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Abstract

Models of the hexagonally arrayed spatial activity pattern of grid cell firing in the literature generally fall into two main
categories: continuous attractor models or oscillatory interference models. Burak and Fiete (2009, PLoS Comput Biol)
recently examined noise in two continuous attractor models, but did not consider oscillatory interference models in detail.
Here we analyze an oscillatory interference model to examine the effects of noise on its stability and spatial firing properties.
We show analytically that the square of the drift in encoded position due to noise is proportional to time and inversely
proportional to the number of oscillators. We also show there is a relatively fixed breakdown point, independent of many
parameters of the model, past which noise overwhelms the spatial signal. Based on this result, we show that a pair of
oscillators are expected to maintain a stable grid for approximately t = 5m3/(4ps)2 seconds where m is the mean period of an
oscillator in seconds and s2 its variance in seconds2. We apply this criterion to recordings of individual persistent spiking
neurons in postsubiculum (dorsal presubiculum) and layers III and V of entorhinal cortex, to subthreshold membrane
potential oscillation recordings in layer II stellate cells of medial entorhinal cortex and to values from the literature regarding
medial septum theta bursting cells. All oscillators examined have expected stability times far below those seen in
experimental recordings of grid cells, suggesting the examined biological oscillators are unfit as a substrate for current
implementations of oscillatory interference models. However, oscillatory interference models can tolerate small amounts of
noise, suggesting the utility of circuit level effects which might reduce oscillator variability. Further implications for grid cell
models are discussed.
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Introduction

Grid cells are a type of cells first found in rat medial entorhinal

cortex [1–3] that are characterized by their spatial firing

correlates. Each cell has multiple place fields (locations in the

environment where the cell fires at a high rate) which are located

at the vertices of an equilateral triangular tessellation of the

environment.

Two main types of models have been proposed to explain the

spatial firing properties of these cells. The first class consists of

continuous attractor models [4–7] (see [8] for a slightly different

approach). These models use complex internal connectivity to

form a grid of activity on a sheet of neurons and then use a body

velocity signal to slide the grid of activity in register with the

animal’s movements. The second class consists of oscillatory

interference models [9–13]. In these models the hexagonal pattern

arises from two or more oscillators as an interference pattern.

Candidate oscillators initially included oscillations of local field

potentials and the membrane potential oscillations of entorhinal

cortical layer II stellate cells which occur when the cells are

brought just below threshold [11,14]. Reference [13] implemented

an oscillatory interference model using persistent spiking cells.

Such cells are found in multiple locations in medial temporal

cortex, such as entorhinal cortex and postsubiculum [15–18].

Reference [19] suggests the oscillators might be located in

subcortical rhythm generating structures. Formally the models

are all sufficiently similar that the following results should apply to

all of the cited versions.

Reference [7] provided an excellent discussion of many

predictions that can differentiate between the two classes of

models. We contribute to this discussion by evaluating the

suitability of a range of biological oscillators for the oscillatory

interference models.

In particular we examine the behavior of an oscillatory

interference model when noise is introduced into its oscillators.

A common criticism [7,13,20,21] of this class of models is that real

neural systems are too noisy to maintain the perfect oscillations

that are usually simulated. Noise-related problems might be
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avoided by having external cues reset the grid network [11,22,23],

but only if noise levels are low enough (because the grid network

must be stable enough that fields are more or less at their correct

location during initial exploration for the external cue associations

to be made). One group [21] qualitatively examined traces of

subthreshold membrane potential oscillations and roughly esti-

mated that such oscillations might provide a stable representation

of place for 0.5 seconds. Here we show that, for certain

configurations of the model, the model can be surprisingly robust

to moderate amounts of noise (for instance, the drift in encoded

position due to noise is inversely proportional to the number of

oscillators). However, we find a relatively fixed noise threshold past

which it is unlikely that a grid cell will still be correctly encoding

position.

We then use this noise threshold to derive a relation which can

be used to evaluate the noise level in neuronal oscillators. Letting m
be the measured mean period in seconds of the biological oscillator

and s2 the variance of the period in seconds2, then a biological

system can be expected to maintain a stable grid pattern for

approximately t~5m3
.

4psð Þ2 seconds (the time at which the

variance of the cumulative noise reaches the noise threshold).

The candidate oscillators that we examine experimentally are

persistent spiking neurons in layers III and V of entorhinal cortex

as well as in postsubiculum (dorsal presubiculum) and subthreshold

membrane potential oscillations in entorhinal cortex layer II. The

former regions all project directly to entorhinal cortex layer II [24]

and so are well positioned to be the oscillators in at least one

oscillatory interference model [13]. In addition, these regions

contain head-direction signals [3,25] which are sometimes used as

a surrogate for body velocity. Further, grid cells have been

reported in all of these regions [3,26], raising the possibility the

characteristic spatial pattern is created in one of these regions and

simply inherited by downstream neurons. We find that the

estimated stability times from the experimental data are on the

order of a few seconds, much shorter than the reported stability of

grid cells. This suggests the current oscillatory interference models

must be modified to account for biological levels of noise, and we

suggest one possibility in the Discussion.

Materials and Methods

Ethics Statement
Our experiments were performed at two different locations.

Experimental protocols were approved by the Institutional Animal

Care and Use Committee at Boston University or were approved

by the McGill University Animal Care committee and were in

compliance with guidelines of the Canadian Council on Animal

Care.

Computational Methods
To introduce the oscillatory interference model, we consider a

pair of oscillators represented as spinning arrows, Figure 1, top.

We assume that the oscillators have the same frequency (rotational

speed of the arrow) but may differ in phase (the direction the arrow

is pointing at any given time).

The difference in phase is used to encode a position in space,

Figure 1, bottom. Each position along the line connecting

neighboring grid fields corresponds to a phase difference. Since

the spacing of grid fields varies in cells recorded at different

positions along the dorsoventral axis of medial entorhinal cortex

[2], it is convenient to set aside physical units and speak of spatial

distances directly in terms of the corresponding phase difference.

[11,13] have given the relation between phase differences and

spatial distances, which can vary depending on the form of the

model, but relate to one or both of v , the temporal frequency of

the baseline oscillation, and b, a parameter relating temporal

frequencies to spatial frequencies. Parameter values fit to

electrophysiologically recorded subthreshold membrane potential

oscillations in putative grid cells in entorhinal cortex are given in

[14]. Model parameters used in our simulations were appropriate

for a dorsally-located grid cell in entorhinal cortex layer II:

v~6:48 Hz, b~2
�

300
ffiffiffi
3
p� �

Hz:cmð Þ{1
[14].

In this way, the pair of oscillators encodes a position on a circle

(angular position) which is mapped onto space. As the animal

walks along a line and passes through each grid field, the cell’s

Figure 1. Coding 1D angular position. Top. We can represent
oscillators as an arrow spinning on a circle such that the rotational
speed of the arrow represents the frequency of the oscillator and the
current angle of the arrow represents its phase. Additional oscillators
can be represented by additional arrows on the same plot. Bottom.
Because different grid cells have different spacings, it is convenient to
measure distance between fields in different units, such as angles. Each
position between two fields can be uniquely identified by its
corresponding angle. Such angles can be encoded as the phase
difference between two oscillators with the same frequency. On the left,
the arrows encode a phase difference of p=3. On the right, the arrows
encode a phase difference of p .
doi:10.1371/journal.pcbi.1000573.g001

Author Summary

For many animals, including rats, accurate spatial
memory over relatively large areas is important in order
to find food and shelter. Just as unique points in time can
be efficiently represented by combinations of repeating
elements like hours, days, and months, points in space
can be represented as combinations of elements that
repeat at different spatial scales. Just such a code has
been identified in the brains of rats and it shows an
intriguing triangular spacing of encoded locations. Two
different explanations have been developed as to what
general mechanism in the brain might be able to
generate this unusual code. However, to date there is
not conclusive experimental evidence indicating whether
either of the two explanations is correct. Here we show in
detail that one of the explanations, called oscillatory
interference, has specific requirements regarding the
amount of variability in the system that implements it. We
then report data experimentally examining candidate
systems to evaluate their levels of noise. The large
amount of noise that we find presents a challenge to
the currently suggested biological implementations of
oscillatory interference, but it does not provide support
for the alternative explanation.

Grid Cell Oscillatory Noise
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encoded position moves around a circle back through the same

field each time (like the repeating backgrounds in old cartoons).

To encode a position in two dimensions, an additional oscillator

is included. One of the oscillators remains a baseline oscillator and

the other two independently encode angular position in two

directions. These angular position encoding oscillators are called

velocity-controlled oscillators (VCOs) for reasons explained below.

