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In the presence of electric fields, pairs of liquid drops can be rapidly drawn together
such that, at contact, the deformed interface resembles a double-cone. Following
contact, these drop pairs are observed to either coalesce or recoil. Experimental
and theoretical results suggest that the transition between coalescence and recoil is
due to the conical drop topology rather than charge effects. However, even with
this assumption, existing models disagree on how the transition develops, leading to
different predictions of the critical cone angle and bridge morphology. Here we use
high-resolution numerical simulations to highlight the impact of the initial double-cone
angle on drop coalescence and reconcile the differences in the previous models.
The results demonstrate a self-similar behaviour at intermediate scales for both
coalescence and recoil that is independent of the other length scales in the problem.
We calculate a critical polar angle of θc= 1.14 rad (65.3◦), or a complementary angle
of β = 90◦− θc= 25◦. This calculated critical angle for morphological transition is in
agreement with previous experimental observations of β ≈ 27± 2◦.
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1. Introduction
The dynamics of liquid cones is of interest because conical interfaces develop both

in the late stages of pinch-off of cylindrical jets (Peregrine, Shoker & Symon 1990;
Shi, Brenner & Nagel 1994) and when drops are in the presence of electric fields
(de la Mora 2007). Recent experiments have demonstrated that in the presence of
electric fields, the interface of pairs of water drops can deform so that they connect
with a double-cone geometry (figure 1) and, depending on the physical parameters,
the drops will either coalesce or recoil (Bird et al. 2009; Ristenpart et al. 2009;
Thiam, Bremond & Bibette 2009). The resulting transition from coalescence to
recoil at impact has numerous implications, including the coalescence of electrified
raindrops in thunderstorm formation (Latham 1969), the removal of water from oil
in the petroleum industry (Eow et al. 2001; Ristenpart et al. 2009), the stability of
pH-sensitive emulsions (Liu et al. 2012), and the coalescence of Pickering emulsions
by electric fields (Chen et al. 2013). To date, the underlying physics of this transition
are not completely understood, although it is believed to arise from the conical

† Email address for correspondence: jbird@bu.edu

mailto:jbird@bu.edu


370 C. T. Bartlett, G. A. Généro and J. C. Bird

R
z

r

(a) (b) (c) (d )

FIGURE 1. Initial geometry of contacting conical droplets. (a) Two liquid drops with
radius of curvature R (grey) are surrounded by air (white) and are joined with a
hyperboloid bridge. (b) At intermediate scales, the bridge appears conical with polar
angle θ . (c) Higher magnification reveals that the two droplets are connected with a bridge
with radius r0. (d) Experimental observation of the conical liquid bridge formed when two
water drops are separated by 500 V.

geometry rather than from electrical interactions in the flow. Models have been
developed to rationalize this transition between coalescence and recoil based on cone
angle (Bird et al. 2009; Ristenpart et al. 2009; Helmensdorfer 2012); however, there
is a lack of consensus surrounding these models, as each neglects key elements of the
flow. In the current paper, we use high-resolution numerical simulations to explore
how these conical drops coalesce. In addition, this work demonstrates that conditions
initially favouring coalescence can dynamically reverse, leading to drop pinch-off and
recoil.

The coalescence or pinch-off of liquid bridges can often be rationalized by the
sign of the mean curvature of the interface, as this curvature is related to the
capillary pressure (de Gennes, Brochard-Wyart & Quere 2004). For example, when
two spherical water drops contact, the bridge connecting the spheres has a negative
mean curvature (there is a much smaller positive curvature around the bridge than
the negative curvature along the bridge), leading to a pressure drop in the bridge that
draws in liquid and drives coalescence (Eggers, Lister & Stone 1999; Wu, Cubaud
& Ho 2004; Thoroddsen, Takehara & Etoh 2005). In contrast, when a jet of water
initially breaks up from the Rayleigh–Plateau instability, the bridge formed has a
larger positive curvature around the bridge than the negative curvature along the
bridge, leading to a higher pressure in the bridge region that pinches off the liquid
(Eggers 1997). However, when the two principal curvatures are estimated to be
opposite and similar in magnitude, it is not immediately obvious whether the drop
will coalesce or pinch off. A conical liquid bridge between two drops (figure 1) is
an example of such a geometry.

