- 1. (a) Larger nuclear charge $(Z) = \text{larger effective nuclear charge } (Z_e) \longrightarrow \text{that means higher ionization energy}$ (b) More loops = larger $n \longrightarrow \text{so ionization energy decreases}$ (c) This would shield the electron. Shielding causes the electron wave to increase in energy, and so the ionization energy
 - (d) Electron-electron repulsion tends to decrease the ionization energy.
- Ionization energy: $I = \Delta E = E_f E_i = E_\infty E_n = 0 + \frac{(2.18 \text{ aJ})Z_{\rm e}^2}{n^2} = \frac{(2.18 \text{ aJ})Z_{\rm e}^2}{n^2}$

Atom	Z	Electron configuration	Trend in ionization energy compared to previous atom, and explanation
Н	1	$1s^1$	-
Не	2	$1s^2$	$\it IE$ of He is higher than H, because He has a larger nuclear charge, but the electron being ionized is still $\it n=1$ (increased effective nuclear charge)
Li	3	$1s^22s^1$	<i>IE</i> of Li is lower than He, because the electron ionized from He is 1s and the electron ionized from Li is 2s (new shell)
Ве	4	$1s^22s^2$	IE of Be $> IE$ of Li, because of the increased effective nuclear charge.
В	5	$1s^22s^22p_{x^1}$	IE of B < IE of Be, because 2p is more shielded than 2s. So the 2p orbital energy is higher \rightarrow so the IE of a 2p electron is lower (more shielding)
С	6	$1s^22s^22p_{x^1}2p_{y^1}$	IE of C $>$ IE of B, because of the increased effective nuclear charge
N	7	$1s^22s^22p_{x^1}2p_{y^1}2p_{z^1}$	IE of N $>$ IE of C, because of the increased effective nuclear charge
0	8	$1s^22s^22p_{x^1}2p_{y^2}2p_{z^1}$	IE of 0 < IE of N, because pairing a 2p electron causes a large increase in electron/electron repulsion (increased electron/electron repulsion)
F	9	$1s^22s^22p_{x^2}2p_{y^2}2p_{z^1}$	IE of F > IE of O, because of the increased effective nuclear charge
Ne	10	$1s^22s^22p^6$	IE of Ne $> IE$ of F, because of the increased effective nuclear charge
Na	11	1s ² 2s ² 2p ⁶ 3s ¹	IE of Na < IE of Ne, because the Na valence electron is part of a new shell.
Mg	12	$1s^22s^22p^63s^2$	IE of Mg $> IE$ of Na, because of the increased effective nuclear charge.
Al	13	$1s^22s^22p^63s^23p_y^1$	IE of Al $<$ IE of Mg, because of more shielding
Si	14	$1s^22s^22p^63s^23p_y^{1}3p_z^{1}$	IE of Si $>$ IE of Al, because of the increased effective nuclear charge
P	15		