

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

[TP] Which of the following contains the **smallest** number of atoms? For now, just make an educated guess.

19% 1. 187 g of liquid mercury, Hg
 20% 2. 1400 u of uranium, U
 25% 3. 6×10^{24} atoms of sodium, Na
 36% 4. 2 mol of hydrogen gas, H₂

TurningPoint Session ID
 613829 //

61 of 187 1 0

BOSTON UNIVERSITY

1

Lecture 1 CH131 Fall 2020
 Thursday, September 3, 2020

- Course overview
- Academic conduct
- What we will cover and how to master it
- Dimensional analysis and significant figures

Begin Ch1: The atom in modern chemistry

- Periodic table: Master key to chemistry

Next: Isotopes → atomic weight; Chemist's dozen: The mole; Example problems; Ch 2: Chemical formulas, equations, and reaction yields

BOSTON UNIVERSITY

2

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Course overview

The course is given by

Lecture: Dan Dill (dan@bu.edu)

Discussion: Matt Rotondaro (mattroto@bu.edu) and Reilly Brown (rosadche@bu.edu)

Lab: Alex Golger (golger@bu.edu)

Matt: TR 10am
 Reilly: T 2:30pm
 W 9:00am

BOSTON UNIVERSITY

3

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Website and Blackboard

The course syllabus website is
<http://genchem.bu.edu/ch131-fall-2020/>

The course Blackboard is "CH131 Fall 2020" at <https://learn.bu.edu>

This course is given entirely online, using Zoom and links to all Zoom meetings are at the "Zoom links" tab on Blackboard.

How to access the Zoom links is detailed at
<http://genchem.bu.edu/ch131-fall-2020/syllabus.html#online> ||
<https://boston.zoom.us>

BOSTON UNIVERSITY

3

4

Lectures

Lectures are Tuesday and Thursday 8-9:15am (GMT-4)
The first lecture is **today**.

5

Discussions

Discussions are Monday, Tuesday, or Wednesday
The first discussion is Tuesday, September 8.
Next Monday's discussions will meet **tomorrow**, Friday, September 4:
B1: 2:20 -1:10pm GMT-4 (with Reilly)
B2: 1:25 - 2:15pm GMT-4 (with Reilly)
B3: 2:00 -2:50pm GMT-4 (with Matt)

6

Labs

Lab detail is provided in
“**Lab content**” section of our course on **Blackboard**
The first lab lecture is **Tuesday, September 8**, 12:30am GMT-4
The first online lab is the **week of September 14**

7

Quizzes and final exam

There will be **five lecture quizzes**, on
Thursdays, beginning **September 17**, 8:00-9:15am GMT-4
The **final exam** date and time has yet to be determined by the registrar

8

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Course grade

Course grade is based on your overall course score
<http://genchem.bu.edu/ch131-fall-2020/syllabus.html#grading>

Contribution to overall course score
Quizzes (lowest score dropped) 50%
Final exam 20%
Lab 15%
Lecture participation 10%
Discussion participation 5%

Your scores for each part of the course will always be available to you on Blackboard, at <https://learn.bu.edu>

BOSTON UNIVERSITY

9

9

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Lecture participation

Questions asked during each lecture are answered using the [TurningPoint mobile app](#)

To receive credit, you must have an account using your bu.edu email address and have purchased a [subscription](#),
<http://genchem.bu.edu/ch131-fall-2020/syllabus.html#materials>

BOSTON UNIVERSITY

10

10

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Office hours

Discussion: Please see the "Zoom links" section of Blackboard for office hour times and Zoom links.

Lecture: Please email me at dan@bu.edu times you would find convenient and I will then select times accordingly.

*Reilly: Tues 2:30pm
Wed 9:00am*

*Matt: Tues 10:00am
Thurs 10:00am*

BOSTON UNIVERSITY

11

11

Lecture 1 CH131 Fall 2020 Copyright © 2020 Dan Dill dan@bu.edu

Other questions?

Please refer to the course [website](#)
<http://genchem.bu.edu/ch131-fall-2020/>

and the [Piazza discussion forum](#)
<https://piazza.com/bu/fall2020/ch131fall2020/>

Questions of a [personal or private nature](#) to dan@bu.edu

BOSTON UNIVERSITY

12

Academic conduct

You are bound by the provisions of the [Academic Conduct Code](#),
<http://genchem.bu.edu/ch131-fall-2020/syllabus.html#academicConduct>

It is the responsibility of every student to be aware of the Academic Conduct Code's contents and to abide by its provisions.

13

13

What we will learn

We will cover portions of the [chapters 1—3 and 9—17](#) and related problems of [Oxtoby et al., 8e](#)

The required assigned problems are at

<http://genchem.bu.edu/ch131-fall-2020/syllabus.html#lecture>

Your [singular focus](#) should be to [master them](#).

The better you do so, [the better you will do in this course](#).

15

15

Academic conduct

The shift to [online assessment](#) required by to [COVID-19 pandemic](#) means that [if you decide to cheat, no one will prevent you](#).