Previous models exploring the critical angle at which the conical drops either
coalesce or pinch off have made assumptions about key physical elements. For
example, the scaling argument in Ristenpart et al. (2009) recognized the competing
principal curvatures, but did not explicitly model the curvatures in the bridge
region. The analytic argument in Bird et al. (2009) assumed that the largest
deformations would occur in a bridge region and that these would be self-similar
as the drops coalesced. The self-similar shape of this bridge region was estimated
to be the profile that minimized surface area while constrained to connect the
bridge to the surrounding cones and conserved volume. Thus the bridge shape was
calculated independently from any of the dynamics in the surrounding cones and
therefore neglected inertial effects, even though inertia was regulating the bridge
dimensions. A more recent model was developed based on mean curvature flow
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(Helmensdorfer 2012; Helmensdorfer & Topping 2013), yet it is unclear how well this
approach models the underlying physics since mass and momentum are not necessarily
conserved. It is also noteworthy that the absence of inertia in mean curvature flow
prevents the self-similar dynamics that often appear in similar geometries (Barenblatt
& Zel’Dovich 1972; Keller & Miksis 1983).

A natural approach to addressing these model limitations would be to solve the
inviscid self-similar equations formulated by Keller & Miksis (1983). Specifically, in
geometries where there is no characteristic length scale, such as wedges and cones,
the inviscid dynamics (potential flow) can be simplified and solved in self-similar
variables. The approach has been used to model the pinch-off of inviscid bridges
between two far-field slender cones (Brenner et al. 1997; Day, Hinch & Lister 1998;
Leppinen & Lister 2003), as well as recoiling dynamics of wedges (Keller & Miksis
1983; Lawrie 1990) and cones (Billingham 1999; Sierou & Lister 2004) that would
occur after the bridge had pinched off. The coalescence of liquid wedges has also
been simulated using these inviscid self-similar equations (Keller, Milewski & Vanden-
Broeck 2000); it appears that two-dimensional wedges coalesce for any and all angles.
It is important to note that none of these previous studies investigated the coalescence
dynamics of two liquid cones.

In the current paper, we numerically investigate the coalescence dynamics for two
low-viscosity conical droplets surrounded by an even less viscous gas. A challenge
with solving directly for a self-similar solution is that, even in a conical geometry,
self-similar solutions of the first kind may not exist. For example, the self-similarity
might break-down due to a self-intersecting boundary (Duchemin, Eggers & Josserand
2003; Billingham & King 2005), or alternatively memory of the initial conditions
might lead to anomalous scaling exponents (Burton & Taborek 2007). To allow for
all possible dynamics, we choose to solve the full Navier–Stokes equations using a
volume-of-fluid technique. Specifically, we include both the inertia and viscosity of the
liquid and the surrounding gas, as well as the surface tension and non-conical aspects
of the geometry. By including all of these parameters, we are able to confirm that
certain aspects indeed have negligible effects. We aim to use the simulation results to
reconcile differences in the previous conical coalescence models, as well as explore
the extent to which the solutions exhibit self-similar dynamics at intermediate length
and time scales.

2. Numerical approach
For conical drops to coalesce, they need to be connected at some small scale. We

also want to ensure that the boundary conditions at the point where the cone joins
the spherical droplet are appropriate. The geometry that we are modelling consists
of two spheres smoothly connected to a hyperboloid bridge (figure 1). At the largest
scale, the spheres have radius R and are surrounded by a gas in a 4R× 6R domain
(figure 1a). When the tangent of the spheres approaches a chosen angle θ off the axis
of symmetry (the cone half-angle), the geometry smoothly transitions into a hyperbolic
surface expressed by(

r
r0
+ tan2 θ

c
− 1
)2

− tan2 θ

(
z
r0

)2

= tan4 θ

c2
, (2.1)

where r and z represent the axisymmetric coordinates, r0 the initial bridge radius
(figure 1c), and c is a constant that is used to control the sign of the bridge curvature.
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At the transition point between the spherical droplet and hyperbolic region, the profile
and profile slope are continuous and the curvature is discontinuous. Here the cone
half-angle θ refers to the angle from the z axis. The family of hyperbolic surfaces
generated by (2.1) was selected because it has two important characteristics. First,
the mean curvature at the centre of the hyperbola is H (c) = (1/r0 − c/r0)/2, and
therefore identical for all values of θ for a fixed value of c (figure 1c). The mean
curvature is relevant because its value determines the pressure difference, or capillary
pressure, across the interface following 1p= 2γH0, where γ is the surface tension.
Therefore if c > 1, then the initial mean curvature at z = 0 is negative and there
is lower pressure in the bridge than in the surrounding drop, leading to flow into
the bridge region and permitting coalescence. The second important characteristic is
that at an intermediate scale, smaller than the radius of the drops, but sufficiently far
from the origin (figure 1b), the hyperboloid takes the shape of a double cone with
r= (tan θ)z. At the largest scales, the cone is matched to the line tangent to a spherical
droplet (figure 1a). Provided that r0�R for a given initial angle θ and droplet radius
R, the droplet centre is located along the axis of symmetry at

