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Abstract. When a liquid drop impacts a smooth, solid, dry surface, the drop

forms a radially spreading lamella, which can lead to a splash. Previous studies

have focused almost exclusively on impacts perpendicular to a surface; yet it

is common for drops to impact on angled or moving surfaces. The asymmetry

of such impacts leads to an azimuthal variation of the ejected rim, and under

certain conditions only part of the rim breaks up to form droplets. We show that

the tangential component of impact can act to enhance or suppress a splash. We

develop a newmodel to predict when this type of splashing will occur. The model

accounts for our observations of the effects of tangential velocity and agrees well

with previous experimental data.
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1. Introduction

Upon impact, liquid drops can rapidly spread, splash, or bounce. Splashing remains the least

understood of these three responses, in part because there are numerous ways in which drops

can break apart [1]–[3]. Here we focus on the impact of drops on smooth surfaces that are rigid

and dry. For these conditions, splashing occurs when the rim of the spreading drop becomes

airborne, often forming a corona (figure 1). Capillarity subsequently disintegrates the airborne

film into satellite droplets, which are crucial to atomization, but are often detrimental in coating

processes, such as ink jet printing and pesticide delivery [2]. Most studies of splashing have

focused on the impact of drops perpendicular to stationary surfaces [1, 2]. Nevertheless, in many

applications, the target surface is either moving relative to the drop, such as raster printing,

or inclined, such as leaves on a tree [4]. In this paper, we investigate experimentally and via

modeling, how tangential velocity affects splashing on a dry, smooth surface.

The transition from spreading (figure 1(a)) to splashing (figure 1(d)) is often referred to as

the splashing threshold. Below the splashing threshold, a radial jet, or lamella, rapidly spreads

along the dry surface. Above the threshold, the lamella lifts off of the surface, often within the

first observable instances, and breaks into satellite droplets. Even though images of splashing on

dry surfaces appear similar to images of splashing on pre-wet surfaces, the dynamics between

these two conditions are fundamentally distinct, in part due to the existence of a contact

line where the solid, liquid and surrounding gas meet. Therefore, proposed mechanisms for

splashing on pre-wet surfaces, such as the propagation of kinematic discontinuities [5], are

rarely applicable to initially dry surfaces without additional assumptions.

The splashing threshold on dry surfaces has been shown to depend on the surface

roughness [6, 7], the properties of the surrounding gas [8], and the compliance of the solid

substrate [9]. Past experiments have found that the splashing threshold follows the empirical

relation WeRe1/2 � K , where K is a constant that depends on external parameters such as

surface roughness [6, 10]. Here, the Weber and Reynolds numbers are defined as We � ρV 2R

γ

and Re � V R

ν
, respectively, where V is the impact velocity of the drop, R is the drop radius, ρ is

the liquid density, γ is the surface tension and ν is the kinematic viscosity. While this threshold

has been rationalized using theoretical arguments [2, 11, 12], few of these theoretical arguments

easily generalize to account for tangential velocity.

Although numerous studies have documented the effects of tangential velocity on drop

impact [13]–[18], only a few have reported the effects on splashing on dry surfaces. These

experiments have concluded that on an incline, the splashing threshold follows the familiar form,

WeRe1/2 � K , provided that the impact velocity is replaced with the normal velocity [6, 10].

Significant tangential velocity can also lead to asymmetric splashing, a phenomenon in which

one side of the drop spreads and the other splashes [19]. Here, we quantify the asymmetric

splashing behavior and, by treating the sides of the drop separately, develop a physical model

that not only agrees well with our experimental data, but also provides insight into the early

time dynamics of splashing.

2. Experiments for the splashing threshold

We experimentally measure the impact dynamics of millimeter-sized ethanol drops (ρ �
790 kgm−3, ν � 1.2× 10−6 m2 s−1 and γ � 23mNm−1) on to a dry, smooth, aluminum surface.

Drops are released from a syringe located between 3 and 67 cm above the surface. The drop
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Figure 1. A component of velocity tangent to the surface can both induce and

suppress splashing. Arrows indicate the direction of motion of the substrate.

