

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

[TP] What is the value of $\frac{877.15 \times 1067.4}{2371} - 392$ to the correct number of significant figures?

17% 1. 2.88398
 17% 2. 2.8840
 17% 3. 2.884
 17% 4. 2.9
 17% 5. 3
 17% 6. 2

0 1 9

BOSTON UNIVERSITY

1

Lecture 2 CH131 Fall 2020
 Tuesday, September 8, 2020

- Review: Significant figures
- Mass of atoms
- Isotopes and average atomic mass
- Atomic mass unit and Avogadro's number
- Atomic weight

Next: Chemist's dozen: The mole; Ch 2: Chemical formulas, equations, and reaction yields

BOSTON UNIVERSITY

2

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

[TP] What is the value of $\frac{877.15 \times 1067.4}{2371} - 392$ to the correct number of significant figures?

1% 1. 2.88398
 10% 2. 2.8840
 43% 3. 2.884
 6% 4. 2.9
 5% 5. 2
 36% 6. 3

7
 392.000

114354

152 of 192 3 0

BOSTON UNIVERSITY

3

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Review: Significant figures

$\frac{877.15 \times 1067.4}{2371} - 392 = 394.9 - 392$

$394.9 - 392 = 395 - 392 = 3$

394.9 → 395
 394.8 → 395
 394.7
 394.6
 394.5
 394.4
 394.3
 394.2
 394.1
 394.0

4

BOSTON UNIVERSITY

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Atomic mass and molecular mass

Atomic mass is the (dimensionless) ratio of the mass of a particular atom to the mass of a reference atom.

The reference atom is the most abundant isotope (we will discuss isotopes shortly) of carbon that is assigned the **atomic mass 12**.

This means the mass of an S atom is $\frac{32.065}{12} = 2.6721$ times as heavy as the reference carbon atom.

5	6	7	8	9
Boron	Carbon	Nitrogen	Oxygen	Fluorine
10.81	12.0107	14.0067	15.9994	18.9984
13	14	15	16	17
Aluminum	Silicon	Phosphorus	Sulfur	Chlorine
26.98	28.0855	30.973762	32.065	35.45
31	32	33	34	35
Ga	Ge	As	Se	Br

BOSTON UNIVERSITY

5

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

[TP] What is the molecular mass of CS_2 ?

0% 1. 32.065
 2% 2. 44.076
 72% 3. 76.140 ✓ 76.141
 26% 4. Something else

5	6	7	8	9
Boron	Carbon	Nitrogen	Oxygen	Fluorine
10.81	12.0107	14.0067	15.9994	18.9984
13	14	15	16	17
Aluminum	Silicon	Phosphorus	Sulfur	Chlorine
26.98	28.0855	30.973762	32.065	35.45
31	32	33	34	35
Ga	Ge	As	Se	Br

BOSTON UNIVERSITY

76.140
 76.141
 12.011
 32.065
 32.065
 12.011
 32.065
 32.065
 114.354

170 of 192 6 0

6

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

[TP] What is the mass percent of oxygen in NO_2 ?

0% 1. 46.7%
 2% 2. 53.3%
 83% 3. 69.6% ✓
 2% 4. 30.4%
 13% 5. Something else

5	6	7	8	9
Boron	Carbon	Nitrogen	Oxygen	Fluorine
10.81	12.0107	14.0067	15.9994	18.9984
13	14	15	16	17
Aluminum	Silicon	Phosphorus	Sulfur	Chlorine
26.98	28.0855	30.973762	32.065	35.45
31	32	33	34	35
Ga	Ge	As	Se	Br

BOSTON UNIVERSITY

$$\frac{\text{Mass of O in } \text{NO}_2}{\text{Mass of } \text{NO}_2} * 100\% = \frac{2 * 15.9994}{2 * 15.9994 + 14.0067} * 100\% = 69.6\%$$

114.354

173 of 192 8 0

8

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Atom composition

Atoms consist of positively charged **protons**, negatively charged **electrons**, and neutral **neutrons**.

The **volume** of the atom is **due to its electron cloud**.

The **mass** of the atom is **due to the protons and neutrons** packed into a **much smaller nucleus**.

The radius of the electron cloud **10⁵ larger than that of the nucleus**.