On all assessments, if you use the internet, chat, messaging, video calls, Chegg, and similar resources, [you are cheating; please do not do so](#).

If it is determined that you have cheated, it will be treated with [zero tolerance](#).

14

14

How to approach our course

- The royal road to success is [completing each assigned problem](#),
<http://genchem.bu.edu/ch131-summer-1-2020/syllabus.html#lecture>
- Do the problems following the lecture schedule. For example, all chapter 1 and appendix A problems should be completed before the second lecture.
- Use [worked examples in text](#) for detailed guidance and practice.
- Record your problem solutions in [your problem notebook](#), in full detail, [including units at each step](#).
- Some assigned problems or similar will be [on each quiz](#).

16

16

Let's begin

Essential in solving problems in this course is **dimensional analysis** and proper accounting for **significant figures**.

Let's illustrate these with the following problem.

BOSTON
UNIVERSITY

17

17

Time, distance, and speed

Google says the speed of light (in a vacuum) is **299 792 458 m/s**.

Google says the star Betelgeuse is **700 ly (light years)** from Earth.

How far away is Betelgeuse, in km (kilometers)?

$$1 \text{ ly} = \frac{299792458 \text{ m}}{\text{s}} \times \frac{3600 \text{ s}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365.25 \text{ day}}{\text{yr}} \times 1 \text{ ly}$$

$$= 9.4607 \times 10^{15} \text{ m}$$

BOSTON
UNIVERSITY

18

18

Time, distance, and speed

Google says the speed of light (in a vacuum) is 299 792 458 m/s.

Google says the star Betelgeuse is 700 ly (light years) from Earth.

How far away is Betelgeuse, in km (kilometers)?

$$1 \text{ ly} = \frac{299792458 \text{ m}}{\text{s}} \times \frac{3600 \text{ s}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365.25 \text{ day}}{\text{yr}} \text{ yr}$$

BOSTON
UNIVERSITY

19

19

Time, distance, and speed

Google says the speed of light (in a vacuum) is 299 792 458 m/s.

Google says the star Betelgeuse is 700 ly (light years) from Earth.

How far away is Betelgeuse, in km (kilometers)?

$$1 \text{ ly} = \frac{299792458 \text{ m}}{\text{s}} \times \frac{3600 \text{ s}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365.25 \text{ day}}{\text{yr}} \text{ yr} = \underline{\underline{9.4607}} \times 10^{15} \text{ m}$$

BOSTON
UNIVERSITY

20

20

Time, distance, and speed

Google says the speed of light (in a vacuum) is 299 792 458 m/s.

Google says the star Betelgeuse is 700 ly (light years) from Earth.

How far away is Betelgeuse, in km (kilometers)?

$$1 \text{ ly} = \frac{299792458 \text{ m}}{\text{s}} \times \frac{3600 \text{ s}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365.25 \text{ day}}{\text{yr}} \text{ yr} = 9.4607 \times 10^{15} \text{ m}$$

See <https://en.wikipedia.org/wiki/Light-year> as a check. //

BOSTON
UNIVERSITY

21

21

Time, distance, and speed

Google says the speed of light (in a vacuum) is 299 792 458 m/s.

Google says the star Betelgeuse is 700 ly (light years) from Earth.

How far away is Betelgeuse, in km (kilometers)?

$$1 \text{ ly} = \frac{299792458 \text{ m}}{\text{s}} \times \frac{3600 \text{ s}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365.25 \text{ day}}{\text{yr}} \text{ yr} = 9.4607 \times 10^{15} \text{ m}$$

$$\text{distance} = 700 \text{ ly} \times \frac{9.4607 \times 10^{15} \text{ m}}{\text{ly}} \times \frac{\text{km}}{1000 \text{ m}} = 7 \times 10^{15} \text{ km}$$

\checkmark ① multiplication, division
 \checkmark ② addition, subtraction
 \checkmark ③ log, anti-log

BOSTON
UNIVERSITY

23

23

Time, distance, and speed

Google says the speed of light (in a vacuum) is 299 792 458 m/s.

Google says the star Betelgeuse is 700 ly (light years) from Earth.

How far away is Betelgeuse, in km (kilometers)?

$$1 \text{ ly} = \frac{299792458 \text{ m}}{\text{s}} \times \frac{3600 \text{ s}}{\text{hr}} \times \frac{24 \text{ hr}}{\text{day}} \times \frac{365.25 \text{ day}}{\text{yr}} \text{ yr} = 9.4607 \times 10^{15} \text{ m}$$

