
Article https://doi.org/10.1038/s41467-023-36397-0

Universal non-monotonic drainage in large
bare viscous bubbles

Casey Bartlett1,2, Alexandros T. Oratis 1,2, Matthieu Santin1 & James C. Bird 1

Bubbles will rest at the surface of a liquid bath until their spherical cap drains
sufficiently to spontaneously rupture. For large film caps, thememory of initial
conditions is believed to be erased due to a visco-gravitational flow, whose
velocity increases from the top of the bubble to its base. Consequently, the
film thickness has been calculated to be relatively uniform as it thins, regard-
less of whether the drainage is regulated by shear or elongation. Here, we
demonstrate that for large bare bubbles, the film thickness is highly nonuni-
form throughout drainage, spanning orders of magnitude from top to base.
We link the film thickness profile to a universal non-monotonic drainage flow
that depends on the bubble thinning rate. These results highlight an unex-
pected coupling between drainage velocity and bubble thickness profiles and
provide critical insight needed to understand the retraction and breakup
dynamics of these bubbles upon rupture.

From afar, a bubble resting at the surface of a liquidmay appear static;
however, the liquid film that comprises its cap is typically in motion,
draining into the surrounding liquid from a combination of gravita-
tional and capillary forces1,2. Bubble drainage is important because it
determines how long bubbles remain at the surface, a factor that is
relevant to glassmanufacturing3,4, volcanic eruptions5, and the stability
of polymer foams6. The drainage dynamics are also important because
they influence the fate of the film upon rupture: the film can break up
into aerosols that are relevant to health and climate through the
transport of pathogens7–9 and cloud-nucleating particles10,11. Alter-
natively, the film can bend and entrap air that forms smaller bubbles12

or, if sufficiently viscous, develop a curious wrinkling instability that
has received notable attention in part due to its deeper connection to
elastic wrinkles3,13,14. The ability to predict the dynamics of these pro-
cesses crucially relies on how the bubble thickness varies spatially at
the moment of rupture.

It is often the case that spherical films will adopt a fairly uniform
thickness as they drain, a phenomenon that has been exploited to
fabricate uniform elastic shells15. For small bare bubbles, an initially
uniform film will remain uniform as it thins16. However, the fate of an
initially non-uniform film is less clear, unless the drainage happens to
wipe out the memory of initial conditions, leading to universality.
Universal drainage profiles have been calculated and observed for

large spherical films driven by gravity and resisted by viscosity for a
range of boundary conditions at the two film interfaces. If either of the
film surfaces is prevented from moving (no-slip), theoretical and
experimental studies illustrate that the velocity increases mono-
tonically with the inclination angle ϕ and depends on the local thick-
ness h15,17–19. The resulting thickness profile remains fairly uniform and
collectively thinswith timeas t−1/2. However, if thefilm surfaces arebare
(stress-free) and able to move along with the bulk flow, the film is
assumed to obtain a velocity that continues to increase monotonically
with inclination angle, but no longer depends on the film thickness3,20.
This independence modifies the universal thickness profile so that it
exponentially decays with time, a result that was originally confirmed
with interferometry in the pioneering work by Debregeas et al. 3 and
has been observed in numerous studies since14,20–24.

Because the drainage velocity changes from a thickness-
dependent to a thickness-independent state, the predicted thickness
profiles for a bare bubble changes aswell. Still, the predicted thickness
profile is found to remain fairly uniform,with themidpoint and baseof
the bare bubble maintaining a relative thickness of 1.3 and 4 of that at
the top3. Yet over the decades, there have been observations with bare
bubbles that are inconsistent with this shape factor. For example, if the
film ruptures at the top and creates a hole, the rate that this hole opens
drastically slows down as it moves outward13,13,14, in contrast to the
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prediction for a uniformfilm inwhich the retraction rate is expected to
stay the same or accelerate25–27. Additionally, when illuminated by
white light, a draining bubble of viscous silicone oil exhibits multiple
closely spaced Newton rings3,14, which highlight that the film is
noticeably thickening along the arc-length s from the bubble apex
(Fig. 1a). Here we investigate whether the accepted universal drainage
solution for bare viscous bubbles3 applies in practice. Ultimately we
find that it does not and show that universality is reached through a
different, highly non-uniform thickness profile. More fundamentally,
we uncover that the rationale for the universal exponential thinning of
bare bubbles is predicated on a film velocity that is derived from shear-
dominated flow assumptions. We provide an alternative explanation
based on an extensional flow that leads to a spatially non-monotonic
drainage velocity.

