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[17] When NaHCO,(s) is dissolved in 200 mL of HCI(aq), the temperature of
the solution goes down. This means the chemical reaction between the
NaHCO4(s) and the HCI(aq) results in the chemical system ...

7% 1. giving off heatandsoq > 0
45% 2. giving off heatandsoq < 0
18% 3. absorbing heatandsoq <0
30% 4. absorbingheatandsoq >0
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* Quiz template? Let me know today

* Complete: Measuring heat and measuring work

* Heat, q, depends on whether w # 0: AU = gy and AH = gp
« Enthalpy change of reaction, AH® 4,

« Enthalpy changes are additive: Hess’s law

* Practice problem: Limiting reagent, Ang,s, Wpy, qp, Gy

Next: Standard enthalpy of formation, AH®¢; Using AH°¢ to compute
AH®.ypn; Begin ch13: Spontaneous Processes
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[TF] When NaHCO4(s) is dissolved in 200 mL of HCl(aq), the temperature of
the solution goes down. This means the chemical reaction between the
NaHCO,(s) and the HCl(aq) results in the chemical system ... {

5% 1. giving off heatandsoq > 0
55% 2. givingoff heatand soq < 0
12% 3. absorbing heatandsog <0
29% 4. absorbing heatandsoq > 0
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How do we know if work is present?

Macroscopic movement, for example of a piston.
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: : ) [7F] When NaHCO,(s) is dissolved in 200 mL of HCI(aq), CO,(g) bubbles form.
HOW dO we knOW If Work IS present : This means the chemical reaction between the NaHCO;(s) and the HCl(aq)
Macroscopic movement, for example of a piston. results in the chemical system ...
L= 22% 1. doingwork andsow > 0 ‘< i <p CC’OL(%)\
P <23 doing work and sow < 0 -
y . & 4 A @) 0 21% 3. having work done on itand sow > 0 _ A R \
s 14% 4. having work done onitandsow <0 0 ‘?s
ork done on gas:w = =P AV =|—AngasRT ! “ Mgas >0
Expansion of gas pushes against P, gas expends energy, w < 0 Al <0
Compression of gas pushed on by P,,: gas gains energy, w > 0 83/"‘!’20
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a = w n
Heat depends on whether there is work & v=g+ Heat depends on whether there is work
Energy change in chemical reactions is due to the balance of the energy )L No matter how the chemical reaction is carried out (in a sealed, constant
required to break bonds and the energy released when bonds are made.A’gA/ volume container or in an open, constant-pressure container), for a given
amount of reactants and a given reaction yield, the energy change,
M\P H AU = Ufinal - Uinitial'
is fixed, by the number and kinds of bonds being made and broken.
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Heat depends on whether there is work Heat depends on whether there is work
If the process takes place in a sealed, rigid container, there can be no volume If the process takes place in an open container, there may be volume change
change and so work is 0, (if there is net formatlon or consumption of gas) and so work may not be 0
= AQ _ —
W = —PegtAV = —Peye X 0 =0 YY) Z + W = —Peyy AV %0 7(
== This means only some of the energy change must appedX as heat ﬂow
This means all the energy change must appear as heat flow betw&n@x\elsfsgn remainder being account for as work. A U
and the surroundings. z V

Jw#laﬁmdaga -aH= er
gy Sy =AU/‘AZV
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Energy d|agram3 =" te AU = qV and AH 4 is ¢ ic, olution/Surrotndings-warm). How much warming is

/ ~——N

a*(aq) + 2 H,0(D) eat , , .