Each VCO has a preferred direction in space, and the pairwise

differences of preferred directions must be multiples of p=3 and

not all co-linear in order to produce the hexagonal pattern seen in

animals. Indeed, arbitrarily many VCOs can be included (see

later) as long as they meet these angle requirements.

In order to update the encoded spatial position, the model

requires input about body velocity (sometimes equated with a

velocity-modulated head direction input). To adjust the encoded

angular positions, the VCOs change their frequency as a function

of the velocity input (hence the term velocity-controlled oscilla-

tors). This is covered in detail in earlier treatments (e.g.

[11,12,27]). The essential point for the present discussion is that,

for noiseless oscillators, the phase differences always perfectly code

for the animal’s current position.

We close with a formal description of the model. We consider

two different activation rules: a rectified product rule (used in most

simulations) and a sum rule (to demonstrate that effects described

later do not depend on the activation rule). The output of the

model with a rectified product activation rule at time t is given by

the equation:

g tð Þ~ P
n

i~0
Rðcos 2pvtzQb tð Þð Þzcos 2pvtzQi tð Þð

�

z2pvb

ðt

0

v tð Þ.hidtÞÞ{h

�
H

ð1Þ

where ½�H is the Heaviside step function, R xð Þ is the ramp or

threshold-linear function (to model half-wave rectification), n is the

number of VCOs, v is a baseline frequency, b a constant relating

temporal frequencies to spatial frequencies, Qb tð Þ and Qi tð Þ are the

phase noise functions described in the next section (which may also

include a non-zero starting phase), v tð Þ is the vector-valued

velocity function of the agent at time t , hi is a unit vector in the

preferred direction of VCO i, . represents a dot product, and h is

a firing threshold. Simulations were performed using dt~0:01 and

threshold h~1:8.

The half-wave rectification prevents the product of an even

number of out-of-phase sinusoids from having a net positive effect

on the activity of the cell.

The integral of the dot product of the animal’s velocity history with

each VCO’s preferred direction calculates the total distance travelled in

the preferred direction, which is then multiplied by vb to convert the

distance into an angular position which becomes the phase difference

between the two oscillators (setting aside the noise terms for now).

The sum rule we use is

g tð Þ~
Xn

i~0

ðcos 2pvtzQb tð Þð Þzcos 2pvtzQi tð Þð
"

z2pvb

ðt

0

v tð Þ.hidtÞÞ{nh

�
H

ð2Þ

Which is as (1) but notice here that the firing threshold increases

linearly with the number of oscillators and we use a higher value of

h~3:8.

For the purpose of plotting spatial firing rate maps of the model,

it is convenient to calculate the proportion of the time during one

baseline oscillation that the cell is above threshold.

We consider accumulating noise that causes the phase

differences to drift away from their correct values. There are

many noise sources in cells, but the dominant two are stochastic

ion channel opening/closing and synaptic noise [28–30]. We will

be comparing simulation results to experimental results from single

neurons recorded in the presence of synaptic blockers, so we will

focus only on intrinsic noise sources, of which ion channel

fluctuations dominate [28]. Ion channel noise has both additive

(voltage-independent) and multiplicative (voltage-dependent) com-

ponents [28], but the multiplicative components are often ignored

for analytic simplicity because of their fast time scales [28,31]. The

oscillators used in current oscillatory interference grid cell models

are abstract, sinusoidal functions which simply change their phase

at a fixed frequency, so we approximate this channel noise by

adding a normally-distributed, zero-mean noise term to the phase

of an oscillator on each simulation time step (a common noise

model, e.g. [32]). We consider noise both in the VCOs as well as in

the baseline oscillation, which introduces covariance in the noise

terms for each phase difference.

We write the noise introduced into the baseline oscillator’s

phase on time step t as eb tð Þ*N 0,s2
� �

(i.e., eb tð Þ is a random

variable drawn from the normal distribution with mean 0 and

variance s2). The noise introduced into VCO i is e i tð Þ*N 0,s2
� �

and all of these noise terms are taken to be independent. A non-

zero mean would represent a bias in the input that would cause the

spatial grid pattern to drift constantly (see Discussion). Since such a

drift is not seen in the experimental grid cell recordings, we assume

a mean of zero (continuous attractor models require the same

assumption). At time t~0, the cumulative noise in a phase

difference will be eb 0ð Þze i 0ð Þ. After t time steps, the cumulative

noise will be

Qi tð Þ~
Xt

k~0

eb kð Þze i kð Þð Þ: ð3Þ

Each e tð Þ is independently, normally distributed, soPt
k~0 e kð Þ*N 0,ts2

� �
for all noise terms (in statistical terms,

Q tð Þ is essentially a discrete analog of a Wiener process). Each

phase difference accumulates noise from both the baseline and the

velocity-controlled oscillator and so the cumulative noise in a

phase difference will be distributed Q tð Þ*N 0,2ts2
� �

. The

variance thus increases by 2s2 on each time step. Because of the

shared baseline noise, the cumulative covariance of the noise

between two phase differences will equal ts2 after t time steps

(cov AzX ,BzXð Þ~var Xð Þ for A,B,X independent random

variables). Therefore the cumulative noise covariance matrix

S tð Þ has 2ts2 on its diagonal and all other entries equal ts2.

The normal distribution is defined on the real numbers.

However, the noise is being added to an oscillator’s phase: a

circular variable defined on the interval 0,2p½ Þ. This is important

because it means the difference between the encoded phase

difference and the correct phase difference is bounded: the

difference cannot be 3p , for instance, though a normal distribution

might have nonzero density at that point. This means the

probability that the cumulative noise is between a and b is not

simply
Ð b

a
N xjm,s2
� �

dx (where N xjm,s2
� �

is the normal distribu-

tion’s probability density function evaluated at x), because the

Grid Cell Oscillatory Noise
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cumulative noise would appear to be in the range a,b½ � if it were

actually in the ranges 2pza,2pzb½ � or 4pza,4pzb½ � or

2npza,2npzb½ � for any integer n. To identify the probability

that the cumulative noise is in a specific range requires summing

an infinite number of integrals with consecutive lower (and upper)

bounds spaced 2p apart. This is called the wrapped normal (WN)

distribution and its probability density function (pdf) is

WN wjm,s2
� �

~
1

s
ffiffiffiffiffiffi
2p
p

X?
k~{?

exp
{ w{m{2pkð Þ2

2s2

" #
: ð4Þ

This allows us to calculate the probability that the noise is in a

certain range, given the cumulative noise variance.

To take into account the covariance among the phase

differences, we treat them as a vector and use the multivariate

wrapped normal distribution (MWN) with nonsingular noise

covariance matrix S:M

MWN Qjm,S½ �~ 1

detSð Þ1=2
2pð Þn=2

X?
k~{?

exp {
1

2
Q{m{2pkð ÞTS{1 Q{m{2pkð Þ

� �
:

ð5Þ

where n is the number of VCOs.

We will consider the effects of noise both on the individual cell

level as well as on the population level. The latter is important

because a given animal may have many grid cells with the same

orientation, spacing, and phase. Each such cell will drift

independently due to noise, which, as we show, allows the

population average to be a more reliable signal than individual

cells provide.

Whole-Cell Patch Recording
For postsubiculum slice preparation, Long-Evans rats (postnatal

days 21 to 25; Charles River, Wilmington, MA) were deeply

anesthetized with ketamine/xylazine (95 mg/Kg ketamine and 2.8

mg/Kg xylazine) through intraperitoneal injection. After the

absence of both pedal and tail pinch reflex was confirmed, ice-cold

modified artificial cerebrospinal fluid (ACSF) containing (in mM)

110 choline chloride, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 0.5

CaCl2, 7 MgCl2, 7 glucose, 3 pyruvic acid and 1 ascorbic acid

(pH adjusted to 7.4 by saturation with 95%O2{5%CO2) was

intracardially perfused. For the entorhinal cortex layer II and III

slice preparations, Long-Evans rats (postnatal days 17 to 23;

Charles River, Wilmington, MA) were deeply anesthetized with

isoflurane (Abbot Laboratories) and decapitated after the absence

of both pedal and tail pinch reflex was confirmed.

The brain was then removed from the cranium and placed in

ice-cold modified ACSF. 350 mm-thick slices were cut sagittally or

horizontally using a Vibroslicer (World Precision Instruments,

Sarasota, FL, USA). Slices were transferred to a holding chamber,

where they were kept submerged at 300C for 30 min and then at

room temperature at least 30 min longer before recording. The

holding chamber was filled with ACSF containing (in mM) 124

NaCl, 3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 1.6 CaCl2, 1.8

MgSO4, 10 glucose (pH adjusted to 7.4 by saturation with

95%O2{5%CO2).

