

Lecture 9 CH131 Fall 2020	Copyright © 2020 Dan Dill dan@bu.edu
Gas law calculations	
At 100.0°C, the density of water vapor is 0.000588 water is 0.958 g/mL. How much farther apart of we phase than those in the liquid phase? The ratio of the densities, $\frac{0.958 g/mL}{0.0000000 g/mL} = (1630.)$	g g/mL and that of liquid ater molecules in the gas
is how many more liquid water molecules there are there are gaseous water molecules in the same volu	e in a given volume than ume.
BOSTON	
6	

11

Copyright © 2020 Dan Dill dan@b

Lecture 9 CH131 Fall 2020 0.513 g * 1 mol 2*1.008 g Partial pressures A mixture consisting of 0.513 g of $H_2(g)$ and 16.1 g of $N_2(g)$ occupies 10.0 L at 20.0°C. Calculate the partial pressures of each gas in atm. $n_{\rm H_2} = 0.254 \text{ mol}, n_{\rm N_2} = 0.575 \text{ mol}, n = 0.829 \text{ mot}, P = 1.99 \text{ atm}$ Final step: Calculate the partial pressures. $\sqrt{P_{H_2}} = x_{H_2}P = \frac{0.254}{0.829} \times 1.99 \text{ atm} = 0.612 \text{ tm}$ $P_{N_2} = x_{N_2} P =$ \times 1.99 atm = 1.38 atm Check: $P = P_{H_2} + P_{N_2} = 0.612 \text{ atm} + 1.38 \text{ atm} = 1.99 \text{ atm}$

15

14

18

20

Copyright © 2020 Dan Dill dan@bu.edu

Copyright © 2020 Dan Dill dan@bu.edu Lecture 9 CH131 Fall 2020 Gas law calculations in chemical reactions $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ 1.00 atm $O_2 \rightarrow 0.500$ atm CO_2 Determine all partial pressures and the total pressure. I Initial 1.00 1.00 0 0 2.00 ~ 0.560 - 1.00 Change +0.500 1.00 Final 23

Lecture 9 CH131 Fall 2020					Copyrigh	Copyright © 2020 Dan Dill dan@bu.edu		
Gas law calculations in chemical reactions								
$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$ 1.00 atm $O_2 \rightarrow 0.500$ atm CO_2 Determine all partial pressures and the total pressure.								
	Initial	1.00	1.00	0	0	2.00		
	Change	-0.500	-1.00	+0.500	+1.00			
	Final							
BOST	ON SITY						24	

Copyright © 2020 Dan Dill dan@bu.edu

25