Results
Interferometry experiments
To precisely measure how the thickness varies spatially, we illuminate
the bubble with a sodium lamp emitting monochromatic light with
wavelength λ = 589 nm and observe the formation of bright and dark
fringes (Fig. 1b, Movie S1). Because the film thickness is much smaller
than the bubble radius, the bubble film itself acts as a Fabry–Perot
interferometer which can be used to calculate the bubble thickness28,29

(Fig. S1). Specifically, eachbright fringe represents a region of constant
thickness and the difference in thickness between successive bright
fringes can be computed as Δh= λ=ð2n cosβÞ=278 nm, where n = 1.4 is
the refractive index of silicone oil and β =0.714 is the angle of refrac-
tion. The fringes initially propagate relatively quickly from the apex
before progressively slowing down. By recording the progression of
fringes past the formation of the black film, we can back-track and
assign each fringe a thickness. When the ninth-from-last fringe emer-
ges at the bubble apex, the fringes are spaced far enough from one
another to accurately track the fringe progression. The thickness at the
top of the bubble is h = 2.50μm at this moment in time, which we
define as t =0 (Fig. 1c).Minutes later the last bright fringe (h =0.28μm)
appears at the bubble apex and the fringe with thickness h = 2.50μm is
located near the midpoint of the bubble, highlighting that the bubble

thickness profile varies by at least an order of magnitude (Fig. 1d). The
last nine fringes remain visible on the bubble surface until the bubble
spontaneously ruptures, well into the black-film regime (Fig. 1e). This
degree of non-uniformity has not previously been reported for drain-
ing bubble films near the point of spontaneous rupture and raises the
question of whether the quicker drainage associatedwith elongational
flow provides sufficient time for a universal solution to be reached.

Seeking universality
To determine whether the drainage exhibits universality, we plot the
thickness profile h(s, t) obtained from tracking the last nine fringes and
testwhether there is anymemory of initial conditions. Because the film
thickness depends on both time and space, we can either plot the
thickness as a function of arc-length s for constant contours of time t
(Fig. 2a inset) or as a function of time t for constant contours of arc-
length s (Fig. 2b inset). If the thickness exhibits universality, it would
follow the form h(s, t) = h0H(s)G(t), where h0 = h(0, 0) is the thickness
at the apex at time t =0, H(s) is a dimensionless spatial function, and
G(t) a dimensionless temporal function. When we normalize the
thickness at any location by the thickness at the bubble apex at that
time, we observe that the data indeed collapse to a single curve
H(s) = h(s, t)/h(0, t) (Fig. 2a). Similarly, when we normalize the

Fig. 1 | Drainage of a large bubble on the surface of a silicone oil bath. aWhen a
bubble rises to thebath’s surface, it trapswith it a thin liquidfilmof thicknessh(s, t),
which varies with the arc length s and time t. Based on the hemispherical shape of
the bubble, the drainage dynamics can be analyzed using a spherical coordinate
system in the radial, polar, and azimuthal directions ðêr ,êϕ,êθÞ. b Illuminating the
bubble with a monochromatic sodium lamp, we observe the appearance of bright
and dark fringes. c At t =0 s, the ninth to last fringe with a constant thickness of
h = 2.50μm appears at the top of the bubble. d At t = 220 s, the fringe has moved
further down the bubble, while the last bright fringe appears at the top with a
thickness ofh =0.28μm. eAt t = 370 s, the twohighlighted fringes havepropagated
towards the bubble’s base and a black film appears at the apex. Here the bubble
radius is R = 12mm and the viscosity is μ = 2300Pa s.