(solutlon/surroundmgs coobh—How much cooling is there at con Stant vo

(qy), compared to that at conim_npg}g;sure (qp)? : ,i] >0

Warming is greater at constant volume, |qy| > |gp| %:
Warming is the same at constant volume, |qy| = |qp|

s Aa - Warming is smaller at constant volume, |qy| < |qp|
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Energy diagrams relate AU = q, and AH = g,

The combustion CH,(g) + 2 0,(g) — CO,(g) + 2 H,0(1)
is exothermic, g < 0 (solution/surroundings warm). How much warming is
there at constant volume (gqy), compared to that at constant pressure (qp)?

ecture 16 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

AH = qgp differs only a little from AU= qv)]
-~ = W 4

=

Energy change: AU = qy =qp + W

Enthalpy change: AH = q/pv I ‘1{‘“’(‘ ° %
Qv-qp=w=-P AV =-An,RT »B'U OMQ;LS Ebk;

For 1.0 mol change in the amount of gas as a result of the reaction,
{ 1.0 mol x RT = 1.0 mol x 8.314 ]/(mol K) x 300 K & 2.5 k] l
so AU = qyand AH = g, differ little from one another.

Typical values of g are several orders of magnitude larger, and so gy and g,
always have the same sign.
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AH= qp differs only a little from AU= q\,
Energy change: AU = qy=qp, +w
Enthalpy change: AH = qp

In the open laboratory (constant pressure), pressure is constant, so it is
convenient to work with enthalpy change.

22
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Enthalpy change of reaction,* _

We have seen that while heat flow at constant volume is the direct measure of
energy change (AU = qy), heat flow at constant volume (gp) is much more

convenient to measure and differs only a little bit from qy. R

For this reason from now on we will focus on enthalpy change, AH = gp.

23
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Enthalpy change of reaction, AH® .y,

How much heat flows depends on how much limiting regent there is and on the
yield of the chemical reaction.

To standardize the repoyting of enthalpy changes, the standard enthalpy
change of reaction (AH®.,) is defined as the heat flow at SATP (labgr and
25°C) for the chemical equation as written.

79gK-
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Enthalpy change of reaction, AH®y,
Consider the chemical equatio g?.(o

2N0(g) + 0y() — ZNO,(9) AH%
_ — P!
Here are the different ways to use this chémical equation and its enthalpy

change value.

“114.1 K] of heat are released for each 2 mol of NO,(g) formed.”
pot

“114.1 K] of heat are released for each 2 mol of NO(g) consumed.”

“114.1 K] of heat are released for each 1 mol of 0,(g) consumed.”

“114.1 K] of heat are released for each freaction unit.”

“114.1 K] of heat are released for each mol of reaction.”

BOSTON
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Enthalpy change

(2P@) +0:(9) — 2N0,(g) AH"

> o8
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3% 1. gp=—90.k 20\ x — = (.o >
13% 2. gp=—45.K]

i*ﬁ
Q31420
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Rules for Hess’s law calculations i)

Adding reactions, their heat flow adds. A 4;6 M/‘- -{—5&7@5
/ B =>C Mh=- (eIl

28
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Rules for Hess’s law calculations

Adding reactions, their heat flow adds.
Each multiple of a reaction adds a multiple to its heat flow to the total.

Exchanging reactants and products reverses the direction of the heat flow. g\

30
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Rules for Hess’s law calculations

Adding reactions, their heat flow adds.

Each multiple of a reaction adds a multiple to its heat flow to the total.
A=8 sy
A /?6 10
- = -Ho"-%&
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Rules for Hess’s law calculations
Adding reactions, their heat flow adds.

Each multiple of a reaction adds to its heat flow to the total.

Exchanging reactants and products reverses the direction of the heat flow.

Operation Result

Addition of two or more chemical equations AHS (1 +2) = AHS (1) + AHS, (2)

Multiplication of a chemical equation by a factor of n AHS,, = nAH (1)

Reversing a chemical equation AHY, (reverse) = —AHY, (forward)

31
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AH®., via Hess'’s law

Use energy conservation to determine AH of the third reaction below.
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AH® ., via Hess’s law

Use energy conservation to determine AH of the third reaction below.