zd =±R cosec θ. (2.2)

The point where the cones join the droplets, zi, occurs at

zi =±R(cosec θ − sin θ). (2.3)

It should be noted that we are interested in the coalescence of conical interfaces
(figure 1b). The non-conical aspects of the imposed geometry are added to avoid
singularities and to connect the conical geometry with physically plausible, albeit
approximate, boundary conditions.

Once the initial geometry has been established, the coalescence dynamics of
the system are then solved numerically (figure 2). Due to the symmetry of
the problem, the axisymmetric Navier–Stokes equations are solved instead of
the fully three-dimensional system. The computations employ the open source
software Gerris (Popinet 2003), which simulates the incompressible multi-phase
Navier–Stokes equations using a volume-of-fluid technique. Gerris is chosen for
ease of parallelization and its ability to adaptively represent physical scales spanning
several orders of magnitude (Thoraval et al. 2012). In dimensional form, Gerris solves
the Navier–Stokes equations modified to include surface tension at fluid interfaces:

ρ
Du
Dt
=−∇p+∇ ·µ(∇u+∇uT)+ 2H γ δsn, (2.4)

where u is the fluid velocity, ρ the density, p the pressure, µ viscosity, n the normal to
the gas–liquid interface, and δs a Dirac delta function on the interface. Equation (2.4)
can be non-dimensionalized by dividing through by γ /L2, where L is the characteristic
length scale. It is apparent that this introduces a characteristic time τc=

√
ρL3/γ and

velocity uc = L/τc, as well as the dimensionless Ohnesorge number Oh = µ/√ργL.
Additionally, the dimensionless density ρr= ρg/ρ` and viscosity µr=µg/µ` ratios are
used to characterize the two fluids, where the subscripts g and ` denote gas and liquid
phases, respectively. Here the density ratio, viscosity ratio, and Ohnesorge number are
set to ρr = 1.2× 10−3, µr = 1.8× 10−2, and Oh= 2.7× 10−3, consistent with a water
droplet of radius R= 2 mm in air. A final dimensionless ratio R/r0 sets the range of
physical scales over which the simulation is carried out. We choose this ratio to be
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FIGURE 2. (Colour online) Numerical results highlight two different outcomes based on
the cone angle θ relative to a critical angle θc. (a) Snapshots of the drop pair at different
times t illustrate that two connected drops with cone angle θ = 1.2 will coalesce into one
drop. (b) Snapshots reveal that a drop pair with cone angle θ = 1.0 will follow a different
trajectory and result in two separated drops. The fluid parameters are selected to model
water droplets in air with radius R= 2 mm and the initial mean curvature H0(c= 3)=
−1/r0.

as large as physically reasonable with R/r0 = 104 such that smallest length scale is
r0 = 0.2 µm. The motivation behind this selection is to neglect gravitational effects
at R and molecular interactions at r0. Our results should adequately approximate the
dynamics of any size of drops with length scales within this regime.

Simulations begin with two symmetric droplets connected and initially at rest;
capillary forces drive the subsequent motion. Each simulation is carried out until the
initially connected cone has completely retracted in the case of non-coalescence, or
the two droplets coalesce completely into a single droplet.

3. Results and discussion

Results use the convention of angle described in Sierou & Lister (2004), unless
otherwise noted, where increasing or decreasing θ results in ‘blunter’ or ‘sharper’
cones, respectively. The resulting dynamics are illustrated in figure 2 for initially
coalescing cones with mean curvature H0(c=3)=−1/r0. When the bridge connecting
the drop pair is blunter than a critical angle (θ > θc), snapshots at various times t
illustrate that the drop pair eventually coalesces into a single drop (figure 2a).
However, when the bridge connecting the drop pair is sharper than a critical cone
angle (θ < θc), the bridge quickly pinches off, resulting in a pair of recoiling drops
(figure 2b). As far as we are aware, these are the first numerical simulations that
include both inertia and surface tension to demonstrate that drop pairs connected by
conical bridges coalesce or recoil.