Entorhinal cortex layer III and postsubiculum slices were

transferred to a submerged recording chamber and superfused

with ACSF, maintaining the temperature between 34 and 36 0C
for recordings. Entorhinal cortex layer II slices were transferred to

a submerged recording temperature maintained between 36 and

38 0C. Patch pipettes were fabricated from borosilicate glass

capillaries by means of a P-87 horizontal puller (Sutter Instrument,

Novato, CA, USA). Patch pipettes were filled with intracellular

solution containing (in mM) 120 K-gluconate, 10 HEPES, 0.2

EGTA, 20 KCl, 2 MgCl, 7 phosphocreatine-di(Tris), 4 Na2ATP
and 0.3 TrisGTP (pH adjusted to 7.3 with KOH). The

intracellular solution also contained 0.1% biocytin for the purpose

of labeling. When filled with this solution, the patch pipettes had a

resistance of 3–5 MV. Slices were visualized with an upright

microscope (Zeiss Axioskop 2), equipped with a |40 water-

immersion objective lens and a near-infrared charge-coupled

device (CCD) camera (JAI CV-M50IR, San Jose, CA, USA).

Tight seals (w1GV) were formed on cell bodies and the

membrane was ruptured with negative pressure. Current-clamp

recordings were made with a Multi Clamp 700B amplifier (Axon

Instruments, Foster City, CA, USA) using a built-in bridge balance

and capacitance compensation circuits. Signals were low-pass

filtered at 5 kHz or 10 kHz and sampled at 10 kHz or 20 kHz,

respectively, using Clampex 9.0 software (Axon Instruments,

Foster City, CA, USA). A liquid junction potential of 10 mV was

not corrected.

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO,

USA) and Tocris Bioscience (Ellisville, MO, USA).

Sharp Electrode Recording
Procedures of slice preparation and intracellular recording of

layers III and V entorhinal neurons were described in detail in

[33] and [34], respectively. Conventional sharp microelectrode

intracellular recordings were performed on brain slices obtained

from adult Long-Evans rats (male, 150–250 g; 4–5 weeks

postnatal, Charles River Canada, Saint-Constant, Quebec,

Canada) at 340C+10C in an interface recording chamber (Fine

Scientific Tools, North Vancouver, British Columbia, Canada).

Normal Ringer solution was prepared daily and contained (in

mM) 124 NaCl, 3 KCl, 1.6 CaCl2, 1.8 MgSO4, 26 NaHCO3,

1.25 NaH2PO4, and 10 glucose (pH was adjusted to 7.4 by

continuous application of 95%O2{5%CO2). Since the muscarinic

phenomena studied did not desensitize, neurons were initially

impaled in the presence of carbachol (CCh) (10 mM). All the

chemicals were purchased from Sigma.

Induction and Measurement of Persistent Firing
Induction of persistent firing was tested in the presence of

carbachol (10 mM) and synaptic blockers including kynurenic acid

(2 mM) and picrotoxin (100 mM) to suppress ionotropic glutamate

receptors and GABAA receptors, respectively. Membrane poten-

tial was adjusted to just below rheobase membrane potential using

constant current injection. After confirming that the baseline

potential was not drifting for at least 5 s, a supra-threshold current

injection with the duration of 2 to 4 s and the amplitude between

50 to 300 pA was applied to induce persistent firing. Frequency of

persistent firing was measured as an average firing frequency of the

neuron during a 20 s period starting at 7 to 30 s after the

termination of the current injection. Clampfit 9.0 (Axon

Instruments) and MATLAB (MathWorks) were used for data

analysis.

Measurement of Membrane Potential Oscillations
These methods have been described in detail previously [20].

Briefly, layer II stellate cells were depolarized to just below action

potential firing threshold by applying small current steps. When

the cell neared firing threshold and membrane potential

oscillations appeared, long segments of membrane potential were

Grid Cell Oscillatory Noise
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recorded. Membrane potential oscillations were analyzed by an

automated script in MATLAB to determine the peak-to-peak

interval. A Butterworth filter between 0 and 15 Hz was applied

and an automated peak detection function (peakdetect) in

MATLAB determined the peak-to-peak intervals for oscillations

at a membrane potential of {50 mV.

Results

The behavior of the model changes as a function of the number

of VCOs. We first individually examine the 1 and 2 VCO cases

before considering the case for 3 or more VCOs.

One VCO
Here we consider the case of an animal walking in a straight line

(Figure 1). We form a raster-like plot where each row, starting

from the top and moving downward, shows the activity of the cell

on each pass through the field, Figure 2a–b. Variability in the

oscillators causes the distance between grid fields to drift over time

which manifests as a drift in horizontal position in the plots. In

Figure 2a the cumulative noise stays near zero, causing smaller

overall changes in the periodicity of the cell than in Figure 2b

where the noise has pushed the cell completely out of phase with

its correct position by the end of the simulation. The following

analysis determines the spatial firing averaged over a large number

of such grid cells as noise builds up in the system.

To analytically express the shape of a field, g x,wð Þ, recall that

the activity of the grid cell is given by the thresholded sum of two

oscillators with phase difference determined by position x and

noise-produced phase shift w. This sum can be thresholded and

interpreted as activity in a number of ways. Here we calculate the

proportion of time that the sum of the oscillators is above a

Figure 2. 1D simulation results. A, B. Raster plots of two individual runs of the simulation. From top to bottom, each row represents one pass
through the grid field. The width of the plot is exactly the distance between the center of two fields so that the path of the virtual rat wraps around
each row. Each black dot indicates the position of the virtual rat when the activity of the cell was above threshold during one time step. The positions
of the spikes form diagonal lines because the virtual rat moves at a constant rate and the activity of the cell is theta modulated (i.e. the cell can only
emit spikes when the baseline oscillation is at its maximum). This effect does not show up in C or D because the starting phase of the oscillations is
set randomly for each individual run so that the variations average out. A. A simulation where noise in the system stayed near zero so the field stayed
in essentially the same location. B. A simulation where the noise caused the place field to shift almost completely out of phase. C. Average of 3,000
individual, modeled grid cells of the type shown in parts A and B (darker means higher average activity). D. Analytic approximation of the average of
many modeled grid cells. Simulations used a fixed dx~0:2. The phase noise variance was arbitrarily set at s2~2:82:10{4 radians2 per time step, a
level considerably lower than later results in the main text suggest would be present in a biological system.
doi:10.1371/journal.pcbi.1000573.g002
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threshold (i.e. this is a rate-based approximation). Since both

cosines have the same frequency, we need only consider one

period of the oscillation and can let the frequency equal 1. The

noise-free activity at angular position x is calculated as

g x,0ð Þ~ 1

2p

ð2p

0

H cos tð Þzcos tzxð Þ{h½ �dt ð6Þ

where H is the Heaviside step function and h is a firing threshold.

The general function is

g x,wð Þ~ 1

2p

ð2p

0

H cos tð Þzcos tzx{wð Þ{h½ �dt: ð7Þ

Notice g x{w,0ð Þ~g w{x,0ð Þ (symmetry) and g x,wð Þ~
g x{w,0ð Þ (equivalence of angular positions and phase shifts).

The latter means that if the current cumulative noise in a pair of

oscillators is, e.g., p=3 radians, then the spatial firing of the cell

would be shifted by the corresponding distance, because angular

position directly encodes position between fields.

Given the cumulative noise variance s2 in the system at a given

time, we know the probability that the noise will have shifted by r
radians is WN r 0,s2

		� �
. To estimate the population code, we

simply sum the shifted spatial firing of a cell by the probability that

each specific shift amount has occurred. Specifically, let g x,wð Þ be

the activity of a grid cell at angular position x with error in the

phase difference of w radians (with the field centered at angular

position 0). Increasing w will correspond to shifting the spatial

pattern rightward. When there is noise of variance s2, the

expected population average activity f x,s2
� �

at location x is given

by

f x,s2
� �

~

ðp

{p

WN w 0,s2
		� �

g x,wð Þdw: ð8Þ

On the other hand, write can write a population average

f ’ x,s2
� �

at angular position x with cumulative variance s2, as

a convolution of the wrapped normal pdf with g:

f ’ x,s2
� �

~WN xj0,s2
� �

� g x,0ð Þ where � indicates a convolution.

