



























| Lecture 11 CH131 Fall 2020                                                     | Copyright © 2020 Dan Dill dan@bu.edu         |  |  |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|
| Real gases                                                                     | (particles use points                        |  |  |  |  |
| The ideal gas law relates $P_{ideal}$ and $V_{ideal}$ ,                        | (particles do MOT, )                         |  |  |  |  |
| $P_{\rm ideal}V_{\rm ideal} = nRT.$                                            | atract one anathers                          |  |  |  |  |
| Using the expressions $V = V_{ideal} + bn$ and $P = P_{ideal} - bn$            | $a\left(\frac{n}{v}\right)^2$ we can rewrite |  |  |  |  |
| the ideal gas law in terms of actual pressure and the actual container volume, |                                              |  |  |  |  |
| $\left(P + a\left(\frac{n}{V}\right)^2\right)(V - bn) = nRT$                   | Videal V-bm ~<br>Pidal = P+a(v)              |  |  |  |  |
| This is known as the van der Waal equation.                                    | -1                                           |  |  |  |  |
| $P(+\alpha(\frac{M}{V})^2) \xrightarrow{MKT}_{V-box}$                          | 2 6                                          |  |  |  |  |
| $\frac{\text{BOSTON}}{\text{UNIVERSITY}} \qquad P = \frac{1}{V-bn} - a(V)$     | / //28                                       |  |  |  |  |



28





















<text><section-header><text><image><image>





| Lecture 11 CH131 Fall 2020 |              |                                  | Copyright © 2020 Dan Dill dan@bu.edu        |      |
|----------------------------|--------------|----------------------------------|---------------------------------------------|------|
| Hydrog                     | en bonds are | 0—H : М—<br>0—H : 0—<br>0—H : F— | typical bo<br>F—H :N—<br>F—H :O—<br>F—H :F— | onds |
| BOSTON<br>UNIVERSITY       |              |                                  |                                             | 46   |



46