3.1. Self-similar dynamics
The dynamics of coalescence can be quantified by tracking the bridge radius `(t).
To generalize the results, it is often helpful to cast them in physically appropriate
non-dimensional variables. It is natural to normalize `(t) by either R or r0, depending
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FIGURE 3. (Colour online) Evolution of the bridge radius `(t) in non-dimensionalized
variables for six cone angles each with initial mean curvature H0(c = 3) = −1/r0. For
θ 6 1.13, the two drops initially coalesce and then recoil. For θ > 1.14 the two droplets
coalesce. The dashed box highlights the intermediate time and space scales where r0�
`(t)�R. It is in this intermediate regime where the liquid can be approximated as cones
(figure 1b).

on the scale of interest. In these simulations, we have selected an Ohnesorge number
based on the largest scale corresponding to the droplet radius R to be Oh= 2.7× 10−3,
and Oh = 0.27 at the smallest scale r0. Thus Oh < 1 at all length scales in this
problem, indicating that inertia is more important than viscosity at all scales, and that
time would be appropriately non-dimensionalized by an inertial–capillary time scale√
ρ`L3/γ , where L is the characteristic length scale.
The motion `(t) is plotted in log coordinates for various cone angles θ (figure 3).

Initially, all the curves start at `(0)/r0= 1 and follow the same trajectory because the
different drop pairs have the same initial mean curvature at the centre of the bridge
and coalesce at the same rate. As time progresses, the effects of θ become more
pronounced, and the curves deviate. For drops with θ 6 1.13, the effect of the cone
angle not only reduces the coalescence, but completely reverses it, leading to pinch-off.
For drops with θ > 1.14, the curves become straight and parallel in an intermediate
regime (dashed box in figure 3) before re-converging as `(t) approaches R.

These results highlight the separation of scales in figure 1. At both the smallest
and largest scales (figure 1a,c), the cone angle has a small influence on the geometry
relative to the dominant length scale (R and r0 respectively), and in these regimes
curves for various θ nearly collapse (figure 3). In contrast, at the intermediate scale,
(figure 1b), there is no dominant length scale, and in this regime the curves vary
with θ and exhibit a power-law growth with an expected exponent of 2/3 with
small deviations over a finite range of scales. This exponent is noteworthy because
the 2/3 value allows the bridge radius to be expressed as `(t) ∼ (t2γ /ρ`)

1/3, which
is independent of any length scale. Had the inviscid self-similar equations been
solved instead, a scaling with the 2/3 exponent would be expected by construction
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(Keller & Miksis 1983; Sierou & Lister 2004). However, the present simulations
include various length scales, which suggests that the dynamics include the existence
of self-similar solutions as intermediate asymptotics (Barenblatt & Zel’Dovich 1972).
Specifically, the precise shape of the initial geometry on the scale of r0 and R has a
negligible effect on the dynamics in the intermediate regime.

Because we are solving the full equations of motion rather than the self-similar
inviscid equations, we can investigate the initial non-self-similar dynamics (figure 4).
The initial bridge dynamics `(t) for droplets with initial angles of θ = 1.2 > θc and
θ = 1.1 < θc are shown in figure 4(a). The corresponding pressure fields are shown
for the non-coalescing and coalescing droplets in figures 4(b) and 4(c), respectively.
At the initial bridge scale r0, a natural non-dimensionalization of pressures is Pr0/γ .
At the earliest times, the pressure fields are almost entirely generated by local mean
curvatures. The pressure fields for both θ = 1.2 and θ = 1.1 are nearly identical when
t/(ρ`r3

0/γ )
1/2= 0.28, with a strong negative pressure region initially drawing fluid into

the bridge region. However, the interface dynamics quickly begin to be affected by the
cone angle. At t/(ρ`r3

0/γ )
1/2 = 20 the bridge regions have increased in diameter for

both θ = 1.1 and θ = 1.2. At this point the pressure at the centre of the bridge is
Pr0/γ ≈ 0 for θ = 1.1 while the centre of the bridge for θ = 1.2 maintains a negative
pressure. This transition in the sign of the pressure is reflected by the inflection point
in `(t) for θ = 1.1 (figure 4a). Eventually the pressure for θ = 1.1 becomes positive
(figure 4b, t/(ρ`r3