(a) No splash occurs when a millimeter-sized ethanol drop impacts normally

at 1.2m s−1 upon a flat and stationary aluminum disk. (b) As the substrate moves

tangentially (here 2.4m s−1), the portion of the lamella moving opposite the

substrate begins to splash. (c) At even higher tangential velocity (5.4m s−1) an

asymmetric corona splash develops. (d) Above the splashing threshold, increased

tangential velocity can act to reduce (e) and eventually suppress (f) a portion of

the splash. Images (a)–(c) and (d)–(f) were captured, respectively, 1.3 and 0.5ms

after impact.

size, impact velocity, and subsequent dynamics are measured using a Phantom V7 high-speed

camera recording at 15 000 frames per second. We generate a tangential velocity Vt by either

moving or inclining the surface relative to the drop. To move the surface at a uniform velocity,

we attach an aluminum disk to an analog-controlled electric motor and rotate it so that the

tangential velocity 6 centimeters off-center ranges from 0 to 21m s−1. For the experiments

with a stationary inclined plane, the surface is inclined at angles between 0 and 50◦ from the

horizontal.

We find that below the splashing threshold (figure 1(a)), the ethanol drop spreads across the

aluminum surface. When the tangential velocity is increased, the portion of the lamella moving

in the same direction as the substrate continues to spread, whereas the portion of the lamella

moving opposite to the substrate delaminates and splashes (figures 1(b) and (c)). We refer to

this symmetry breaking, when one side of the drop spreads while the other side splashes, as

asymmetric splashing. We find similar dynamics above the splashing threshold (figure 1(d)).

Increased tangential velocity acts to suppress the splash from the lamella moving in the same

direction as the applied tangential velocity (figures 1(e) and (f)).

The impact dynamics were similar for both the inclined and moving surfaces for a

given normal and tangential velocity. A phase plot of the splashing threshold quantitatively
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Figure 2. For a given normal drop velocity Vn, increasing the tangential velocity

towards the lamella (negative Vt) instigates splashing, causing a spreading

lamella (◦,�) to lift off the surface (•,�). Similarly, increasing the tangential

velocity away from the lamella (positive Vt) inhibits splashing. The symbols

denote whether the surface is moving (◦, •) or inclined (�,�). Here the radius

of the drops are R � 0.88mm and the dashed line is a guide for the eye.

Representative error bars indicate the size of the 95� confidence intervals at two

locations; as the tangential velocity strongly depends on where the drop impacts

the disk, the uncertainty increases with both disk speed and drop height.

demonstrates the effects of the tangential velocity (figure 2). Our results agree with previous

observations that there is a critical velocity separating spreading and splashing along Vt � 0.

Additionally, the data quantify how the splashing threshold changes with tangential velocity.

When each drop impacts the substrate, we record both the dynamics of the lamella toward

(Vt > 0) and away (Vt < 0) from the direction of the substrate motion. This characterization is

responsible for the symmetry in the position of the points in figure 2.

Special attention should be given to the range of tangential velocities needed to

significantly influence the splashing threshold. For example, shock waves in the liquid have been

shown to be important in lamellar formation [20], though at much higher impact speeds than

utilized here. More recently, experiments and theory have linked splashing to the compressibility

of the surrounding gas at early times [8, 21]. Nevertheless, the results in figure 2 demonstrate

that tangential velocities well below the speed of sound in both liquid and gas are able to have

a significant influence on the splashing behavior: the lamella speed traveling tens of meters

per second, rather than hundreds of meters per second, affects the splashing threshold. The

implication is that the mechanisms responsible for splashing in our study occur when the lamella

is traveling on the order of tens of meters per second.

3. A model for splashing with tangential boundary motion

While there exist several models for splashing, these models do not easily generalize to account

for tangential velocity. Additionally, the existing models that have been proposed for the
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Figure 3. (a) At early times, we assume that the portion of drop (dark

gray) that has not contacted the rigid solid is unperturbed and translates at

constant velocity Vn. The portion of the drop that has contacted the rigid solid

(region ∗) is redistributed into a lamella around the drop with length L and

thickness h (region ∗∗). (b) We model the lamella moving outward on a moving

surface. In our model, we assume that the important parameters are the bulk

lamella velocity V�, the velocity of the surface and surrounding boundary layer

Vt, the lamella thickness h and length L .