Fig. 2 | Spatial and temporal thickness measurements. a Inner plot: The film
thickness increases monotonically with the arc length s with the marker shading
denoting differentfixed times t. Outer plot: These data points collapseonto a single
universal curve H(s). b Inner plot: The film thickness decreases monotonically with
time t with the marker shading denoting different fixed locations s. Outer plot:
These data points collapse onto a single universal curve G(t). Here
h0 ≡ h(0, 0)≈ 2.50μm. Note that the lines are a guide to the eye and that error bars
are excluded, as they would be smaller than the symbol size.
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thickness at any time by this empirical shape factor, we again observe
that the data collapse to single curve G(t) = h(s, t)/[h0H(s)] (Fig. 2b).
Therefore, independent of any prescribed kinematics or dynamics, the
interferometry results demonstrate the existence of a highly non-
uniform universal drainage law.

It has been suggested that surface tension and inertia can critically
modify the dynamics of thin viscous films comparable to the bubble
films explored here14,30. Therefore to evaluate whether surface tension
and viscosity influence the drainage of these large, viscous bubbles, we
conduct further experiments where we vary the bubble size and the
viscosity. Specifically, we consider bubbles with radii in the range
10mm<R < 30mm and silicone oil viscosities of μ = 150, 900, 2300,
3750, and 23,500 Pa s. For these liquids, the density and surface ten-
sion remains constant with ρ = 990 kgm−3 and γ =0.02Nm−1, respec-
tively. Note that these bubble radii are still much larger than the
capillary length, such that the Bond number Bo = ρgR2/γ > 50, where g
is the gravitational acceleration. Thus in all cases, the bubble protrudes
substantially beyond the surface to form a nearly hemispherical cap31.
Previous studies on comparable viscous bubbles have observed an
exponentially decaying thickness at the bubble apex that was

prolonged by decreasing the radius or by increasing the
viscosity3,14,21–23. Indeed whenG(t) is calculated at all points and plotted
on a semi-log scale, these expected trends are observed (Fig. 3a, b).
Furthermore, these past studies revealed that for sufficiently large
Bond numbers, the apex drainage should follow h∼ expð�αTÞ, where
T = ρgRt/μ is a dimensionless visco-gravitational time and α is a con-
stant dimensionless decay rate. The value of α was theoretically pre-
dicted to follow 2πR2= 9Sð Þ, where S is the surface area of the cap22. For
the large, nearly hemispherical bubbles considered here, this predic-
tion simplifies to α ≈ 1/9, a value that slightly underestimates other
experimental and numerical results acquired at the bubble apex3,21–23.
Replotting thedata (Fig. 3a, b)with the dimensionless timeThighlights
that our measurements confirm previous observations of a decay rate
α = 0.22 (solid line in Fig. 3c); it also experimentally demonstrates that
this exponential drainage extends beyond the bubble apex to other
points along the bubble cap.

In contrast to the temporal thinningG(t), which follows the results
from previous studies, the shape factorH(s) counters expectation. For
all of the bubbles investigated, the shape factorH(s) depends on sizeR,
but not on the viscosity μ (Fig. 3d,e). Nondimensionalizing this data in

Fig. 3 | Effects of bubble radius and film viscosity on the temporal and spatial
evolution of the film thickness. a For a constant film viscosity μ = 2300 Pa s,
increasing in the bubble radius leads to faster drainage. b For a constant bubble
radius R ≈ 17mm, increasing the film viscosity prolongs the lifetime of the bubble.
c Plotting the temporal function G(T) against the dimensionless time T = ρgRt/μ
leads to the collapse of the different data sets onto a single curve. The data follow
an exponential decay (solid line) of the form GðTÞ= expð�αTÞ, with a decay rate of
α =0.2.d The spatial functionH(s) varies more gradually along the surface of larger