0/γ )
1/2= 99), causing the collapse of the bridge region. The droplet

pair with θ = 1.2 is able to maintain the negative mean curvature in the bridge region,
eventually continuing on towards self-similar coalescence (figure 4c, t/(ρ`r3

0/γ )
1/2 =

180).
To illustrate that intermediate dynamics are indeed self-similar, profiles of the

coalescing bridge are plotted at different intermediate times for θ = 1.14 (figure 5).
When the spatial coordinates (r, z) are normalized by r0, the bridge expands with
time as it coalesces. However, when the spatial coordinates are normalized by the
self-similar length scale (t2γ /ρ`)

1/3, the curves collapse almost perfectly onto a single
coalescing profile.

Because this profile is near θc, it can be contrasted with a previous estimate for
this shape (dashed line in figure 5, Bird et al. 2009). The previous model split
the bridge into perturbed and non-perturbed regions that connected at the point
z/(t2γ /ρ`)

1/3= 1, leading to a kink of non-monotonic curvature in the boundary. The
perturbed region neglects the fluid inertia and is assumed to minimize surface energy
while constraining volume. This assumption leads to a constant-mean curvature surface
with a uniform bridge pressure. In this model, coalescence is assumed to require flow
into the perturbed region driven by a negative capillary pressure in the bridge. Thus
the transition angle between continued coalescence and recoil is assumed to occur
when the capillary pressure in the bridge is zero. If the liquid mass in the bridge is
conserved, this transition angle occurs when the far-field cone angle is approximately
θt = 1.03.

The present simulations demonstrate that a self-similar approximation is appropriate
and also illustrate the existence of non-monotonic curvature in the profile, albeit one
that is smooth (figure 5). Yet, the curves demonstrate that the precise shape of the
bridge is somewhat different than previously modelled, and the critical angle θc is
between 1.13 and 1.14, rather than the previously modelled value θt = 1.03.

Given the success of self-similar variables in collapsing the free-surface profiles
in figure 5, it is natural to inquire how the pressure field develops and varies as it
enters this intermediate regime. Our simulations show that the highest and lowest
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FIGURE 4. (Colour online) Initial dynamics are shown for coalescing and non-coalescing
droplet pairs. (a) Bridge radius `(t) is shown for angles θ = 1.1 < θc and θ = 1.2 > θc
and initial non-dimensional curvature H0(c= 3)r0 =−1. (b,c) Pressure fields, for θ = 1.1
and 1.2 respectively, with appropriate non-dimensional scaling Pr0/γ in the bridge region
driving the interface are shown as time progresses. Images in the left and right columns
correspond to a scaled up view of the small boxed areas shown in the middle column.
Views of the non-coalescing and coalescing droplet pairs correspond to the left and right
halves of the middle column images, respectively. Initially, both fields are driven by
identical initial curvatures. A short time later the pressure in the non-coalescing bridge
becomes positive, driving fluid out of the region leading to break-up. For the coalescing
droplets pressure remains negative until the pair completely merge.
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FIGURE 5. (Colour online) Free surface of coalescing drops near the critical angle
θ = 1.14 and initial mean curvature H0(c = 3) = −1/r0 for the range of intermediate
times t/(ρ`r3

0/γ )
1/2 = 102 to 104. Lower half: spatial variables (r, z) depict how the

profile evolves with time; upper half: rescaled variables demonstrate that the profile in
the intermediate regime is self-similar. Dashed line corresponds to a previous analytic
approximation to self-similar shape near the transition angle, calculated to be near θ ≈1.03
(Bird et al. 2009).

pressures are localized to the bridge region at early times (figure 4). Additionally,
there is significant spatial variability in the pressure field within this region. For
the coalescing droplet pair with θ = 1.2 (figure 4c), the pressure along the axis
of symmetry (r = 0) goes from a negative pressure at the origin to an even lower
pressure at the edge of the bridge region and then to a higher pressure outside this
region. The magnitude of these pressure variations decreases with time. To investigate
this pressure behaviour in the intermediate regime, we have plotted values of pressure
along the axis of symmetry over z=−100r0 to 100r0 for the coalescing droplet pair
with angle θ = 1.2 (figure 6a). Results are shown for times t/(ρ`r3

0/γ )
1/2 = 102 to

103, which overlaps with the times in figure 4 and corresponds to the start of the
intermediate self-similar regime identified in figure 3.