A—B AHy | A= DR A—B AHy= +85 K]
AH, ﬁ/ac — AVSL C—B AH,=-52K]
AoC AHy =? A—C AH; =7
. . A=C M -b, T . .
Since energy 1s conserved ... Since energy 1s conserved ...
AH; = AH,; — AH, AH, = AH, — AHy = +85 K] - (=52 kJ) = +137 k] )J

BOSTON BOSTON
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AH®.4, Vvia Hess’s law AH° 4, Via Hess’s law
A—B AH;= +85K] Consider
C—B AH,= -52K] C(s) + 0,(g) — CO,(g) AH;
A—C AHs = AH, — AHy= +85 k] - (-52 KJ) = +137 kJ S(s) + 0,(g) — SO,(g) AH,
Ilustrate this result with the enthalpy diagram for these processes. )( CS,(D) +30,(9) — CO,(g) +250,(9) AH;
C(s) + 2 S(s) — CS,(I) AH, =? //
34 35
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AH®., via Hess'’s law

Consider
2
C(s) + 0,(g) — CO,(g) AH;=—393.5 kj//:a/
S(s) + 0,(g) — SO,(g) AH,=—296.8k Jawsl
€S, () + 3 0,(g) — CO,(g) + 2 50,(g) AHs=—1103.9k] fwA
C(s) + 2 S(s) — CSy(1) AH, =?

Since energy is conserved ...
AH, = AH; + 2 AH, — AH3 = ..
AH, = +116.8 K]
e

BOSTON
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AH® ., via Hess’s law
Consider
C(s) + 0,(9) — CO,(g9) AH,
S(s) + 0,(9) — S0,(g9) AH,
CS(D) +30,(9) — CO,(g) +250,(g9) AH;
C(s) +2S(s) = CS,()) AH, =7
Since energy is conserved ... /
AH, = AH; + 2 AH, — AH3
36
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Recipe for AH® ., via Hess’s law
First, get expression for AH .
Then, substitute in values in the expression for AH®.y, to get its numerical value.
38
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Practice problem
2 Al(s) + 6 HCI(aq) — 2 AlCl;(aq) + 3 H,(g) AH, = —1049%

HCI(g) = HCl(aq) AH, =79 -

K]
H,(g) + Cl,(9) — 2 HCl(g) AH3 =—185 m_(])l
AlCly(s) — AlCly(aq) AH, =—323 mk_cl)l

Show that
=-1432L -~

2 Al(s) + 3 Cly(g) ~ 2 AICIy(s) Ay, X

39
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Practice problem Practice problem
2 Al(s) + 6 HCl(aq) — 2 AlCl,(aq) + 3 H,(g) AH, = —1049% 2 Al(s) + 3 Cly(g) = 2 AICLy(s) AHpen = —1432%
HCI(g) = HCl(aq) AH, = —79 X Calculate qp and gy for the reactiop of 1.350 g of Al(s) reacts with 0.7100 g of I }
el Cl,(g). Assume 100.0% yield.

K]
H,(g) + Cl,(g) = 2 HCI(g) AH; = —185 m_c]Jl
AlCl;(s) = AlCl3(aq) AH, = —323 %
2 AI(S) +3 Clz(g) -2 AICIS(S) AHpyn = ..

Show that
2 Al(s) + 3 Cly(9) = 2 AlCl3(S) AHpxy = —1432mk—il
AHyyn = AH; + 3AH; — 2AH, + 6 AH, = 1432‘%
-
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Practice problem Practice problem /S 3 NG
K K —_—

2 Al(s) 2 AlCl4(s) AHpy, = —1432m—ll Z:A’L(s) 2 AlCl4(s) AHpyy = —1432m—£1 | & 25
Calculate gp and gy for the reaction of 1.350 g of Al(s) reacts with 0.7100 g of Calculate gp and gy forthe reaction of 1.350 g of Al(s) reacts with 0.7100 g of
Cl,(g). Assume 100.0% yield. Cl,(g). Assume100.0% yield.

Limiting reagentis ... Limiting reagentistt;

Angy, = ~-~pol Ang, = —0.01001 mol

wpy = —Anc,RT wpy = —Anc,RT = +0.02482 k]

qp =K qp = —4.780 K]

qv = gp + wpy = k] qv = qp + wpy = —4.755K]

-
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