bubbles. e Varying the viscosity of the silicone oil does not influence the spatial
thickness variation H(s). f Switching to the dimensionless polar angle ϕ = s/R we
observe that the data for the spatial function H(ϕ) collapse on top of each other.
The existing theory3 predicts cos�4ðϕ2Þ (dotted line), which underestimates the
spatial variation of the thickness. Inset: Schematic illustrating the extensional
stresses �σϕϕ and �σθθ in the polar and azimuthal direction, respectively, acting along
the bubble walls, which are subjected to the gravitational stress ρgh.
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terms of the polar angle ϕ = s/R allows us to directly compare the
experimental results with the theoretical predictions3,
HðϕÞ= cos�4ðϕ=2Þ, highlighting the significant discrepancy (Fig. 3f).
Furthermore, the collapse of the experimental data reveals that this
discrepancy cannotbe attributed to surface tension and inertial effects
neglected from the model. Specifically dimensional analysis reduces a
general function for the universal thickness from h(s, t, R, g, μ, γ, ρ) to
hðϕ,T ,Bo,ReÞ, where the Reynolds number Re =ρ2gR3=μ2 captures the
ratio between inertial to viscous effects subjected to a characteristic
visco-gravitational velocity ρgR2/μ. Yet, the observed independence of
both G(T) and H(ϕ) from Bo and Re (Fig. 3c,f) confirms that gravita-
tional and viscous effects alone are responsible for the rate of thinning.
Nevertheless, the deviation between the experiments and past theory
illustrates that there is a flaw in one of the core assumptions (Fig. 3f).
Here we show that the issue arises when tacitly assuming that velocity
gradients across the film (shear) dominate velocity gradients along the
film (elongation).

Universal drainage
In a spherical coordinate system, the conservation of mass can be
written as

∂h
∂t

+
1

R sinϕ
∂
∂ϕ

hu sinϕð Þ=0, ð1Þ

where u(ϕ, t) is the drainage velocity in the polar direction êϕ averaged
over the film thickness. Motivated by the experimental results of
Fig. 3, we seek universal solutions of the form h(ϕ, t) = h0H(ϕ)G(T) and
u(ϕ, t) = (ρgR2/μ)U(ϕ)V(T). The partial differential equation can be
separated into a temporal and a spatial ordinary differential equation
with a constant parameter α:

dG
dT

= � αVG, ð2Þ

H0

H
=
α
U
� U 0

U
� cotϕ, ð3Þ

where the prime denotes differentiation with respect to ϕ. Provided
that u(ϕ, t) is known or prescribed, the equations can be integrated to
find solutions of G and H subject to the conditions G(0) = 1 and
H(0) = 1 set up by construction. Furthermore, by symmetry, H0ð0Þ=0,
which when substituted into Eq. (3) constrains α to be equal to 2U 0ð0Þ:
This approach recovers each of the previously published universal
thickness profiles h(ϕ, t), predicted when the spherical film is con-
strained by two no-slip boundary conditions17,18, slip conditions19,20,
two stress-free conditions3, and mixed conditions along with a time-
dependent viscosity15.

If we assume the viscous dissipation across the film to dominate
that along thefilm, themomentumequation canbe solved analytically,
yielding a thickness-averaged velocity: u= � ðρg=2μÞ sinϕ½ðh2

=12Þ�
ðh=2 +bÞ2�, where b is a slip-length20. In the no-slip limit (b = 0),
u= ðρg=12μÞh2 sinϕ, so that—based on our definitions—U =H2 sinϕ,
V = ðh2

0=12R
2ÞG2, and α = 2. Substituting these expressions into Eqs. (2)

and (3) reproduce the universal bubble thinning expected for shear
drainage in the absence of boundary slip17,18. Meanwhile, if the slip is
large so that b =R≫ h, the velocity field loses its thickness-dependence
and reduces to u = ðρg=2μÞR2 sinϕ, so that U = ð1=2Þ sinϕ, V = 1, and
α = 1. These results are identical to thoseproposed byDegregeas et al. 3

for the extensional drainage of bare bubbles. However, these velocity
prescriptions are valid for shear-based flows, where the immobile
surfaces lead to dominant viscous dissipation on the scale of the film
thickness. This approach is thus questionable in extensional flows,
where the dissipation occurs on the scale of the bubble. Indeed, taking

the limit b≫ h in the shear-dominated equations does not reproduce
equations expected for extension-dominated flows16,32.