Figure 6 illuminates the effect of cone angle on the pressure field driving the
initial bridge trajectories towards coalescence or break-up. For droplet pairs with
cone angle θ > θc the pressure field sustains flow into the bridge region throughout
intermediate times. Given that the pressure fields are driven by mean curvature of the
fluid–air interface, and that the interface enters an intermediate self-similar regime, it
is expected that the pressure and velocity fields are also self-similar near the bridge
region.

As time progresses and the bridge radius increases in size, the magnitude of the
negative pressure in the liquid bridge decreases. The values and trends of pressure
in figure 6(a) are consistent with those in figure 4(c), recognizing that some of
the pressure values in figure 4(c) go beyond the scale-bar limits at early times.
When the pressure curves from figure 6(a) are rescaled with appropriate self-similar
variables, they nearly collapse onto a single self-similar curve (figure 6b). The
corresponding self-similar pressure field is shown in figure 6(c), where the axis of
symmetry is represented by the dotted line. The domain extends over z/(t2γ /ρ`)

1/3

from −10 to 10 and r/(t2γ /ρ`)
1/3 from 0 to 5. The vertical scale corresponding
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FIGURE 6. (Colour online) Pressure and vertical velocity profiles during coalescence
in the intermediate regime for θ = 1.2 and initial non-dimensional mean curvature
H0(c = 3)r0 = −1 over one decade of time spanning from t/(ρ`r3

0/γ )
1/2 = 102 to

103. (a) Magnitude of pressure depends on the axial position and decreases with time.
(b) When scaled by self-similar spatial variables, the pressure collapses onto a single
curve. (c) The same self-similar pressure is shown over the entire bridge region. (d) The
magnitude of vertical velocity also depends on axial position and decreases with time.
(e) Rescaling these velocity profiles with self-similar variables leads to a single curve.
( f ) The same self-similar vertical velocity is shown over the entire bridge.

to the self-similar variable z/(t2γ /ρ`)
1/3 in both figures 6(b) and 6(c) are identical.

The self-similar pressure field ((P3t2)/(γ 2ρl))
1/3 shown in figure 6(c) is taken at

time t/(ρlr3
0/γ )

1/2 = 180 and is representative of the values observed throughout
the intermediate regime. A stagnation point exists at r = 0, z = 0, reflected by the
increase in pressure there (figure 6b,c). A few transient pressure fluctuations exist
that can be attributed to numerical errors (figure 6a,b). These numerical errors also
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affect the adaptive mesh, leading to the appearance of non-symmetric transients
(figure 6c). Despite these transients, pressures nearly collapse to a single self-similar
curve (figure 6b).

The pressure gradients in the liquid can drive fluid motion as the liquid rearranges
and the bridge grows. We can identify the fluid velocity at the same points for which
pressure was reported. The non-dimensional axial velocity profiles u/(γ /ρ`r0)

1/2

are shown in figure 6(d), where u is in the direction of the z axis. The velocities
along the axis of symmetry are all directed into the bridge region and decrease
in magnitude as time progresses. When the axial velocity curves are rescaled with
appropriate self-similar variables, the velocities shown in figure 6(d) collapse onto a
single self-similar curve (figure 6e). The corresponding self-similar axial velocity field
is shown in figure 6( f ). Again, the self-similar velocity field is taken at the same
time t/(ρlr3

0/γ )
1/2 = 180 and is representative of the self-similar velocity field near

the bridge region throughout the intermediate regime. Numerical errors negligibly
affected the velocity profiles. Both the velocity and pressure fields illustrate the
presence of a capillary wave moving along the boundary (figure 6c, f ). Because the
dominant pressures and velocities are localized within the region bounded by the
capillary wave crest closest to the origin, the results are consistent with the idea that
coalescence can be approximated as a perturbed ‘neck’ region and the unperturbed
conical region (Bird et al. 2009). It is noteworthy that the pressure and velocity
extremes are not located along the axis, but rather along the interface. Indeed, there
is significant spatial variability, and the results illustrate that there is some flow into
this ‘neck’ region.