The mass of the proton and neutron are **about the same**, but each nearly **2000 times as larger than that of the electron**.

BOSTON UNIVERSITY

13

13

Atom composition

Because atoms are **electrically neutral**, atoms contain **equal numbers of electrons and protons**.

All atoms of the **same element** have the **same number of protons** (and electrons).

Different elements have **different numbers of protons** (and electrons).

Atoms of an element can have **different numbers of neutrons**, and such atoms are called **isotopes** of the element.

Because the **electron cloud is the same for every isotope** of an element, each isotope has the **same chemical properties**.

14

Lecture 2 CH131 Fall 2020

Copyright © 2020 Dan Dill dan@bu.edu

Isotopes and average atomic mass

The composition of an atom is indicated as ZX , where X is the element symbol, atomic number Z is the number of protons, and the mass number A is the number of protons plus the number of neutrons. $\#P + \#N$

As example, the isotopes of carbon are $^{20}_{10}\text{Ne}$, $^{21}_{10}\text{Ne}$, and $^{22}_{10}\text{Ne}$, with 10 protons and 12 neutrons, respectively.

The diagram illustrates the composition of an atom. At the top, the general formula ZX is shown, with X as the element symbol, Z as the atomic number (number of protons), and A as the mass number (number of protons plus neutrons). Below this, the formula is expanded to $\#P + \#N$. Below the expanded formula, three isotopes of carbon are shown: $^{20}_{10}\text{Ne}$, $^{21}_{10}\text{Ne}$, and $^{22}_{10}\text{Ne}$. Each isotope has 10 protons (indicated by an upward arrow) and 12 neutrons (indicated by a downward arrow). The mass number is the sum of protons and neutrons, represented by the formula $\#P + \#N$ at the bottom.

BOSTON
UNIVERSITY

15

Sketch an atom of ^{21}Ne , with 10 electrons, 10 protons, and 11 neutrons.

Isotopes and average atomic mass

Cloud of delocalized charge

electrons are not moving

electrons are spread out in a cloud of charge

BOSTON UNIVERSITY

16

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@b.u.edu

[TP] Chlorine has two isotopes, ^{35}Cl and ^{37}Cl , with atomic mass 34.969 and 36.966, respectively. The natural abundance of ^{35}Cl is 75.78%. The average atomic mass of chlorine is ...

0% 1. 34.969

5% 2. $(34.969 + 36.966)/2$

87% 3. $0.7578 \times 34.969 + (1 - 0.7578) \times 36.966 = 35.45$

1% 4. 36.966

6% 5. Something else

114354

18

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

[TP] What is the **least abundant** isotope of magnesium?

7% 1. $^{24}_{12}\text{Mg}$
34% 2. $^{26}_{12}\text{Mg}$
59% 3. More information needed

Mg
12
Magnesium
24.3050
20

114354

176 of 192 19 0

BOSTON UNIVERSITY

19

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Isotopes and average atomic mass

To calculate abundances from the average atomic mass of an element, we must know its **naturally occurring isotopes**.

For magnesium, there are **three**.

$^{24}_{12}\text{Mg}$	23.985 041 90	78.99	x
$^{25}_{12}\text{Mg}$	24.985 837 02	10.00)
$^{26}_{12}\text{Mg}$	25.982 593 04	11.01	

$$24.3050 = f_{24} \times \underline{^{24}_{12}\text{Mg}} + f_{25} \times \underline{^{25}_{12}\text{Mg}} + f_{26} \times \underline{^{26}_{12}\text{Mg}}$$

$$f_{24} = 0.7899, \text{ etc.}$$

Mg
12
Magnesium
24.3050
20

BOSTON UNIVERSITY

20

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Element identity and atomic number Z

K

sodium 22.98976928
19
potassium 39.0983
37

Number of protons = **atomic number Z** = 19
Relative **atomic weight** = 39.0983
Where does the number 39.0983 come from?

BOSTON UNIVERSITY

22

Lecture 2 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Atoms of an element come in different “flavors”

Atoms with the **same number of protons** ...
but with **different numbers of neutrons** ...
are **chemically the same** ...
but have **different masses**

We call such different flavors of atoms of an element **isotopes**

39.0983 u is the **average mass** of the different kinds of atoms (isotopes) of K that are in a sample of K.