Extensional flow model
To solve for the drainage velocitywhenfilm shear is negligible, we note
that in the polar direction, conservation of momentum ∇ � �σ = � ρgh
simplifies to:

∂�σϕϕ

∂ϕ
+ cotϕ �σϕϕ � �σθθ

� �
= � ρghR sinϕ: ð4Þ

Here the bulk stress has been integrated over the film thickness to
create a 2D surface stress, whichwehighlightwith abarover the tensor
�σ and its diagonal components, �σϕϕ and �σθθ. The right-hand side of
Eq. (4) represents the weight of the film projected in the polar
direction, while the left-hand side represents the viscous resistance
arising from the extensional polar stress �σϕϕ and azimuthal stress �σθθ

(Fig. 3f inset).
For an incompressible Newtonian fluid subjected to axisym-

metric elongation, the viscous stress can be related to the film
thickness and velocity with the constitutive relations �σϕϕ =
ð2μh=RÞð2∂u=∂ϕ+u cotϕÞ and �σθθ = ð2μh=RÞð∂u=∂ϕ+2u cotϕÞ (see
Derivation of governing drainage equations in SI). Note that upon
substitution, Eq. (4) becomes the large Bond number limit to the
model that Howell developed to investigate the capillary-dominated
drainage of small bubbles (see Eq. B38 in ref. 16). In this limit, each
stress has a linear dependence on thickness h, as does the film
weight. However, the spatial derivative in Eq. (4) prevents h from
canceling out of this momentum balance. That is, there is still a
contribution of the film thickness in the extensional drainage velo-
city u. As a result, the thickness and the velocity are coupled, in
contrast to a shear-dominated momentum balance where the thick-
ness only enters through the boundary conditions.

An exponentially decaying thickness at the bubble apex has been
previously attributed to a thickness-independent film velocity arising
from plug-flow or near-plug-flow conditions3,20. Therefore, it may
initially seem surprising that exponential decay could occur in a
situation where the drainage velocity depends on the film thickness.
Seeking a universal solution to Eq. (4) reveals that the temporal
dependence of the thickness profile, G(T), passes unaltered through
the spatial derivative and exactly balances itself out of the drainage
dynamics. Provided the boundary conditions for the momentum
equation are also independent of the film thickness, the drainage
velocity varies only spatially, so V(T) = 1, resolving the potential para-
dox. Specifically, fromEq. (2),G reduces to thewell-knownexponential
drainage illustrated in Fig. 3c, even though U remains coupled to H.

Rewriting the momentum conservation in terms of the spatial
universal solutions H and U, we find:

H0
H 2U 0 +U cotϕ
� �

+ 2U 0 +U cotϕ
� �0 +

+ cotϕ U 0 � U cotϕ
� �

= � 1
2 sinϕ:

ð5Þ

Conveniently, the dependence of H can be removed by substituting
the right-hand-side of Eq. (3) into the first termof Eq. (5). Therefore the
universal drainage velocity, although coupled to H, depends only on
the velocity boundary conditions and the parameter α. By symmetry,
U(0) = 0; however, for the other boundary at the base of the bubble,
the velocity is non-trivial. Howell provides a matching criterion
between a lubrication analysis in a viscous bubble cap and a
capillary-static solution to the outer boundary16, yet cautions that this
criterion is limited to small bubbles. Specifically, Howell notes that for
large bubbles (Bo > 1), the thin-film approximation breaks down in the
transition region and questions whether finding an analytic matching
solution would even be possible. Thus in the large Bond number limit,
it might be tempting to assume that the meniscus height and capillary
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suction are both negligible so that U(π/2) = 0; however, the thin-film
assumptions used to derive Eq. (5) are inappropriate near this region.
To avoid this quagmire, we recognize that we can replace this
unknown boundary condition with the previously derived constraint
U 0ð0Þ=α=2. Therefore, Eq. (5) can be solved for a given value α, a value
we have now directly tied to an unknown velocity constraint at
thebaseof thebubble. Fortunately, the valueofαmanifests itself in the
exponential decay rate of the film thickness; from our experiments
(Fig. 3c), along with previous experiments23 and numerical
simulations22, we conclude α ≈0.2. Indeed, numerically solving for
the velocity U using Eq. (5) allows us to directly compute the spatial
thickness profile H through Eq. (3). The agreement between the
experimental results and the extensional flow model is striking
(Fig. 4a). The numerical results indicate that the non-uniformity in
thickness continues at higher angles. Even though this prediction
cannot be confirmed by our interferometry experiments, our model
suggests that large bubbles with two bare surfaces (extensional flow)
can be a hundred to a thousand times thicker near the base than at the
top. By contrast, the thickness profiles of bubbles with one bare and
one rigid surface or two rigid surfaces (shear flow), are still predicted
to be nearly uniform and incidentally equivalent (Fig. 4a inset).