3.2. Initial conditions
The fact that the coalescence progresses into stable, self-similar dynamics illustrates an
absence of a characteristic physical length scale, suggesting that the initial non-conical
geometry can have a negligible role in this intermediate regime. The implications are
that the precise shape of the profile is far less important than the cone angle. However,
droplet pairs studied so far have had large enough initial mean curvature H0=−1/r0
to prevent immediate pinch off, regardless of angle. In other words, the initial bridge
geometry led to the droplets initially coalescing. Simulations are now shown varying
both initial mean curvature H0 and angle θ . Following (2.1), the bridge angle can
be controlled independently of curvature (figure 7a). Conversely, curvature can be
controlled independently of angle (figure 7b). The results of a number of simulations
show that there exists a critical angle θc that has negligible dependence on initial
non-dimensional mean curvature H0r0 as long as this curvature is sufficiently negative.
This dependence is shown in figure 7(c), with filled and open circles corresponding
to simulations resulting in coalescence and non-coalescence, respectively. Here the
initial mean curvature at the centre of the bridge, H0, is non-dimensionalized by the
initial bridge radius r0. As expected, positive values of initial non-dimensional mean
curvature H0r0 result in the immediate collapse of the connecting bridge region, and
coalescence is never observed. For a small range of negative values of this curvature,
θc exhibits a weak dependence on initial geometry. However, with large negative initial
mean curvature (H0r0 &−0.4), the critical transition angle θc is negligibly affected.

For completeness we also investigated whether the shape of the drop had
an appreciable effect on the coalescence dynamics. Indeed, droplets induced to
coalesce in electric fields can deform so that they are no longer perfect spheres
(figure 1d). Both prolate and oblate initial droplet geometries are considered. These
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FIGURE 7. (Colour online) The effects of initial geometry governed by (2.1) for a variety
of initial mean curvatures and cone angles. (a) Cone angle is varied while non-dimensional
mean curvature is held constant at H0r0 =−1.0. (b) Initial curvature is varied while the
cone angle is held at θ = 1.2. (c) Simulations are shown for a range of cone angles
and initial mean curvatures. Away from the region where curvature in the bridge is
small (H0r0 ≈ 0) there exists a critical angle θc above which all droplets coalesce, and
below which all pinch off. There is negligible affect on critical angle by initial mean
curvature provided that this mean curvature is sufficiently negative. A dashed line is
shown to highlight this critical angle. Filled and unfilled circles represent coalescing and
non-coalescing simulations, respectively.

ellipsoidal droplets are characterized by their semi-major and semi-minor axis a and b
respectively as shown in figure 8(a). The semi-major axis of these elongated droplets
is co-linear with the axis of symmetry. The ratio of semi-major to semi-minor axis is
a/b= 0.5 and a/b= 2.0 for the prolate and oblate ellipsoids, resulting in eccentricity
of e= 0.745 for both topologies. The mean curvature at the scale of R at the point
closest to the origin for these ellipsoidal droplets is a/b2 and b/a2 for prolate and
oblate ellipsoids, respectively. The oblate and prolate ellipsoids (figure 8a) were scaled
such that their mean curvature at the point closest to the origin matched the mean
curvature, 1/R, of the spherical droplet. Pairs of these ellipsoids were attached with
a hyperboloid following the same procedure as carried out earlier with the spheres
(figure 8a). Cone angles of θ = 1.2 and θ = 1.1 and initial curvature H0r0 = −1.0
were investigated and compared with spherical droplets (figure 8b).

The results from these simulations are shown in figure 8(b) in the same format
as figure 3. The bridge radius `(t) for the prolate and oblate ellipsoids shows nearly
indistinguishable trajectories from the spherical droplets (figure 8b) at both the early
times when initial mean curvature drives the dynamics and at intermediate scales
where the cone angle θ affects coalescence and break-up. Only at the largest scales
do the dynamics of the prolate and oblate ellipsoids deviate from that of the spherical
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FIGURE 8. (Colour online) Simulations where the outer droplet geometry has been
modified. (a) Prolate and oblate ellipsoidal droplets with eccentricity e= 0.745 are used
as initial outer boundary conditions instead of a sphere. The initial mean curvature in the
bridge region of both ellipsoids is set to the mean curvature of the spherical droplet 1/R.
(b) The bridge radius `(t) for a sphere is indistinguishable from either the prolate or oblate
ellipsoid at small and intermediate scales despite the large volume differences between all
geometries. Only at the largest scales, R, are the effects of the different volumes observed.

droplet. The dynamics of the ellipsoidal droplets with cone angles of θ = 1.1 are
nearly identical to that of the spherical droplet.

