

Copyright © 2020 Dan Dill dan@bu.edu

Lecture 15 CH131 Fall 2020	Copyright © 2020 Dan Dill dan@bu.edu	
Osmotic pressure Π = <i>i</i> c _{solute} R T		
1.40 g of polyethylene ($i = 1$) dissolved in 100. mL of benzene generates an osmotic pressure of 0.248 kPa at 25 °C. Calculate the molar mass of the polyethylene. ($R = 8.3145 \times 10^3 \frac{\text{LPa}}{\text{K mol}}$) 1. Calculate the concentration 1.00 × 10 ⁻⁴ mol/L C _{solute} = $\overline{R_1}$ $\left(\begin{array}{c} H & H \\ C & -C \\ H & H \end{array}\right)_n$		
BOSTON UNIVERSITY	19	

Lecture 15 CH131 Fall 2020

 Copyright & 2020 Data Dill data@bu.edu

 OSENDCIC pressure Π = i C_{solute} RT

 1.40 g of polyethylene (i = 1) dissolved in 100. mL of benzene generates an osmotic pressure of 0.248 kPa at 25 °C. Calculate the molar mass of the polyethylene. (R = 8.3145 × 10³ LPa / Kmol)

 1. Calculate the concentration...

 1.00 × 10⁻⁴ mol/L

 2. Calculate the moles...

 10⁻⁵ mol

 3. Calculate the molar mass...

23

24

How do we know heat is present? Since $q_{sur} = mc\Delta T_{sur}$ we can use temperature change of surroundings to m	Copyright @ 2020 Dan Dill dan@bu.edu & > O Artol kessai c & cuchings get collese nonitor heat flow.
	V
BOSTON UNIVERSITY	28

28