Because both WN and g are functions defined on the circle, the

convolution needs to integrate only over the interval from 0 to 2p:

f ’ x,s2
� �

~WN xj0,s2
� �

� g x,0ð Þ

~

ð2p

0

WN xj0,s2
� �

g x{x’,0ð Þdx’:
ð9Þ

To see that f x,s2
� �

~f ’ x,s2
� �

, simply recall that

g x,x’ð Þ~g x{x’,0ð Þ. This shows that a convolution (which is

efficient to calculate) is equivalent to integrating over the phase

differences in the model (which is more time consuming to

calculate). However, it will be shown this is only true for the one

and two (in 2D) VCO cases.

The convolution approach is compared to the results of

simulation of the model in Figure 2c–d. It is clear that the effect

of noise on the spatial distribution of the simulated cell’s activity is

well accounted for by a convolution in this single VCO case.

For each run of the simulation, the virtual rat was restricted to

walk at a fixed velocity in a straight line along the preferred

direction of the single VCO. Each row in the plot is 2p radians

wide (the distance between two fields), so that the path of the

virtual rat wraps around the figure. The rat was started exactly

halfway between two fields (corresponding to the upper left corner

of this plot).

Although the cumulative noise variance increases on every time

step, it grows sufficiently slowly that we kept the value of the

variance constant for each pass through the grid field (each row in

Figure 2d). The number of steps from the starting point to the

center of the field nearest to the virtual rat was used to calculate

the noise variance (number of steps times variance accumulated

per step). A noise kernel was calculated from this variance. The

interval of phases {p ,pð � was divided into the same number of

bins as was position. The WN pdf was integrated over the range of

each such phase bin. This resulted in a vector of probabilities that

the current value of the cumulative noise was in each phase bin.

For example, had there been four bins and a cumulative noise

variance of 1 radian2, the probability for the first bin would beÐ p=2

{p WN xj0,1½ �dx~0:058. The whole vector of probabilities in

this case would be 0:058, 0:442, 0:442, 0:058½ �. The convolution

of this vector with the noise-free spatial distribution would give one

row in Figure 2b (though the figure was made using 17 bins, not

four).

Two VCOs
In two dimensions, the activity of a pair of oscillators, which

looked like a sequence of fields in 1D, now appears as a sequence of

parallel bars or bands. Two sets of bands at an angle of p=3 relative

to each other are shown in Figure 3. Along a line parallel to a band

the phase difference of the oscillator pair does not change. The

center line of the bands themselves corresponds to a phase

difference of 0. Thus the bands are angled orthogonal to the

preferred direction of the corresponding VCO, as it is along the

preferred direction that the phase difference changes most quickly.

The width of the band as drawn is given by the range of phase

differences where the band is over threshold (sufficiently close to 0).

Figure 3 shows the phase differences corresponding to four

different locations. The grid cell has a field where bands of both

directions overlap (indicated in the figure by a white parallelo-

gram), which is equivalent to saying there is a field where both

phase differences are over threshold.

To understand the effects of noise, it is fruitful to consider noise

introduced into only one of the two VCOs with no noise in the

baseline oscillator. Consider two VCOs with noise in only the

VCO encoding distance in the up-down direction (with horizon-

tally-directed bands). This will cause a ‘‘blurring’’ effect on the

population level along the direction orthogonal to the preferred

direction of that VCO.

An average of 1,000 such simulations is shown in Figure 4b.

Because there was only noise in the encoding of vertical distance

travelled, the diagonal bands do not shift. Since the neuron fires

only when both phase differences are near 0, this means that the

population code is constrained to still fire along that diagonal

band. The population-level representation of space in this case is

blurred along the band that does not receive noise. This may be

counterintuitive, as one might expect the noise to cause a blurring

along the VCO’s preferred direction.

To model the effects of noise on the population level, we can

directly calculate the average spatial pattern by computing the

integral of the activity of the model over the possible phase shifts

due to noise (Figure 4a,d). Let f x,y,s2,h1,h2

� �
be the average

activity of a population of neurons at location x,yð Þ, s2 the

variance of the cumulative noise, and hi the preferred directions of

the two VCOs. Let g x,y,h1,w1,h2,w2ð Þ be the analogous activity of

a single cell where wi are the current phase difference with respect

Grid Cell Oscillatory Noise
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to baseline of the two VCOs. Then

f x,y,s,h1,h2ð Þ~
ð ð2p

0

WN Q1j0,s2
� �

WN Q2j0,s2
� �

g x,y,h1,Q1,h2,Q2ð ÞdQ1dQ2: ð10Þ

Or if a noise covariance matrix of S is used to account for noise

in the baseline oscillation,

f x,y,S,h1,h2ð Þ~
ð ð2p

0

MWN Q1,Q2 0,Sj½ �g x,y,h1,Q1,h2,Q2ð ÞdQ1dQ2: ð11Þ

Consider also the special case of noise only in the baseline

oscillation. Then the noise in the two VCOs is always identical and

causes an equal spatial shift along both band directions. The

blurring thus occurs along a direction halfway between the

directions of the two bands.

As in the previous section, we can model this blurring as an

equivalent convolution. Each pair of phase differences corresponds

to a unique angular position. Shifting one phase difference by a

small amount translates the fields by a small amount (but does not

change the overall pattern), so integration over the phase

differences can be carried out by integrating over shifts of the

spatial pattern in an appropriate direction. A minor complexity

arises because the spatial shift does not occur in the direction

encoded by the phase difference that is being shifted (which was

true for the one VCO case). Instead the convolution representing

noise along one VCO is directed along the band of the other VCO

(and vice versa). To account for noise in the VCOs, one would

convolve along the direction of each of the bands in this manner.

To account for noise in the baseline oscillator, one would then

convolve along the direction halfway between the directions of the

bands. See Text S1 in the supplemental material for further

technical information regarding the spatial convolution. See Video

S1 for an example of the effects of noise on a single grid cell with 2

VCOs (but no baseline noise) in contrast with these population-

level effects.

Thus when there are two VCOs encoding a two dimensional

position, one can integrate over a range of phases by convolving

over the corresponding spatial shifts, as demonstrated in

Figure 4c,e. This is no longer true when three or more VCOs

are used to encode a two dimensional position. As is shown in the

next section, the spatial pattern changes in a non-translational way

as the phases of the VCOs are changed (see Videos S2, S3, S4, S5),

so simply summing over translated spatial patterns cannot capture

the results.

We can finish by comparing the simulation results with both the

convolution approach and the double integral over phase shifts.

Figure 4 shows that both analytic results agree and match the

simulation results.

Three or More VCOs
Even though two VCOs are sufficient to encode position in a

two-dimensional space, use of only two VCOs causes diamond-

shaped fields which are not seen in experimental data. Using three

VCOs can produce nearly circular shaped fields, but there is no

principled reason that a cell should have only three VCOs so we

simulate conditions of up to 93 VCOs in one cell. It is unclear how

many VCOs a real grid cell would have and the number may

depend on the specific biological oscillator creating the grid

pattern. For instance, layer II stellate cells have 4–8 thick,

proximal dendrites [35]. However, as each of these dendrites

ramifies many times, it is not clear whether a single dendrite may

contain, e.g., multiple redundant oscillators with the same

preferred direction.

When a neuron has three or more VCOs, noise has three main

effects on the spatial firing of the model. First, noise can cause a

drift in the spatial phase of a grid as in the previous sections. As

will be shown, it can also cause new spatial patterns to form (such

as new fields appearing in between existing fields) and can cause

fields to deform, shrink, or vanish completely. These three effects

Figure 3. Coding 2D angular position. Positions on a plane are coded using two phase differences (black and gray bands on left, arrows at right).
A. The gray VCO’s preferred direction is up-down, the black VCO’s preferred direction is at an angle of p=3 to the gray VCO. A band occurs where the
phase difference of one VCO is near 0. A field (white outline at white star) occurs where all the bands intersect (i.e. where all phase differences are
near 0). Arrows indicate the preferred directions of the two VCOs (h1 and h2) as well as the perpendicular directions along which the bands extend (b1

and b2). B. The phase differences corresponding to four locations indicated by stars are illustrated. Instead of showing phase of the oscillators, the
arrows indicate the phase difference between a VCO and the baseline oscillator. The cell can be thought of as firing when both phase differences are
sufficiently near zero (threshold indicated by the horizontal line).
doi:10.1371/journal.pcbi.1000573.g003

(10)

(11)
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can be seen clearly in Videos S2–S5, which show single cell

examples with 3, 12, 36, and 72 noisy VCOs, respectively.

We examine these effects using three approaches. First we use a

measure that captures all of the above effects to broadly

summarize the firing of the model. We also look at the proportion

of cells that stop firing entirely. Finally, we analyze the drift in

spatial phase independent of the other effects.