The numerical solution to the universal drainage velocity U(ϕ)
from Eq. (5) is plotted in Fig. 4b. There are two notable features that
differentiate this universal bubble drainage profile from the previous
theories3,20, whereU = ð1=2Þ sinðϕÞ. First, the numerical results predict a
maximum velocity that is over an order of magnitude smaller than
expected from the natural scaling relation u ~ ρgR2/μ. Second, the
drainage velocity follows anon-monotonic functionwithpolar angleϕ.
As a parcel of fluid flows down the bubble it initially accelerates,
reaching a maximum velocity at ϕ = 0.61 radians or 35°. Beyond this
angle, the fluid parcel decelerates until it reaches the base of the
bubble. Similar velocity profiles and values have recently been
observed in numerical studies that investigate the effects of surfac-
tants on surface bubble drainage24.

To better understand how the coupling of H and U leads to these
unexpected results, we analytically approximate the universal solu-
tions to h(ϕ, t) and u(ϕ) in terms of the parameter α. Low-order Taylor
or Padé approximations are not particularly effective in approximating
the thickness and velocity profiles away from the origin (Fig. S2).
Instead, we seek a trigonometric approximation for the thickness

using the form HðϕÞ= cos�mϕ, where m is constant. This approxima-
tion satisfies the boundary conditions of H and has the added benefit
that, when substituted into Eq. (3), an exact corresponding solution to
U can be obtained. Furthermore, this solution to U satisfies the
boundary condition U(0) = 0 and the approximation U(π/2) = 0.
Matching the curvature ofH at the bubble apex, we find thatm = 1 + 1/
α, leading to the approximations:

hðϕ,tÞ≈h0 cos� 1 + 1
αð Þϕ

h i
exp �α

ρgRt
μ

� �� 	
, ð6Þ

uðϕÞ≈ ρgR2

μ
α2 cosϕ� cosð1 + 1=αÞϕ

sinϕ

� �� 	
, ð7Þ

with α ≈0.2 when Bo≫ 1. To be clear, α is not a fitting parameter. It is
set by the boundary conditions, and we are confident of its value. We
have chosen to keep the equations general to illustrate how the
boundary condition impacts both the universal thickness and drainage
velocity profiles. The trigonometric approximations quantitatively
capture the unexpected features observed in the numerical results
(Fig. 4). The degree of non-uniformity of the film thickness near the
bubble apex is linked to α so that with α =0.2, the thickness near the
apex increases as 1=cos6ðϕÞ, a finding that agrees well with the
numerical and experimental results. Additionally, both the peak
velocity and the angle where this maximum occurs depend on α.
Indeed, the prediction that this velocity peaks at just 4% of its
characteristic scaling can be directly attributed to α having a
value of 0.2.

To evaluate our theoretical predictions for the drainage velocity,
we conduct further experiments with microscopic solid particles
embedded into the silicone oil (Fig. 4b inset,Movie S2). By tracking the
positions of the particles as they flow down the bubble, the Eulerian
drainage velocity can be reconstructed (Fig. 4b). As predicted, the
drainage speeds collected at different times and for different viscosity
films all collapse onto a single dimensionless curve that is a non-
monotonic function of polar angle ϕ. Similar non-monotonic velocity
profiles were obtained with talcum powder and 20μm diameter glass
microbubbles as tracers, suggesting that any influence of the particles
on the velocity field was small. Despite the uncertainty in the speed
measurements, both the numerical solution and approximation follow

Fig. 4 | Comparisonofexperiments and theory for the spatial componentof the
universal drainage. a Logarithmic plot of the spatial function H(ϕ) against the
secant of the polar angle ϕ. The numerical solution (solid line) nicely matches the
experimental data. The spatial function can also be estimated using a trigonometric
approximation (dashed line), which follows the scaling HðϕÞ∼ cos�6ϕ. Inset: In
contrast to an extensional flowwith two stress-free interfaces (black solid line) that
cause a spatial divergence of the thickness, shear flows with one15 (yellow dashed

line) or twono-slip interfaces17,18 (bluedotted line) lead toa fairly uniformthickness.
b Plotting the spatial velocity profileU(ϕ) against the polar angleϕ, we find that the
incline plug flow model (dotted line) significantly overestimates the drainage
speed. Inset: The numerical model of elongation flow captures the trend of the
experimental data for drainage. Note that the marker symbol differentiates the
tracer particles (Δ—talcum powder; ∇—glass microbubbles) and marker shading
denotes the viscosity following the legend in Fig. 3b.
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a similar trend with the experimental data, in stark contrast to the
previously assumed profile (Fig. 4b).

