
Jana: Private Data as a Service
Anand D. Sarwate

Dept. of ECE / DIMACS
Rutgers, The State University of New Jersey



DIMACS

The Team

Rebecca Wright Nigel SmartDov GordonDavid CashAnand Sarwate

Charles Wright

Dave Archer
Principle Investigator



DIMACS

Data as a Service (PDaaS)

Data as a Service (DaaS) has proved very popular and 
useful.
• Easy to use
• Standardized interfaces
• Fast
• Reliable: Atomicity, Consistency, Isolation, Durability (ACID)

What about using private data?
• Allows services to use data from multiple providers
• Creates challenges for modeling and guaranteeing privacy
• Either emulate centralized or decentralized/local model

– See Salil’s talk yesterday
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Use Case 1: Sharing for coalitions

©	2017	SRI	International.		All	Rights	Reserved.	Confidential		

Enterprise	Privacy	Models

Trusted Broker

Within	Enterprise

Cross	Enterprise
• Independent	organizations	with	no/limited	trust;	
addressing	some	common	goals
• Ad	hoc,	federated	data	access	model

• Trusted	partners	within	a	single	
over-arching	organization;								
regulations	restrict	sharing
• Fixed,	federated	data	access	model

•Mostly	untrusted	but	with	a	common	trusted	party
• Centralized	data	model,	with	access	controlled	by	trusted	party
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Use Case 2: collaboration for health research
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Enabling Private DaaS (PDaaS)

Goal: Data as a Service with a “privacy first” focus.
• Data providers can specify “privacy policies”
• Data analysis should use “privacy preserving” methods
• Developers should not have to reinvent the wheel
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Key technologies to incorporate

• Secure data ingest

• Searchable encryption 

• Secure multiparty computation

• Differential privacy

• Query processor to allow SQL-like query interface and 
enforce policies
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Jana in a Picture (JiaP)
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THE JANA SYSTEM
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Jana capabilities

• Functionality
– Generous subset of SQL
– RDBMS ACID properties

• Privacy
– Data-in-transit: public key cryptography
– Data-at-rest: deterministic, random, searchable
– Computation: MPC + RDBMS using deterministic & searchable 

encryption
– Results: differential privacy applied (if needed) while in MPC

• Performance
– 10Ks of records moving to 100Ks, queries in seconds to hours

• Deployment
– Web service with RESTful API, Docker appliance
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Jana in a Picture (JiaP)
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Jana workflow

Data ingest:
• use public key encryptions of secret shares of data to protect 

the most sensitive provider data
• use searchable encryption schemes when data may be less 

sensitive 
Query processing:
• analyst issues a query using standard SQL
• query re-writer breaks the queries into intermediate queries to 

the DB and a MPC program to operate on data shares
• apply privacy policies of data holders
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MPC: from SPDZ to SCALE + MAMBA

SCALE = Secure Computation Algorithms from 
Leuven
• Improvements in crypto over SPDZ
• Easier to use: full integration of offline and 

online phases

MAMBA = Multiparty AlgorithMs Basic Argot 
• Python-like interface
• Greater functionality including more complex 

functions (e.g. trigonometric)
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Targeting SQL-esque functionality

• Select, Project, Join, Union (SPJU) queries

• Aggregate operators (including versions with differential privacy)

• Subqueries (SQL IN statement)

• Group By

• Data types including Integer, String, Boolean, Fixed-point, Date

© Galois, Inc. 2016

More Complexity = Longer Time 39
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Query re-writer RDBMS
SPDZ Compile SPDZ Execute Q6:

SELECT lastname, firstname, diseasestate, birthdate, community_name, nation_name
FROM person
JOIN community ON community.community_id = person.residence
JOIN nation ON nation.nation_id = person.citizenship
JOIN person2diseasestate ON person2diseasestate.person_id = person.person_id
WHERE person2diseasestate.diseasestate = 'D' AND
person2diseasestate.transitionDate <= '04-03-2017'

Q7:
SELECT person2diseasestate.diseasestate
FROM person
JOIN community ON community.community_id = person.residence
JOIN person2diseasestate ON person2diseasestate.person_id = person.person_id
WHERE person2diseasestate.transitionDate <= '04-10-2017'

Q8:
SELECT person2diseasestate.diseasestate
FROM person
JOIN community ON community.community_id = person.residence
JOIN person2diseasestate ON person2diseasestate.person_id = person.person_id
WHERE person2diseasestate.diseasestate = 'D' AND
person2diseasestate.transitionDate < '04-02-2017'
ORDER BY lastname

Q9: Q8, but less selective query —> more result rows

Q10: Q8, with even more result rows (but still not very many!)

Challenge: 
• More complex queries can 

take extra time for 
execution.
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Differential Privacy

• Want to support core functions for SQL
• Need to generate noise that is friendly to MPC
• Extending query support to allow analyst to specify accuracy 

or confidence interval (“accuracy-first”)
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Some Research Questions

• Problem: We want symmetric encryption that can be 
efficiently computed “inside” the MPC.
– Results: MPC-friendly symmetric encryption [GRRSS16]

• Problem: Want to better understand the privacy implications 
of using order-preserving encryption.
– Results: How (in)secure is order-revealing encryption? [DDC16]
– Ongoing work to try to fully characterize tradeoffs and develop best-

possible solutions.
• Problem: The noise for differential privacy, as well as many 

functions we might want to compute make use of non-finite-
field operations.
– Goal: MPC-friendly differential privacy
– For noise, currently using variant of [DKMMN06].

