
probability

DIMACS

] KUTGERS

Two Issues

1. Geometric distribution has infinite support

— Option 1: flip coins until success
—> run time depends on noise magnitude
- side channels?

— Option 2: flip a fixed number of coins
—> can only simulate a finite-support distribution
—> relax from pure to approximate (g, d)-differential privacy

2. Does not scale as well to large domains
— Time to generate variables can become prohibitive

— Extensions to non-integer problems (e.g. SUM, AVERAGE)
may be tricky

DIMACS

Runtime (s)

1 100 200 300 400 500 600 700 800 900 1000
N

=e=COUNT(") “+=DP_COUNTI(N, *)
DIMACS

' RUTGERS

ONGOING WORK

DIMACS

] KUTGERS

Extensions to other queries: SUM and AVG

Integer-valued data

+ Makes sense for SUM but not AVERAGE.

e Same noise generation process works in theory.

« Large ranges may require too many coins in practice.

Real-valued data
« Currently restricted to fixed-precision calculations
* Rules for approximate averaging are unclear

 May need an alternative noise generation mechanism:
— Lookup table via "inverse CDF” method.
— Something fancier?

DIMACS

= KUTGERS

Technical challenges with DP + MPC

Long term goal: machine learning algorithms running in Jana.

« Floating point vs. fixed point issue seems critical.
* Need multiplies to be as fast as adds.
« Should we use special procedures for linear algebra?

 What about large-scale iterative message-passing algorithms
like SGD?

DIMACS

= KUTGERS

Privacy budgeting

Current state of privacy budgeting:

« Query returns privacy risk for each query

« Global budget using basic composition
Low-hanging fruit:

« Replace database budget with per-individual budget

* Replace basic composition with advanced composition
[DRV10]

Getting fancier:

* Analyze privacy loss random variable more carefully

« Use (zero) concentrated-DP [DR16,BS16] or Rényi DP [M17]
to track aggregate loss

DIMACS

,;6] KUTGERS

Access control language

Simple conditions for selecting controls, specified by system
administrator

Attributes of users vs. constants or attributes in data
— Cardinality, Time window, Age of data

Simple controls
— Full detail, aggregates, counts
— Differentially private aggregates
— (Later) data masking

Conflict-free rules, by language construction
Natural language and JSON rule representations
Policy enforcement by query re-writing inside Jana

DIMACS

RUTGERS

Dealing with dynamic data

100

0

time per row per row size (sec/bytes)

100/000

Jana Insert Timings per Bytes

—pefson

ST TETE PEPPPPPPPE APPPPPPPRRY | = =nerson-PublicNames

person2diseasestate

«#«« All Public person

person2diseaseriskfactor

v+« All Public person2diseasestate
All Public person2diseaseriskfactor

200,000 300,000 400,000 500,000 600,000

—

l!

0.1

rows added per /insert (accumulative)

700,000

800,000

DIMACS

Data insertion in Jana
can be fast!

How should we track
and manage privacy
loss in dynamic
settings?

How can we make this
more practical?

' RUTGERS

CONCLUSIONS

DIMACS

= KUTGERS

Recap

Jana is proving a useful platform for exploring the feasibility,
scalability, flexibility, privacy, and limits of various privacy tools

and methods.
 MPC: understanding the impact of standard database
operations on speed and efficiency.

* DP: understanding how to adapt even simple mechanisms to
practical constraints imposed by the MPC computation model.

Tons of work to do still!

DIMACS

g RUTGERS

Thanks!

DIMACS