We start with an imperfect but informative summary measure

of the spatial firing changes of a cell: the mean distance between

each spike and the center of where the nearest field would be in a

noiseless condition. We calculate analytically where the centers of

the fields should be (the lattice points of unit vectors in the VCOs’

preferred directions) and then calculate the mean distance of

each spike from whichever of those centers is nearest. This

measure increases as fields increase in size, appear in new

locations, or as the fields move away from their correct positions.

The measure decreases as fields decrease in size and equals 0

when there are no spikes. The measure is imperfect because it

does not distinguish among these effects and because, e.g., there

are conditions under which smaller fields can produce a higher

value. Nevertheless it is useful as a broad summary of the activity

of cells.

This measure is plotted over a range of values of noise variance

and number of VCOs in Figure 5. The measure was only averaged

over runs where there was at least one spike. In row zero there is

no noise and the measure is lower in this row than almost any

other location in the plot. Generally the mean distance increases as

the noise variance increases, except where the majority of the cells

stop firing. In those cases (lower-right corner of mean distance

measure plots), there are so few samples to average over that the

value is sometimes very high and sometimes very low. Especially

for low amounts of variance, there is also a trend toward lower

mean distance measures as the number of VCOs increases, so

greater numbers of oscillators seem to decrease the effects of noise

(see diffusion analysis later). This is particularly clear in Figure 6,

showing examples of the spatial activity as the number of VCOs

varies while the noise level held fixed.

To see why large amounts of noise cause cells with a large

number of VCOs to stop firing, consider that the activation rule of

the model is approximately: the cell fires when a sufficient number

of the phase differences are nearly zero. Notice that the shutting-

off point in Figure 5 is independent of the number of VCOs

(except for small numbers of VCOs). It is a function only of the

amount of noise and occurs as the distribution of shifts in phase

difference due to noise becomes less sharply peaked and more

uniformly distributed. As this occurs it becomes increasingly

unlikely that there will be any location where enough of the phase

differences are near zero at the same time.

However, up until and even after the point where the phase

differences are sufficiently scattered that the cell stops firing, the

mean of the set of phase differences with a common preferred

direction tends to stay near the correct position. Each oscillator is

an independent, noisy estimate of the true position. This suggests

that increasing the number of oscillators increases resilience to

noise (up to the point where the cell stops firing completely).

We can examine this more closely by following [7] in

examining the diffusive character of the effects of noise. In Text

S2 in the supplemental material we derive analytically that the

expected square of the distance that the encoded spatial phase

drifts equals 4s2
�

n where s2 is the variance of the cumulative

noise and n is the number of VCOs, when the preferred

directions of the VCOs are all at 2p=3 increments. This

arrangement of preferred directions causes the baseline noise

effects on drift to cancel out. For other sets of preferred

directions, diffusion due to baseline noise can greatly overwhelm

diffusion due to noise in the VCOs (see Text S2). As the variance

is expected to increase linearly with time (per our assumption of

independent noise on each step), the distance the encoded spatial

phase drifts over a time interval will be proportional to the length

of that interval, making the noise diffusive just as in the

continuous attractor models. The analytic solution also directly

shows that the diffusion due to noise decreases as the inverse of

the number of VCOs, confirming the intuitive usefulness of

having multiple independent estimates.

Figure 4. 2D population activity. Comparison of population-level
activity calculated in three equivalent ways and under different noise
conditions. A–C. Population representation of space when noise is
introduced only into the VCOs coding the vertical direction. Because
the diagonally-directed VCOs are not accumulating noise, the fields stay
fixed along the direction perpendicular to the bands. Instead, the
blurring of the response occurs along the direction of the bands of the
VCOs that do not receive noise. D–F. Population representation when
noise is introduced only into the baseline oscillation. G–I. Population
representation with noise in the baseline oscillation and the VCOs. A, D,
G. Analytic solution using an integral over the phase shifts due to noise.
B, E, H. Average population response from running the model 1,000 (B
and E) or 5,000 (H) times. C, F, I. Analytic solution using a spatial
convolution. Where there is cumulative phase noise in an oscillator it is
sampled from a normal distribution with variance 2.5 radians2 .
doi:10.1371/journal.pcbi.1000573.g004
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Earlier we claimed that the average spatial pattern over a

population cannot be calculated with a convolution when there

are more than two VCOs encoding a two dimensional position.

However, the phase integral approach can still be used to calculate

the average population activity. Let~hh be a n-element vector of the

preferred directions of each oscillator and~ww an n-element vector of

phase difference shifts for each oscillator (where wi is the ith

element). Then compute the n nested integrals, running over each

possible phase vector ~ww.

f x,y,S,~hh

 �

~

ð2p

0

ð2p

0

� � �
ð2p

0

MWN ~ww 0,Sj
h i

g x,y,~hh,~ww

 �

d~ww: ð12Þ

Notice that for large numbers of VCOs, numerical calculation

of this multiple integral is computationally expensive (calculating n
VCOs discretized into b phase bins requires nb calculations of g).

Comparison to Experimental Data
So far we have examined noise measured in radians, but have

not related these noise values to biologically relevant units. We

now examine variability in the interspike interval (ISI) in persistent

spiking neurons in postsubiculum as well as in entorhinal cortex

layers III and V, shown in Figure 7. We also examine noise in

terms of the period of subthreshold membrane potential

oscillations using the experimental data from [20] and examine

theta frequency bursting of medial septal neurons using data

from [36].

As Figure 5 showed, independent of the activation rule or

number of VCOs, there is a threshold level of cumulative noise

variance in the range of roughly 2.5–3.5 radians2 past which a

grid cell is no longer expected to be accurately encoding position.

We take 2.5 radians2 as a threshold level of noise variance.

Although the value may be seem arbitrary, it corresponds to a

standard deviation of nearly p=2, and at that point there is less

than a 50% chance that the phase difference encoded by a pair of

oscillators is within 600 of the correct value (
Ð p=3

{p=3
WN

x 0,2:5j½ �dx~0:493), suggesting it is a very reasonable value to

use. Because there is a relationship between the number of VCOs

and the drift due to noise, however, this threshold value is only an

approximation. Strictly, a grid cell model with only a few VCOs

would have a lower noise threshold because of the resulting greater

sensitivity to noise.

Next, [2] reported that grid cells can maintain fairly accurate

encoding of position for at least 10 minutes in darkness (although

input from other sensory modalities may have contributed to the

stability of the firing). A more liberal benchmark is that the phase

Figure 5. Simulations as number of VCOs and amount of noise are varied. In each plot, the x-axis indicates the number of VCOs used in a
simulation (from 3 to 93 in increments of 6) and the y-axis indicates the variance of the noise in radians2 . A, C. The average (over multiple runs) of the
mean distance of each spike to the center of where the nearest field would be if there were no noise is plotted (redder means higher mean distance;
darkest blue indicates points where all cells stopped firing so the measure equaled 0). B, D. Plots show the proportion of cells that remain firing
despite the noise (bluer means higher proportion of cells stop firing). A, B. Sum activation rule (using a threshold proportional to the number of
VCOs). C, D. Rectified-product activation rule. Notice the general pattern of results is independent of the activation rule (at least for these two rules).
Plots of the same type have the same color scale. Each point is the average of 150 simulations with the corresponding parameters.
doi:10.1371/journal.pcbi.1000573.g005
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difference encoded by oscillators should only last 60 seconds [21],

although it is unclear exactly how this value was determined.

Alternative constraints come from the head direction and place

cell systems, which are interconnected with the grid cell system

[24,37]. Head-direction neurons in the lateral dorsal nucleus of

the thalamus maintain their preferred directions in darkness for

as little as 2–3 minutes [38]. Head-direction neurons in the

anterior thalamic nucleus have comparable stability times [39],

though they were reported to vary considerably depending on

behavior and sensory input. Place fields from dorsal hippocam-

pus rotated around a circular arena in the dark on the same time

scale ([39]; likely a direct reflection of the drifting head direction

signal). On the other hand, another study [40] found that most

hippocampal place cells (24 of 28) were stable in darkness for at

least 8 minutes, though non-visual cues may have been present.

Interpreting these results can be difficult because generally no

quantitative attempt is made to characterize the drift (with at

least one exception [41]).

Using these as rough guidelines we can estimate an upper limit to

the rate at which noise can accumulate in the model. The cumulative

variance must not exceed 2.5 radians2 after 2 minutes (120 seconds)

of behavior, which corresponds to 120=m periods of the oscillators

with mean period m. Then the maximum variance introduced on

each oscillation must be less than 2:5m=120 radians2. Note in

particular that this value is linear in both the maximum variance as

well as in the duration of stability.

