

Lab#2: KINETICS

1. Air molecules in SCI 109 are moving faster than Boeing 747- with a speed of 1000 mph! **But a perfume smell from the last row spreads much slower... Why?**
2. Number of molecular collisions/sec is about 10^{10} at room temp.!!!
3. Molecular collisions and Chemical reactions
4. Rate of chemical rxn \sim # collisions per second in unit volume
5. But! Not each collision = Chemical reaction

From collision to chemical reaction

1. ACTIVATION BARRIER FOR THE REACTION, E_a
2. FOR THE REACTION:

- **SPECIAL MOLECULAR ORIENTATION REQUIRED FOR REACTION (Key-Lock Model)**

Factors changing # of collisions/sec·cm³ (and reaction RATE!)

1. CONCENTRATION OF MOLECULES;
2. TEMPERATURE [MOLECULAR SPEED $\sim (T)^{1/2}$]
3. SURFACE AREA OF THE REACTION
4. CATALYST (changing the rxn's pathway to lower activation barrier).
5. Factors #1 and 4 will be used in your lab experiment on kinetics!

Reaction Rate for: $aA + bB \rightarrow cC + dD$

$$R = -(1/a) \Delta[A]/\Delta t = -(1/b) \Delta[B]/\Delta t = \\ \text{FOR THE REACTANTS}$$

$$= (1/c) \Delta[C]/\Delta t = (1/d) \Delta[D]/\Delta t \\ \text{FOR THE PRODUCTS}$$

Rate R is numerically the same for all reactants and products!

Pre-lab 2 CH102 Spring 2020 Copyright © 2020 Alex Golper golper@bu.edu

CH102 Kinetics lab : Chemistry of Iodine Clock Reaction

1. #1 + #2 TURNING BLUE

2. #2: $(\text{NH}_4)_2\text{S}_2\text{O}_8$

3. $2\text{I}^-(\text{aq}) + \text{S}_2\text{O}_8^{2-}(\text{aq}) \rightarrow \text{I}_2(\text{aq}) + 2\text{SO}_4^{2-}(\text{aq})$ (SLOW)

4. $\text{I}_2(\text{aq}) + \text{Starch solution} \rightarrow \text{I}_2(\text{aq})\text{-Starch Blue Complex}$ (FAST)

5. $\text{I}_2(\text{aq}) + \text{I}_2\text{-INDICATOR}$

6. $\text{I}_2(\text{aq}) + 2\text{S}_2\text{O}_3^{2-}(\text{aq}) \rightarrow 2\text{I}^-(\text{aq}) + \text{S}_4\text{O}_6^{2-}(\text{aq})$ (VERY FAST)

5

Pre-lab 2 CH102 Spring 2020 Copyright © 2020 Alex Golper golper@bu.edu

Rate of Iodine Clock Reaction: exp. measurement

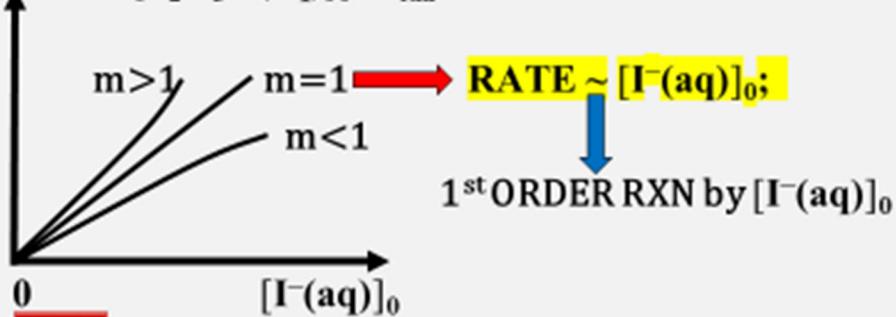
- $\text{I}_2(\text{aq}) + 2\text{S}_2\text{O}_3^{2-}(\text{aq}) \rightarrow 2\text{I}^-(\text{aq}) + \text{S}_4\text{O}_6^{2-}(\text{aq})$
- RATE = $-(1/2) \Delta [\text{S}_2\text{O}_3^{2-}(\text{aq})] / \Delta t =$
 $= -(1/2) (\frac{[\text{S}_2\text{O}_3^{2-}(\text{aq})]_{\text{fin}} - [\text{S}_2\text{O}_3^{2-}(\text{aq})]_{\text{ini}}}{\text{?????}}) / \Delta t$
- RATE = $[\text{S}_2\text{O}_3^{2-}(\text{aq})]_{\text{ini}} / 2\tau_{\text{rxn}}$
- $\tau_{\text{rxn}} = \text{time } \Delta t \text{ when the rxn mixture turns blue}$

$[\text{S}_2\text{O}_3^{2-}(\text{aq})]_{\text{ini}}$ - after mixing but before the rxn starts 6

EXP. GOAL: DETERMINATION OF RATE LAW

- Rate law = $K [I^-(aq)]_0^m \cdot [S_2O_8^{2-}(aq)]_0^n$; K - rate coefficient
- Partial rate order:
 - m (for $[I^-(aq)]$ variable); n (for $[S_2O_8^{2-}(aq)]$ variable)

Overall reaction's rate order = m + n


EXPERIMENT:

2 EXP. SERIES: EACH WITH 1 VARIABLE;
THE OTHER VARIABLE IS FIXED

Series #1: $[I^-(aq)]_0$ - variable; $[S_2O_8^{2-}(aq)]_0$ - constant

- Rate law = $K_1 [I^-(aq)]_0^m$; K_1 - rate coefficient #1

- Rate = $[S_2O_3^{2-}(aq)]_0 / 2\tau_{rxn}$

Pre-lab 2 CH102 Spring 2020 Copyright © 2020 Alex Golger golger@bu.edu

Series #2: $[S_2O_8^{2-}(aq)]_0$ - variable; $[I^-(aq)]_0$ - constant

- Rate law = $K_2 [S_2O_8^{2-}(aq)]_0^n$; K_2 - rate coefficient #2
- Rate = $[S_2O_3^{2-}(aq)]_0 / 2\tau_{rxn}$

1st ORDER RXN by $[S_2O_8^{2-}(aq)]_0$

BOSTON UNIVERSITY

9

Pre-lab 2 CH102 Spring 2020 Copyright © 2020 Alex Golger golger@bu.edu

CHECKING YOUR EXPERIMENTAL RESULTS

Rate $\sim [I^-(aq)]_0$, $\tau_{rxn} \sim 1/\text{Rate} \rightarrow \tau_{rxn} \sim [I^-(aq)]_0$

#	$[I^-(aq)]_0$	τ_{rxn}
1	20 ml	30 sec
2	15 ml	
3	10 ml	?
4	5 ml	?
5	0 ml	?

All other solutions have fixed concentrations

BOSTON UNIVERSITY

10