•
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Order-Revealing Encryption (ORE) 
[AKSX’04,BCLO’09]

Order-Preserving Encryption 
(OPE): A symmetric encryption 
scheme that is deterministic and 
strictly increasing.

• ORE generalizes OPE.  Both enable 
efficient computation of range 
queries on encrypted data.

• ORE/OPE are inherently less secure 
than standard encryption, subject to 
chosen-plaintext attacks.

• Research approach: Construct 
ORE schemes with best-possible 
security against passive attackers 
who only capture ciphertexts.message space ciphertext space
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Plaintexts Ideal Leakage

Data: Lat./long. for 21,000 road intersections (27 bits)
If bounding box is known: can guess 30% of points to within 50km

18
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Problems with ORE [DDC16]

• Correlation causes information leakage, even for ideal ORE.
• Leaky ORE may be much leakier than previously thought.
• We should consider other primitives and different approaches 

for database protection (and cryptanalyze them).
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Searchable encryption using POPE Trees: 
leakage vs. performance
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DIFFERENTIAL PRIVACY IN 
JANA
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Overview of differential privacy research

• Computed in SPDZ MPC engine in order to maintain privacy
• Aggregate query operators automatically replaced by DP 

variants by query re-writing as required by access control 
policies

• Supported operators
– DP_COUNT (of fields matching where clause and sub-selects)
– DP_HISTOGRAM with user-provided buckets
– DP_SUM
– AVG but our fixed point representation makes this mostly useless
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Example: differentially private COUNT

• Two versions of each operator
– Take a provided noise magnitude and implicit 95% confidence interval 

to compute the noise. Epsilon can be computed from this input
– Take a provided epsilon and compute noise based on it and sensitivity

• COUNT has sensitivity 1
– Add noise from a “discrete Laplace” distribution (2-sided geometric)
– Similar to the approach in [DKMMN06]

• How do we do this in SPDZ or SCALE?
– Need to use random number generation using biased coin flips
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Discrete Laplace distributions

A geometric distribution (flip coins of bias p)

P(G = k) = (1� p)k�1p
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Discrete Laplace distributions

Two sided geometric distribution (add one coin of bias 0.5 to 
choose the sign:

P(G2 = k) =
1

2
(1� p)|k|�1p
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Discrete Laplace distributions

Add one more coin to of bias a to pick k = 0:

a =
p

2� p

✏ = log

P(Z = k)

P(Z = k + 1)

= log

1

1� p

P(Z = k) =

(
a k = 0

(1� a) 12 (1� p)|k|�1p k 6= 0
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Discrete Laplace distributions

1 biased + 1 fair + more biased coins for geometric distribution
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Going from accuracy to privacy

Interpreting the DP privacy risk may be challenging:
• ε + sensitivity determine the noise distribution
• error + confidence level determine the noise distribution

P(|Z| > �) > 1� q

• Numerically solve for required p.
• Example: want COUNT to be within ± 10 with 90% 

probability



DIMACS

Two issues

1. Geometric distribution has infinite support
– Option 1: flip coins until success 

à run time depends on noise magnitude 
à side channels?

– Option 2: flip a fixed number of coins 
à can only simulate a finite-support distribution
à relax from pure to approximate (ε, δ)-differential privacy

2. Does not scale as well to large domains
– Time to generate variables can become prohibitive
– Extensions to non-integer problems (e.g. SUM, AVERAGE) 

may be tricky
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Privacy versus performance
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ONGOING WORK
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Extensions to other queries: SUM and AVG

Integer-valued data
• Makes sense for SUM but not AVERAGE.
• Same noise generation process works in theory.
• Large ranges may require too many coins in practice.

Real-valued data
• Currently restricted to fixed-precision calculations
• Rules for approximate averaging are unclear
• May need an alternative noise generation mechanism:

– Lookup table via ”inverse CDF” method.
– Something fancier?
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Technical challenges with DP + MPC

Long term goal: machine learning algorithms running in Jana.

• Floating point vs. fixed point issue seems critical.
• Need multiplies to be as fast as adds.
• Should we use special procedures for linear algebra?
• What about large-scale iterative message-passing algorithms 

like SGD?
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Privacy budgeting

Current state of privacy budgeting:
• Query returns privacy risk for each query
• Global budget using basic composition
Low-hanging fruit:
• Replace database budget with per-individual budget
• Replace basic composition with advanced composition 

[DRV10]
Getting fancier:
• Analyze privacy loss random variable more carefully
• Use (zero) concentrated-DP [DR16,BS16] or Rényi DP [M17] 

to track aggregate loss
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Access control language

• Simple conditions for selecting controls, specified by system 
administrator

• Attributes of users vs. constants or attributes in data
– Cardinality, Time window, Age of data

• Simple controls
– Full detail, aggregates, counts
– Differentially private aggregates
– (Later) data masking

• Conflict-free rules, by language construction
• Natural language and JSON rule representations
• Policy enforcement by query re-writing inside Jana
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Dealing with dynamic data

Data insertion in Jana 
can be fast!

How should we track 
and manage privacy 
loss in dynamic 
settings?

How can we make this 
more practical?
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CONCLUSIONS
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Recap

Jana is proving a useful platform for exploring the feasibility, 
scalability, flexibility, privacy, and limits of various privacy tools 
and methods.
• MPC: understanding the impact of standard database 

operations on speed and efficiency.
• DP: understanding how to adapt even simple mechanisms to 

practical constraints imposed by the MPC computation model.

Tons of work to do still!
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Thanks!