Consider a pair of oscillators with a fixed baseline oscillation of

period m seconds and an imperfect VCO where the period of the

VCO is normally distributed with mean period m seconds and

variance s2 seconds2. For now we assume that the baseline

oscillator is perfect (zero variance). If the two oscillators begin in

phase with each other and receive no velocity input, the difference

between the time of the ith peak of the baseline oscillation and the

ith period of the second oscillation will be the sum of the

differences in period of each of the preceding i{1 oscillations.

Each of these temporal differences are distributed as d*N 0,s2
� �

.

We can convert the temporal differences to phase differences by

dividing by the baseline period m seconds and multiplying by 2p

radians for a distribution of d ’~2pd
.

m*N 0, 2ps=mð Þ2
h i

.

Instead, if both oscillators are noisy with the same mean period

m and variances s2
1 and s2

2, then the difference of the lengths of the

periods is distributed as the difference between two normally

distributed variables, which is again normally distributed with

mean zero and variance s2
1zs2

2. The corresponding phase

differences are then distributed as N 0, s2
1zs2

2

� �
2p=mð Þ2

h i
or

simply N 0,2 2ps=mð Þ2
h i

if the variances are equal. Inserting

experimentally measured s and m (in seconds), we can test whether

2 2ps=mð Þ2w2:5m=120, in which case the system is expected to be

too noisy to maintain a stable spatial pattern over the specified

amount of time (e.g. t~120 seconds here).

The inequality can be rearranged to t~5m3
.

4psð Þ2 seconds.

This gives the number of seconds until the variance reaches the noise

threshold of 2.5 radians2. In Table 1, we calculate this amount of

time t for a number of biological oscillators. It is worth noting that one

oscillatory interference model [13] created a grid pattern without the

use of a baseline oscillation (but see [42]). In this case, the cumulative

variance would be halved, so the resulting estimated stability times

would be 2t (i.e. double the values given in Table 1).

Figure 6. Example spatial firing as number of VCOs is varied. Two-dimensional spatial firing plots of seven example simulated cells with
varying numbers of VCOs as the amount of noise is held fixed at a variance of 2.5 radians2 . Black indicates a location where a cell is active. The plots
correspond to sampling along one row of Figure 5. These do not show cumulative spikes, but rather the spatial firing as it would appear starting with
phase errors distributed with this level of variance, but then accumulating no more noise. When there is no noise (shown in gray for each set), all
conditions have essentially the same spatial pattern.
doi:10.1371/journal.pcbi.1000573.g006
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Consider the calculation for persistent spiking, an example of

which is shown in Figure 7a. In this study persistent firing was

induced with a brief supra-threshold current stimulation. ISIs were

measured in a 20 s window starting 7–30 s after current injection

offset (indicated by a line over the trace in Figure 7a) to avoid the

initial drift in frequency that occurs after the stimulation [43]. The

recordings were performed in the presence of synaptic blockers so

the measured stability is interpreted as indicating the ability of the

single neuron to maintain a stable firing frequency as if the animal

were maintaining a constant velocity. Figures 7b–d show ISI

histograms from the most stable cell in each of the three regions

(note that the most stable cell is not necessarily the one with the

lowest ISI standard deviation). As shown in Figures 7e–g, the ISI

standard deviation increases linearly with the mean ISI. The most

stable cell had a mean ISI of 0.428 s and a standard deviation of

0.040 s. Substituting in, t~5 0:428ð Þ3
.

4p :0:040ð Þ2~1:55 s. Two

of these cells acting as an oscillator pair in the model would be

expected to reach our threshold level of cumulative noise in 1.55

seconds, about 3.6 cycles.

To see why this is the case, consider that the standard deviation

of 0.040 s is 0:040:2p=0:428~0:587 radians, corresponding to a

variance of 0:5872~0:345 radians2 in one oscillator. Because

there is noise in both oscillators, the distribution of the phase

difference noise has twice the variance of one of the oscillators, so

the phase difference distribution accumulates a variance of

2:0:345~0:690 radian2 during each cycle. The threshold level

of variance is 2:5 radian2, so the phase difference will reach this

level in 2:5=0:672&3:6 cycles. For comparison, in order for the

expected stability time to equal 120 s, the standard deviation

would need to be 0.0045 s.

Figure 7. Summary of experimental data. Regularity of inter-spike interval (ISI) of persistent firing. A. Membrane potential trace shows an
example of persistent firing recorded from entorhinal cortex layer V. The straight line on top of the membrane potential plot shows the 20 s section
from which ISIs were measured. The current trace shows the brief current injection (2 s, 200 pA) which triggered persistent firing. The frequency plot
shows frequency of firing in 1 s bins. B–D. Example ISI histograms measured from 20 s section in cells in the: B. postsubiculum, C. entorhinal cortex
layer III (ECIII), and D. entorhinal cortex layer V (ECV). For each group, the cell with the highest estimated stability time (not necessarily the lowest
standard deviation) was chosen. E–G. Linear fit to standard deviation of ISI as the function of the peak ISI for: E. postsubiculum (t-test for correlations;
R2~0:471, p~4:25:10{4, n~22), F. ECIII (R2~0:387, p~3:18:10{4, n~29), and G. ECV (R2~0:849, p~3:19:10{3, n~7). Filled circles: Cells from
whole-cell patch recording. Open circles: Cells from sharp-electrode recording.
doi:10.1371/journal.pcbi.1000573.g007
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Previous work [20] examined the peak-to-peak time intervals

describing the period of the subthreshold membrane potential

oscillations in medial entorhinal cortical later II stellate cells

(putative grid cells). Figure 5E in that paper shows that the

standard deviation varies linearly with the mean oscillation period

(although it is not clear that the periods are actually normally

distributed as they seem to have a positive skew, see Discussion).

The rate of accumulation of noise would be expected to differ

along the dorsoventral extent because the slope of that line does

not equal 1. The slowest rate of accumulation (lowest variance) is

in the dorsalmost area. In Table 1 we give stability values for the

longest and shortest stability times, as well as values using the

average dorsal and ventral values given in [20].

Another oscillatory interference model [19] suggests the

oscillators may lie in subcortical regions known to be generators

of the theta rhythm, such as the medial septum, reticular

formation, etc. [36] report values on variability of theta burst

firing of medial septal neurons. The variance was smaller in their

alcohol-non-preferring rats, where the mean inter-burst interval

was 0.0824 s with a standard error of 0.0054 s (n~12) giving a

standard deviation of
ffiffiffi
n
p :SEM~0:0187 s. The mean burst

duration was 0.0496 s with a standard error of 0.0061 s giving a

standard deviation of 0.0211 s. We combine the reported length

of the bursts and the interval between bursts to find the mean

period and variance of the oscillator as a whole. Thus the mean

oscillator duration was 0.132 s and its standard deviation 0.028 s,

which results in a very low estimated stability time. However,

some of this variance could arise from variations in the animals’

running speeds (for instance, see Figure 2 in [44]) as it is not clear

whether [36] controlled running speed in all or only in some of

their data. In the oscillatory interference model, this velocity-

related variance is not noise, but instead reflects the function of

the model.

The ages of the animals used in our experimental recordings are

young enough that developmental processes might still be

occurring, possibly affecting oscillatory variability. Although the

ages of the animals used in our sharp electrode recordings are only

known approximately, the exact age of each animal in the whole-

cell patch condition was known. Figure S1 plots mean and

standard deviation of period length as well as estimated stability

times versus age for each cell. There was no statistically significant

correlation between age and any of these three values.

Discussion

We have examined the effects of noise on the oscillatory

interference type models of grid cell activity. When one VCO is

encoding position along one dimension, or two VCOs in two

Table 1. Estimated stability of grid cells for various biological oscillators.