In addition to supporting the model, the velocity measurements
provide direct evidence that the film thickness continues to increase at
polar angleswell beyond the limits of our interferometry data. Velocity
measurements extend to polar angles of ϕ ≈ 5π/12, at which point the
non-uniformity of the film is sufficient to scatter the transmitted light
(Fig. 4 top-left inset). Up until that angle, the numerical and trigono-
metric approximation curves for U (red dashed and black solid curves
in Fig. 4b) are consistent with the measured velocity data. Because
conservation ofmass links these curves to the corresponding ones for
H (red dashed and black solid curves in Fig. 4a), we conclude that the
theoretical models approximate the thickness up to at least ϕ ≈ 5π/12.

Discussion
We anticipate our results will be relevant to a range of phenomena in
which large bubbles undergo extensional or near extensional flow. The
degassing of bubbles in liquids, including molten glass and lava, is
controlled by the bubble drainage dynamics3, and the drainage rate
has been used to probe the mobility of various liquid interfaces19,20,24.
In addition, the dynamics upon rupture, such as whether a film
aerosolizes33, wrinkles14, or traps smaller bubbles12, dependon the local
thickness. Our results demonstrate that the drainage and thickness
profiles dramatically differ from expectations, and unlike shear flow,
the shape of these profiles is coupled to the temporal dynamics
through the parameter α. Although our analysis focuses on large, bare
bubbles, we also anticipate that these results would extend to
moderate-sized bubbles or those with mobile surfactants for which
exponential drainage has previously been observed20,22,24. For these
bubbles, the value of α increases with decreasing the Bond number.
Furthermore, our results counter the idea that α depends on a slip
boundary condition for near-plug flow. Instead, we directly link α to
the rate that capillarity near the bubble base can adsorb the falling
liquid and conclude that this rate must be independent of the film
thickness for exponential drainage to be observed.

The existence of universal non-monotonic drainage can also be
exploited to probe and fabricate highly non-uniform thin shells.
Because the thickness profile is non-uniform, interference fringes
remain visible on the side of the bubble long after a black film
develops, and due to universality, the positions of these fringes
reveal how quickly the top of the bubble is draining along with its
thickness at spontaneous rupture. At the late stages of the bubble
lifetime, the fringe locations indicate that the top of the bubble is
~100 nm thick (Fig. 1e) and the exponential drainage rate decreases
(Fig. 3c). This deviation can be attributed to strain hardening due to
polymer stretching34 or disjoining pressure35, effects which are no
longer subdominant as the bubble thickness reaches submicron
scales. Our analysis can be extended to consider more complex
extensional rheology, including the effects of surfactant concentra-
tion on the thinning rate α24, or a time-varying viscosity through non-
trivial solutions to V(T). A time-varying viscosity has been used to
fabricate elastic shells with nearly uniform profiles when spherical
film flowed under shear while simultaneously curing15. Our results
provide an analogous pathway to fabricate highly non-uniform
elastic shells by combining curing and the extensional flow of a large
draining bubble.

Methods
Bubbles were created by injecting air into various silicone oil baths.
The supplementary information contains further detail on the meth-
ods used to experimentally measure the bubble film thickness, the
bubble drainage velocity, and the silicone oil viscosity. A significant
difference was observed between the measured viscosity and that
reported on themanufacturer’s label (Table S1), emphasizing the need
for independent viscosity measurements.

Data availability
The experimental raw data supporting the findings of this study are
available from the corresponding author upon request. The processed
data are available within the manuscript and its Supplementary Infor-
mation Files. Source data are provided with this paper.

Code availability
The code used to numerically solve for the velocity and thickness is
available from the corresponding author upon request.
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