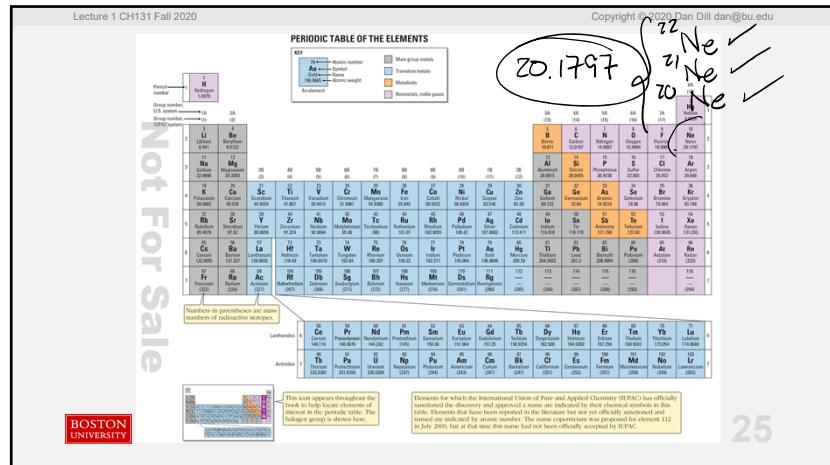
$$\text{distance} = 700 \text{ ly} \times \frac{9.4607 \times 10^{15} \text{ m}}{\text{ly}} \times \frac{\text{km}}{1000 \text{ m}}$$

$$\begin{aligned} 700 &= 7 \times 10^2 \\ 700. &= 7.00 \times 10^2 \end{aligned}$$

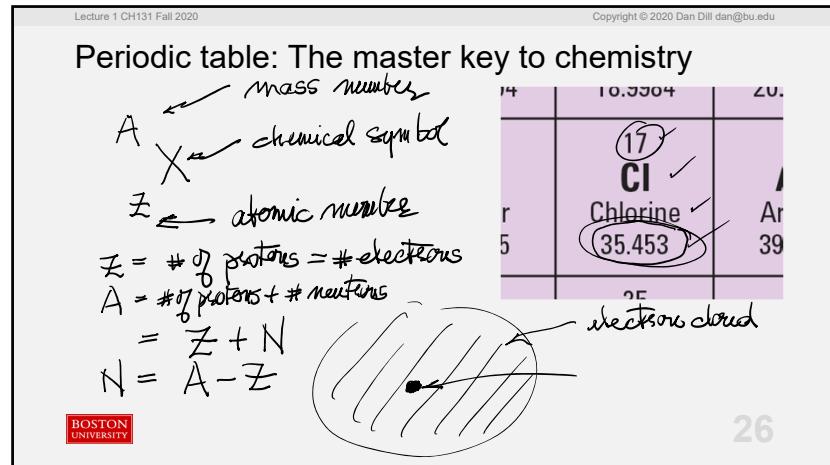
$$\times 66 \rightarrow 7$$

BOSTON
UNIVERSITY

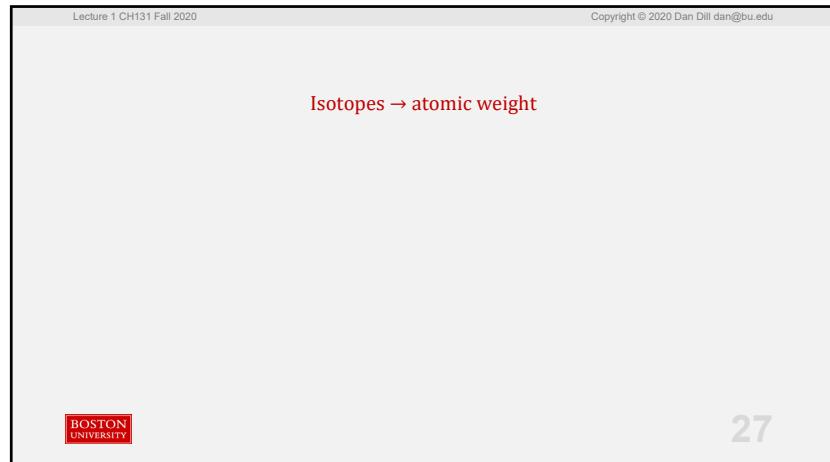
22

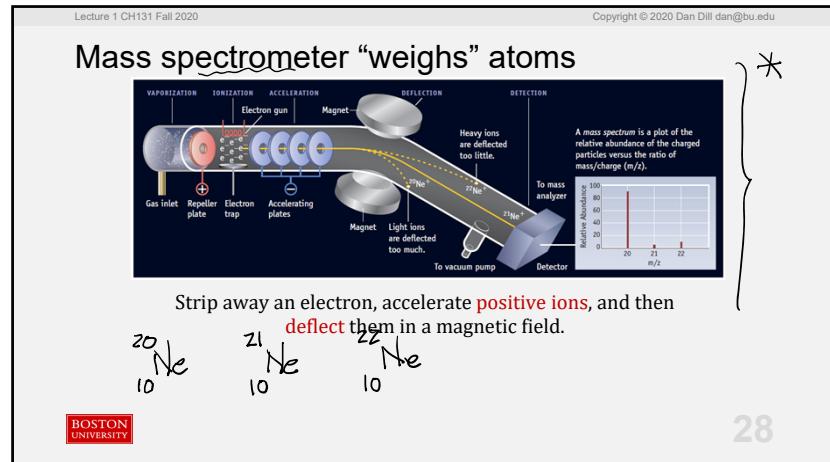

22

Periodic table: The Rosetta Stone to chemistry


BOSTON
UNIVERSITY

24


24


25

26

27