Oscillator; recording method Case Mean (s) Std. (s) Stability time (s)

ECII smpo; whole-cell patch dorsal average (n = 18) 0.126 0.051 0.024

ventral average (n = 17) 0.151 0.074 0.020

most stable cell 0.149 0.055 0.035

median cell 0.177 0.086 0.027

least stable cell 0.194 0.123 0.0153

ECIII ps; sharp electrode average (n = 11) 0.121 0.0113 0.464

most stable cell 0.143 0.009 1.14

median cell 0.113 0.01 0.457

least stable cell 0.0725 0.009 0.152

ECIII ps; whole-cell patch average (n = 18) 0.149 0.036 0.081

most stable cell 0.158 0.009 1.54

median cell 0.118 0.021 0.118

least stable cell 0.123 0.079 0.009

ECV ps; sharp electrode average (n = 7) 0.125 0.089 0.008

most stable cell 0.428 0.040 1.55

median cell 0.298 0.031 0.872

least stable cell 0.198 0.023 0.465

MS H burst [36]; single electrode average (n = 12) 0.132 0.028 0.093

POS ps; whole-cell patch average (n = 22) 0.238 0.023 0.807

most stable cell 0.0975 0.006 0.828

median cell 0.218 0.047 0.149

least stable cell 0.188 0.067 0.047

Means and standard deviations of oscillator periods taken from the literature are averages over multiple cells (average of the mean period lengths and average of the
standard deviations). Means and standard deviations taken from our original experimental data are given as both the average mean and average standard deviation
over all cells as well as the single cells with the longest, median (where there were an even number of cells, the greater of the two ‘‘middle’’ cells is used), and shortest
estimated duration of stability. Expected stability time is calculated using the equation t~5m3

.
4psð Þ2 as derived in the text for noise in pairs of oscillators (stability

times should be doubled in models with no baseline oscillation). Experimental data is from this manuscript except where a reference is provided. For comparison, head
direction cells are stable for around 120 seconds in the dark [38,39], two orders of magnitude longer than the expected stability of the best of these biological
oscillators. Abbreviations: standard deviation (Std.), entorhinal cortex layer II, III, or V (ECII, ECIII, ECV), postsubiculum (POS), medial septum theta bursting cell (MS H
burst), subthreshold membrane potential oscillations (smpo), persistent spiking (ps).
doi:10.1371/journal.pcbi.1000573.t001
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dimensions, noise produces a convolution-type blurring on the

population level. When more than two VCOs are used to encode

two-dimensional positions, the convolution approach fails to

match the simulations and the expected population representation

must be integrated over the possible phase shifts due to noise. In

these cases noise causes a number of effects on spatial firing, most

prominently the appearance of new spatial fields (Figure 6).

Another clear effect is that cells with medium and large numbers

of VCOs stop firing as noise accumulates. We saw that when

multiple VCOs have the same preferred direction, they work as

independent estimators of the true angular position. This results in

a more reliable spatial signal both when individual cells have more

VCOs and when networks have more grid cells with identical

parameters. This is a strength of oscillatory interference models

over continuous attractor models, in which errors affect all cells in

the same way [7]. This redundancy also addresses the question

asked in [21] as to why oscillatory interference models would need

more than a handful of neurons.

However, our analysis of the variability of biological oscillators

presents a challenge to current oscillatory interference models. As

informally considered in [21] for the case of subthreshold

membrane potential oscillations, the amount of variability in the

neural systems that we have examined is too high to maintain

stable grid firing on the time scales seen in animals in the dark. It is

not presently clear to what extent resetting of the grid network by

external cues [11,22,23] is responsible for the longer stability times

seen in vivo or to what extent resetting could extend the low

stability times we have estimated in this manuscript.

A general mechanism for hippocampal or sensory-driven

resetting forms associations (possibly bidirectionally) between

patterns of hippocampal (or sensory) activity occurring at each

location the animal has visited with the co-active pattern of grid

cells [22,23,45]. The system can then correct noise-driven drift in

the grid system during navigation in a familiar environment by

biasing activity in the overall place system to reflect sensory input.

In principle the system could be biased in the other direction, so a

given grid cell activity pattern could activate the associated

hippocampal or sensory representations, resulting in a form of

spatial memory. In a novel environment, there would be no

familiar cues to reset the system so there would be no resetting of

the system for some initial period (likewise in, e.g., darkness or

perhaps even general locomotion while attention is not focused on

navigation). It is during this time when the grid system is

presumably performing proper path integration that the variability

of the VCOs has the greatest effect. In the oscillatory interference

model, a simple mechanism would reset each grid cell when the

animal moves near enough to the center of a grid field [11], so

each grid cell would be reset separately, and the noise in the VCOs

would represent the amount of noise accrued since the animal last

passed near the center of one of a grid cell’s fields. A resulting

prediction is that when an animal is stationary for a period of time,

noise may cause the fields of neighboring, un-reset grid cells to

drift past the animal’s current position. That is, grid cells may

appear to begin firing spontaneously and randomly when the

animal is motionless. Similarly, in an environment sufficiently

small that some cells do not have a field in the environment, those

cells should also show a constant random drift.

Future experimental work should examine the stability in cue-

controlled circumstances to more precisely fix the limits of

temporal stability. Additionally, experimental work can easily

examine the variance and mean period of biological oscillators

that are proposed as a substrate for oscillatory interference models,

especially in subcortical regions associated with the control and

expression of the theta rhythm, such as the reticular formation.

Autocorrelation histogram damping time constants for many

regions which show oscillations in the theta band have been

reported [46]. The damping time constant of an oscillator’s

autocorrelogram is directly related to its phase noise variance so

these numbers can provide a rough measure of the oscillations that

might be found in those regions (e.g. see [47,48] for useful

mathematical results). Neurons of the medial septum-diagonal

band of Broca had the longest damping time constant (0.34 s),

suggesting they were the least variable in their theta-modulated

firing [46]. Other regions and their time constants given in [46]

were antero-ventral nuclei of the thalamus (0.29 s), CA3 (0.28 s),

fascia dentata (0.27 s), presubiculum (0.19 s), posterior limbic/

retrosplenial cortex (0.12 s), and anterior limbic cortex (0.09 s).

These are quite low values, but because they are averaged over

many cells the variability of the best units might be much lower

(notice the difference in orders of magnitude between individual

best cells and population averages in Table 1).

One issue raised in the analysis of in vivo oscillators is that their

variability might reflect multiple noise sources, some of which are

correlated among multiple oscillators and some of which are

uncorrelated (e.g. intrinsic to the cell). The distinction is relevant

because changes in frequency that are identical in two oscillators

will not affect the difference in their phases. It is the uncorrelated

noise component that introduces the type of phase difference

errors between oscillators we examined in this manuscript.

Recording from a single oscillator in vivo does not provide enough

information to distinguish the two, so the total variance of

oscillations recorded in vivo may appear larger than the component

of the variance that affects stability in the manner we have

analyzed (i.e. the oscillator may appear to be much less stable than

it intrinsically is). The effects of correlated noise on the model and

the magnitude of the noise in vivo should be examined in the future,

as it is known that correlated noise between similar oscillators can

produce a synchronizing effect (stochastic synchrony; e.g.

[32,49,50]), which may produce further phase difference errors.

One possible direction for theoretical work would be forming

hybrid networks that combine the advantages of oscillatory

interference models with those of continuous attractor models. It

is also possible that circuit level interactions can decrease variance

by creating an oscillatory circuit that pools either synchronized/

coupled or independently-noisy oscillators with the same period

but possibly different phases. For instance, our own unpublished

simulations show that synaptically-coupled persistent spiking

neurons can synchronize their spiking such that the periods of

the population as a whole have a lower variance than the periods

of individual, uncoupled neurons and the variance decreases as the

size of the populations increase. In any case, if such mechanisms

can reduce variability, the reduced-variance oscillation should be

experimentally detectable, and the approximations derived earlier

may be useful to evaluate candidate circuit level mechanisms

whose oscillatory periods can be easily measured but where it may

be technically difficult to carry out a full-scale simulation of them

to produce grid cells. However, given that the study of grid cells is

still in its infancy, it is not unlikely that current models are merely

rough starting points for the understanding of a system whose full

complexity may not yet be revealed.

At present, the published reports of grid cells describe

recordings from adult rats (e.g. 3–5 months old; [3]), but our

slice recordings were performed in rats as young as postnatal day

P17. These animals were used because younger animals (e.g. less

than 30 days old) produce higher quality brain slices [51].

Preliminary data [52] suggests that the first appearance of grid

cells is around P17, but we are not aware of estimates of stability in

those grid cells. Oscillatory interference models, based on our
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present data, would predict these cells would have spatial activity

stable only for a few seconds. There is a possibility that

developmental processes continuing past this age might cause

oscillatory variability to change in older animals. However, the

development of graded persistent firing in entorhinal cortex layer

V has been examined [53] and in many respects the cells were

leveling off by around P16. This nearly the same point in

development where subthreshold membrane potential oscillations

start appearing (P14–P18, [54]), which change little beyond P28. It

is interesting to note that [54] suggested the development of these

oscillations may be driven by an increased number of persistent

sodium channels. As the variance of the channel noise current is

proportional to the number of channels [29], the magnitude of the

channel noise may actually be increasing during development

(although the ratio of the standard deviation to the mean would be

decreasing). While this is not conclusive evidence it does,

combined with our lack of correlations with age, support the

claim that the cells we examined were mature enough to show the

same relevant phenomena as adult neurons.