early time lamella dynamics, are either not appropriate for dry surfaces [11] or atmospheric

pressures [8]. Therefore, instead of generalizing an existing approach, we now introduce a

model of the lamella dynamics that builds on ideas from previous studies. The model is based

upon our observations that the mechanism behind splashing depends on the dynamics of the

lamella relative to the target surface or the surrounding air rather than the dynamics relative

to the drop. We describe the lamella with a characteristic length along the flow direction L ,

thickness h and velocity V�. In addition, we model the surrounding substrate and gas as moving

with velocity Vt (figure 3). All parameters have positive values except for Vt, which is positive

when the substrate moves in the same direction as the lamella and negative when the substrate

moves in the opposite direction. The air boundary layer over the spinning plate is estimated

using the kinematic viscosity of air ν � 1.5× 10−5 m2 s−1 and the maximum angular velocity

of the plate ω � 5000 rpm. As the thickness of this boundary layer
√

ν/ω > 400µm is much

larger than the initial lamella thickness h < 50µm, we assume that the surrounding solid and

gas are moving at the same speed.

Similar to previous models [2, 5, 11, 12], we believe that any instabilities in the film

will be described by inertial dynamics. As the inertia of the film relative to the substrate

increases, the film may destabilize, overshoot small changes in the surface topography, and

become airborne [22]. At the same time, these instabilities are regulated by capillarity. In other

words, film deformations caused by substrate or gas-related perturbations increase the interfacial

surface area. Only when the kinetic energy of the film relative to the surroundings is much

greater than the surface energy preventing deformations will the film become unstable and lead

to a splash. In our model, the kinetic energy of the lamella relative to the surroundings scales

as ρ�V� − Vt)
2L2 h (see figure 3). Similarly, the increase in surface energy due to deformation

scales as γ hL . For splashing to occur, the kinetic energy must be much greater than the change

in surface energy, or

ρ�V� − Vt)
2L

γ
> C � 1 , (1)
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where the value of C depends on the properties of the surroundings. The focus of our model

is on the liquid; since we do not consider variations to the solid or surrounding gas, C is a

constant much greater than one. Nonetheless, we expect that any additional effects that increase

the deformation of the lamella, such as surface roughness or atmospheric pressure, would

decrease C .

It is generally apparent whether or not a drop will splash as soon as the lamella is visible, as

small perturbations are observable in a destabilized lamella. For a 1mm radius drop of ethanol

with an impact velocity of 2m s−1, the lamella first appears at about 10µs [9]. The lamella

interactions occur so rapidly after contact that accurate measurements of the lamella dimensions

and speed are currently limited by the spatial and temporal resolution of high-speed cameras.

Instead, we estimate V�, h and L from the initial conditions of drop impact.

It is typical to model the lamella size and velocity based on a redistribution of fluid due

to geometric constraints (figure 3(a)) [8, 11, 23]. In this approach all of the fluid in the drop is

assumed to be moving at the speed Vn toward the surface. Once fluid particles contact the rigid

surface, they are redistributed outward into the lamella. The consequence is that the volume

of the perturbed fluid (region ∗ in figure 3(a)) is equal to the volume of the lamella (region ∗∗

in figure 3(a)). Equating the volume of the spherical cap to the volume of the annular disk in

figure 3, we find that π

6
δ�3a2 + δ2) � π�r 2 − a2)h.

The rate at which fluid is displaced depends on the drop speed such that δ � Vnt and

a≈
√
2VnRt near the point of contact, where t is the time since impact. We assume that at

very early times the lamella thickness scales proportional to the momentum boundary layer

thickness in the liquid, such that h � c1
√

νt where c1 is a scaling constant of ord(1) (e.g. [5, 8,

11]); recent experiments by de Ruiter et al (manuscript in review) suggest that the dynamics,

while approximately represented by this formula, are more complex. Using these results, we

can express the radial extent of the lamella as

r �

�

2VnRt +
V 2
n Rt

2

c1
√

νt
+ O��Vnt)2). (2)

We see that in the limit that t → 0, r ≈
√
VnRt and V� � ṙ ≈

�
RVn
t
, where a dot denotes

the time derivative. The difficulty with the limit t → 0 is that the parameters in which we are

interested are no longer finite. One approach to this problem is to regularize the singularity and

produce a splashing model that is independent of time (e.g. [8]). Another approach is to note

that many of the physical assumptions break down at early times, leading to the significance of

such effects as compressibility of the liquid [20, 24] and the role of the intervening gas film [21].