K

sodium 22.98976928
19
potassium 39.0983
37

BOSTON UNIVERSITY

23

Atomic mass unit u

$$\text{reference atom is } {}^{12}\text{C} = 12 \text{ u}$$

BOSTON
UNIVERSITY

24

24

Atomic mass unit u

✓ 1 u defined to be exactly $(1/12)$ mass of 1 atom of ${}^{12}\text{C}$ / ${}^{12}\text{C} = 12 \text{ u}$
 Exactly 12 g of ${}^{12}\text{C}$ contains $N_A = 6.02214076 \times 10^{23}$ atoms (Avogadro's number)

Therefore, the mass of one ${}^{12}\text{C}$ atom is ...

$$12 \text{ g}/N_A = 1.99265 \times 10^{-23} \text{ g}$$

And so, 1 u = ...

$$(1/12) \times 1.99265 \times 10^{-23} \text{ g} = 1.66054 \times 10^{-24} \text{ g}$$

$$\begin{aligned} 1 \text{ u} &= \frac{1}{12} \text{ mass of one } {}^{12}\text{C atom} \\ &= \frac{1}{12} \frac{12 \text{ g}}{N_A} = \frac{1 \text{ g}}{N_A} \end{aligned}$$

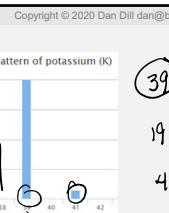
BOSTON
UNIVERSITY

25

25

Average mass of an atom of K

Two isotopes: K-39 and K-41


$$\text{K-39 peak at } 38.9637 \text{ u, height } 933 \quad f_{39} = \frac{933}{67+933}$$

$$\text{K-41 peak at } 40.9618 \text{ u, height } 67 \quad f_{41} = \frac{67}{67+933}$$

Write and then evaluate the expression whose value is the **average mass in u** of an atom of K.

$$f_{39} 38.9637 \text{ u} + f_{41} 40.9618 \text{ u} = 39.098 \text{ u}$$

$$N_A = \# \text{ of } {}^{39}\text{K atoms in } 38.9637 \text{ g}$$

Isotope

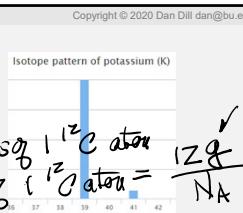
26

BOSTON
UNIVERSITY

26

Average mass of an atom of K

Two isotopes: K-39 and K-41



$$\text{One } {}^{12}\text{C atom} \equiv 12 \text{ u}$$

$$1 \text{ u} = \frac{1}{12} \text{ mass of } {}^{12}\text{C atom}$$

$$\text{mass of } {}^{12}\text{C atom} = \frac{12 \text{ g}}{N_A}$$

The average mass in g of an atom of K is

$$\begin{aligned} &= 39.098 \text{ u} \\ &= 39.098 \times (1/12) \times 12 \text{ g} \times (1/N_A) \\ &= 39.098 \frac{\text{g}}{N_A} \\ &= 6.4923 \times 10^{-23} \text{ g} \end{aligned}$$

27

27

BOSTON
UNIVERSITY

Average mass of any atom

The average mass of an atom of K is 39.098 g/ N_A

The average mass of an atom of Br is 79.904 g/ N_A

The average mass of an atom of H is 1.008 g/ N_A

The **average mass of any atom in g/ N_A** is the number given on the periodic table.

BOSTON
UNIVERSITY

28

28

Molar mass of any element

Molar mass is the mass of N_A “average” atoms of an element.

The average mass of an atom of K is 39.098 g/ N_A

The molar mass of K is $N_A \times (39.098 \text{ g}/N_A) = \underline{\underline{39.098 \text{ g}}}$

The molar mass of Br is 79.904 g

The molar mass of H is 1.008 g

The **molar mass of any element in g** is the number given on the periodic table.

BOSTON
UNIVERSITY

29

29

Atomic weight = **magnitude** of average mass

The atomic weight of K is 39.098 (**no units!**)

The atomic weight of Br is 79.904

The atomic weight of H is 1.008

The atomic weight of an element is the number given on the periodic table.

BOSTON
UNIVERSITY

30

30