In our analysis of biological oscillators, we assumed that the

noise took the form of normally distributed oscillator periods,

however the period histograms in [20] as well as some of our own

persistent spiking ISI histograms had a shape that appears

positively skewed (longer right tail). This shape is consistent with

an oscillator in which the frequency of each period and not its

wavelength (duration of each period) is normally distributed,

which would make the wavelength distributed as the inverse of a

normally distributed variable. The skew in the period distribution

would cause the average wavelength to be longer than the

wavelength of the mean frequency. This would mean the error

terms would have a nonzero mean, which would cause a constant

shift in the encoded phase differences. Simulations in [20]

examined noise with a non-zero mean in an oscillatory

interference model. There the noise was shown to quickly destroy

any spatial firing pattern because of this constant drift. This

sensitivity to noise with a non-zero mean is not a failing of this

particular model as it is reasonable that any path integration

model should fail if there is an uncorrected directional bias (non-

zero mean) in the noise in its velocity input or position encoding.

This non-normal distribution of oscillation wavelengths is not

accounted for by our analysis and may cause an even larger

decrease in stability than the apparent increase in variance due to

the long right tail.

It is not yet clear what mechanisms underlie the spatial firing

patterns of grid cells. However, we have shown the common

criticism [7,13,20,21] that oscillatory interference models are

particularly sensitive to noise is not true for sufficiently small levels

of noise when there are many redundant VCOs, but experimen-

tally determined levels of noise are significantly higher and suggest

modified oscillatory interference models are needed to account for

the observed stability of grid cells. Nevertheless, there are still

many open questions regarding the basis of the hexagonal grid

firing pattern and only future experimentation can settle these

issues.

Supporting Information

Text S1 Technical notes on the 2 VCO convolution

Found at: doi:10.1371/journal.pcbi.1000573.s001 (0.06 MB PDF)

Text S2 Diffusion analysis

Found at: doi:10.1371/journal.pcbi.1000573.s002 (0.09 MB PDF)

Figure S1 Scatter plots of experimental data for three different

regions of the brain. Estimated stability times are calculated from

the oscillator period mean and standard deviation using the

equation derived in the text for a pair of noisy oscillators. In the

postsubiculum recordings, the correlation r between age and

period length (mean ISI) was not significantly different from 0

(Student’s t test for correlations, r = 0.005; N = 22; 2-tailed

p = 0.98) nor was the correlation between age and period standard

deviation (r = 0.056; N = 22; 2-tailed p = 0.79). The entorhinal

cortex layer II subthreshold membrane potential oscillation data

showed the same results: the correlation between age and mean

period length (mean peak-to-peak time) was not significantly

different from 0 (r = 0.25; N = 25; 2-tailed p = 0.14) nor was the

correlation between age and period standard deviation (r = 0.22;

N = 25; 2-tailed p = 0.21). In the whole-cell entorhinal cortex layer

III recordings, the correlation between age and mean period was

not significantly different from 0 (r = 20.39; N = 18; 2-tailed

p = 0.11) nor was the correlation between age and period standard

deviation (r = 20.35; N = 18; 2-tailed p = 0.15).

Found at: doi:10.1371/journal.pcbi.1000573.s003 (0.88 MB EPS)

Video S1 Spatial activity of the model with 2 VCOs as noise

accumulates. The left side of the video is a spatial firing rate map

calculated as described in the text. The darkest blue color means

no firing, and darkest red corresponds to the highest firing rate.

The text over this plot indicates the variance of the cumulative

noise as it builds up from 0 to 3 radians2. The right side of the

video shows the same region of space but shows the overlapping

activity of each VCO (colored red and blue) such that the cell fires

when both bands overlap and produce a magenta color (compare

to Figure 3 in the text). The changing spatial pattern on the left is a

direct result of the noise-induced movements of the individual

VCO bands shown on the right.

Found at: doi:10.1371/journal.pcbi.1000573.s004 (2.65 MB AVI)

Video S2 Spatial activity of the model with 3 VCOs as noise

accumulates. The left side of the video is a spatial firing rate map

calculated as described in the text. The darkest blue color means

no firing, and darkest red corresponds to the highest firing rate.

The text over this plot indicates the variance of the cumulative

noise as it builds up from 0 to 3 radians2. The right side of the

video shows the same region of space but shows the overlapping

activity of each VCO (colored red, green, and blue) such that the

cell fires when all three bands overlap and produce a white color

(compare to Figure 3 in the text). The changing spatial pattern on

the left is a direct result of the noise-induced movements of the

individual VCO bands shown on the right.

Found at: doi:10.1371/journal.pcbi.1000573.s005 (2.77 MB AVI)

Video S3 Spatial activity of the model with 12 VCOs as noise

accumulates. The left side of the video is a spatial firing rate map

calculated as described in the text. The darkest blue color means

no firing, and darkest red corresponds to the highest firing rate.

The text over this plot indicates the variance of the cumulative

noise as it builds up from 0 to 3 radians2. The right side of the

video shows the same region of space but shows the overlapping

activity of each VCO (colored red, green, and blue; the four VCOs

of the same color are each drawn at 25% transparency) such that

the cell fires when enough bands overlap and produce a white

color (compare to Figure 3 in the text). The changing spatial

pattern on the left is a direct result of the noise-induced

movements of the individual VCO bands shown on the right.

Found at: doi:10.1371/journal.pcbi.1000573.s006 (2.66 MB AVI)

Video S4 Spatial activity of the model with 36 VCOs as noise

accumulates. The left side of the video is a spatial firing rate map

calculated as described in the text. The darkest blue color means

no firing, and darkest red corresponds to the highest firing rate.
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The text over this plot indicates the variance of the cumulative

noise as it builds up from 0 to 3 radians2. The right side of the

video shows the same region of space but shows the overlapping

activity of each VCO (colored red, green, and blue; the 12 VCOs

of the same color are each drawn at 1/12 transparency) such that

the cell fires when enough bands overlap and produce a white

color (compare to Figure 3 in the text). The changing spatial

pattern on the left is a direct result of the noise-induced

movements of the individual VCO bands shown on the right.

Found at: doi:10.1371/journal.pcbi.1000573.s007 (2.36 MB AVI)

Video S5 Spatial activity of the model with 72 VCOs as noise

accumulates. The left side of the video is a spatial firing rate map

calculated as described in the text. The darkest blue color means

no firing, and darkest red corresponds to the highest firing rate.

The text over this plot indicates the variance of the cumulative

noise as it builds up from 0 to 3 radians2. The right side of the

video shows the same region of space but shows the overlapping

activity of each VCO (colored red, green, and blue; the 24 VCOs

of the same color are each drawn at 1/24 transparency) such that

the cell fires when enough bands overlap and produce a white

color (compare to Figure 3 in the text). The changing spatial

pattern on the left is a direct result of the noise-induced

movements of the individual VCO bands shown on the right.

Found at: doi:10.1371/journal.pcbi.1000573.s008 (2.34 MB AVI)

Acknowledgments

The authors thank the three anonymous reviewers for their insightful and

helpful comments.

Author Contributions

Conceived and designed the experiments: MY BT LMG MEH. Performed

the experiments: MY BT LMG. Analyzed the data: MY BT LMG. Wrote

the paper: EAZ MY BT LMG. Programmed and carried out the

simulations and performed the mathematical analyses: EAZ. Programmed

the simulations: MEH.

References

1. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial
representation in the entorhinal cortex. Science 305: 1258–1264.

2. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a

spatial map in the entorhinal cortex. Nature 436: 801–806.

3. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, et al. (2006)

Conjunctive representation of position, direction, and velocity in entorhinal
cortex. Science 312: 758–62.

4. Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat

medial entorhinal cortex. J Neurosci 26: 4266–4276.

5. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path

integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:
663–678.

6. Guanella A, Kiper D, Verschure P (2007) A model of grid cells based on a

twisted torus topology. Int J Neural Syst 17: 231–240.

7. Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor

network models of grid cells. PLoS Computational Biology 5.

8. Gaussier P, Banquet JP, Sargolini F, Giovannangeli C, Save E, et al. (2007) A

model of grid cells involving extra hippocampal path integration, and the
hippocampal loop. J Integrated Neurosci 6: 447–476.

9. O’Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place

cells: Theoretical significance and relationship to entorhinal grid cells.
Hippocampus 15: 853–866.

10. Blair HT, Welday AW, Zhang K (2007) Scale-invariant memory representations
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