CH102 Spring 2013 Boston University

Goal: Relate T to speed of gas particles

Pathway: Get microscopic expression for P V

Key idea: Force is exchange of momentum *p* with wall per unit time.

Note: Here upper-case *P* is used for pressure and lower-case *p* is used for momentum.

Force due to j^{th} particle of mass m and speed u_i

$$\Delta p = 2 m u_i$$
 (elastic collision)

 $\Delta t = 2 L/u_i$ (travel to opposite wall and back)

$$F = \Delta p/\Delta t = m u_i^2/L$$

Pressure due to j^{th} particle of mass m and speed u_j

$$P_j = F/\text{area} = F/L^2 = m u_j^2/L^3$$

That is

$$P_i = m u_i^2/V$$

Pressure due to j^{th} particle of mass m and speed u_i

$$P_i = m u_i^2/V$$

Different particles have different speeds

In terms of the **average speed** *u*, and adding up contributions of all of the particles in the gas, the **total pressure** *P* in terms of the number of moles *n* and the **molar mass** *M* is

$$P = n M u^2/(3 V)$$

since the number of particles N times their mass m can be expressed as

$$N m = n N_o m = n M$$

In terms of the average molar kinetic energy, $E_{k,avg} = M u^2/2$, the total pressure is

$$P = 2/3 n E_{k,avg}/V$$

But from the ideal gas law

$$P = n R T/V$$

Combining these two expressions, we find that T is a measure of the average molar kinetic energy,

$$E_{\rm k,avg} = (3/2) R T$$

T is a measure of the average molar kinetic energy,

$$E_{\rm k,avg} = (3/2) R T$$

Since $M u^2/2$, the squared rms speed is ...

$$u^2 = 3 R T/M$$

Calculate RMS speed of H₂ at 25 °C

 $u^2 = 3 R T/M$

 $R = 8.314 \text{ J/(K mol)}, J = \text{kg m}^2/\text{s}^2$

Answer: 1920 m/s

Ratio of speed of H₂ to O₂ at 25 °C

Key relation ...

$$u_1^2/u_2^2 = M_2/M_1$$

 $u_{H2}^2/u_{O2}^2 = M_{O2}/M_{H2} = 32/2 = 16$
 $u_{O2} = u_{H2}/4 = (1920 \text{ m/s})/4 = ...$
480 m/s

Effusion of gas mixtures

Odyssey Molecular Lab 34: CO and H₂

Exercise 11.19: Graham's law of effusion

Key relation ...

$$u_1^2/u_2^2 = M_2/M_1$$

If *n* moles of CH₄ effuses in 1.50 min and *n* moles of X effuses in 4.73 min, ...

what is the expression for the molar mass of X?

Key idea ...

time to effuse is proportional to 1/speed

$$t_2^2/t_1^2 = M_2/M_1$$

$$M_2 = M_1 t_2^2/t_1^2$$

The molar mass of X is ...

160. g/mol