Here, we assume instead that the destabilization process requires that the lamella evolves to

be distinctly separate from the drop. Provided that the contact point of the drop a�t)moves faster

than the lamella separates from the drop L�t) (figure 3(a)), any destabilization will be engulfed

in the drop. It is only when L grows at the same rate or faster than a that we have a distinct

lamella. Recalling that r � L�t)+ a�t) and a2 � 2VnRt , we can see from (2) that L�tc) ≈ a�tc)

at the time

tc ≈
ν

V 2
n

. (3)

Equation (3), based on the assumed viscous dependence in (2), predicts that for an ethanol

drop falling at 1m s−1, there would be a distinct lamella on the order of 1µs after contact. This

estimate is consistent with previous measurements [9]. Since both L and V� depend on time,
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the splashing criterion (1) should depend on time as well. The left-hand side of (1) decreases

with time, therefore our model predicts that splashing occurs at the earliest time physically

appropriate, which is on the order of tc. This consequence of the model is also consistent with

experiments, which show that splashing develops when the lamella is first observable [8, 9]. At

tc our model predicts the lamellar length and velocity to be

L�tc) ∼
�
VnRtc � c2RRe

−1/2, (4a)

V��tc) ∼ L̇ � c3VnRe
1/2 , (4b)

where the Reynolds number Re � VnR

ν
and c2 and c3 are scaling constants of order one.

Substituting the scaling relations for L and V� into (1), the splashing threshold expression

can be re-expressed as

WeRe1/2
�

1− k
Vt

Vn

Re−1/2

�2

> K , (5)

where the Weber number We � ρV 2
n R

γ
, K � C

c2c32
and k � 1/c3. We expect k to be order one and

K to be much greater than one; K has been previously reported to be between 1180 and 19 200

for various, relatively smooth surfaces [6, 10].

4. Comparison of experiments and our model

In the case that the substrate is stationary and flat, Vt
Vn

� 0, we predict that splashing will occur

whenWeRe1/2 > K , a result that is consistent with previous splashing data [6, 10]. In these past

experiments K has been shown to decrease with surface roughness. We would expect a similar

qualitative behavior in our model as well, although the functional form is beyond the scope of

this paper.

Our approach makes testable predictions for the splashing behavior when the surface is

either inclined or moving relative to the drop trajectory. In figure 4, we plot our experimental

results for three sizes of drops following the scaling suggested by equation (5). Specifically, we

nondimensionalize the horizontal axis as �Vt/Vn)Re
−1/2, and the vertical axis as WeRe1/2/K .

With this scaling, the data points, which correspond to whether or not a drop splashed, collapse

into distinct regions independent of the drop size. The model prediction agrees well with the

experimental data with k � 2.5 and K � 5700 (solid line in figure 4), values that are consistent

with the model (k is ord(1) and K � 1) and previous experiments [6, 10].

5. Discussion and conclusion

When one side of the drop encounters a positive tangential velocity, the other side of the drop

encounters an equal but negative tangential velocity. Therefore, it is natural to inquire how the

drop behaves globally in the presence of tangential velocity from any direction. Based on the

magnitude of the tangential velocity, there are three behaviors: the lamella will spread in all

directions, splash in all directions, or asymmetrically splash (figure 5). As expected, when there

is no tangential velocity, the drops either spread or splash in all directions. However, when the
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Figure 4. Experimental results for ethanol drops with different radii, R �
0.88mm (◦, •), 1.3mm (�,�) and 1.7mm (�,�), approximately collapse on

to a master curve when rescaled according to our theory. The model prediction

(solid line) agrees well with the experimental data when k � 2.5 and K � 5700

in equation (5). Representative error bars are placed at three locations.
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Figure 5. Experimental results from figure 4 recast to show global drop behavior.

The model predicts three behaviors based on the magnitude of the tangential

velocity: the lamella will spread in all directions (white symbols), splash in

all directions (black symbols) or asymmetrically splash (gray symbols). Here

K � 5700.
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symmetry is broken through the tangential velocity, the transition bifurcates to create a new

behavior: asymmetric splashing.

In this paper, we have documented the effect of tangential velocity on drop splashing.

The experiments demonstrate that sufficient tangential velocity can either trigger or inhibit

splashing on a portion of the drop. We develop a physical mechanism for splashing based on the

rate of growth of the lamella. Predictions from the model agree well with the experimental

observations. These findings are not only relevant to drop impact on moving and inclined

surfaces, but also provide insight into the fundamentals of splashing.
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