The results illustrate that the outer geometry has a negligible effect on the
intermediate asymptotics; significant deviations occur only when the bridge reaches
size scales of the droplet.

In our simulations, we observe a regime of self-similar dynamics whenever the
conical drops coalesce that appears to be independent of the non-conical geometry.
When the drops do not coalesce, the bridge radius ` passes through zero as the
connected double-cone undergoes a topological rearrangement into two non-connected
cones. The dynamics continue beyond this point and the drops continue to recoil
(figure 2). The tips of the two conical droplets can each be modelled as a recoiling
liquid cone, a geometry that has previously been investigated using the inviscid,
self-similar equations (Sierou & Lister 2004). The results of these previous simulations
illustrated that the surface-tension-driven retraction of an inviscid liquid cone would
adopt a self-similar profile that depended on the far-field angle, θ (figure 9a).

We can similarly plot the recoiling dynamics for the simulations presented here
whenever the initially connected drops fail to coalesce. Indeed, the collapsed retracting
profiles calculated in this paper (figure 9b) are nearly indistinguishable from the self-
similar inviscid profiles reported by Sierou & Lister (2004).

There are two implications of this result. First, the similarity between profiles
provides evidence that the computations used in this paper are properly executed and
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FIGURE 9. (Colour online) Self-similar profiles for coalescing or recoiling cones at
different angles θ , all with initial mean curvature H0(c=3)=−1/r0. (a) Recoiling profiles
of inviscid cones in a vacuum from boundary-integral simulations (Sierou & Lister 2004)
are shown as dashed lines. (b) Dots correspond to the current simulations with overlaid
dashed lines again representing the previous boundary-element simulations. As expected,
recoiling solutions are nearly indistinguishable (θ = 0.6). Previous simulations of single
cones are prescribed to recoil, whereas the current simulations of double-cones can also
coalesce (θ = 1.2).

precise enough to capture the essential physics in this problem. Second, the similarity
suggests that the results by Sierou & Lister (2004) generalize beyond a strictly conical
geometry, and are appropriate to model nearly inviscid recoil for conical interfaces
as an intermediate asymptotic solution. From a dimensional analysis perspective, the
critical angle θc can, and most likely does, vary with Oh, ρr and µr, all of which
have been fixed in this study. However, the similarity in the profiles suggests that
when Oh→ 0, ρr → 0 and µr → 0, the critical angle θc approaches an asymptotic
limit.

When θ > θc, the profiles computed by Sierou & Lister (2004) no longer match
the results from our simulations. This difference is not surprising given that the
double-cones are coalescing, as opposed to recoiling, in our simulation. Indeed, if the
double-cone is separated into two single cones the result of Sierou & Lister (2004) is
recovered. Still, the difference does highlight that there are two possible self-similar
profiles for a given far-field angle θ > θc. The difference also illustrates how the
results from this paper are novel, but complementary to the previous literature on
inviscid self-similar dynamics of wedges and cones.

4. Conclusions and discussion
The results presented in this paper provide the necessary physical modelling to

reconcile differences in existing models of conical drop coalescence and pinch-off.
Specifically, the incompressible Navier–Stokes equations were solved to model the
coalescence of conical drops under conditions representative of millimetre water
drops surrounded by air. The particular conical drop geometries used in this study
were motivated by the profiles observed during the initial stage of electrocoalescence.
In these observations, two spherical drops deform so that the region near contact
appears conical with varying cone angle θ . We expect that prior to contact, the two
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conical drops would each have a finite radius of curvature at the tip of the cone.
We assume that this curvature would help initiate coalescence upon contact during
the microsecond time period that charge effects relax. Thus we have modelled the
initial double-cone geometry with three distinct length scales: a small bridge that has
a positive mean curvature to initiate coalescence, a conical intermediate scale, and
constant curvature away from the bridge region at the largest scale.

As coalescence progresses, the simulations demonstrate that effects of the conical
geometry either continue the coalescence or reverse the flow, initiating pinch-off.
Our results demonstrate that the dynamics that determine the critical angle between
coalescence and recoil is in this intermediate regime, where the bridge can be
approximated as two cones. By varying the cone angle between different simulations,
we find the drops coalesce when θ > 1.14 and pinch off and recoil when θ 6 1.13.
Therefore the transition angle is approximately 65◦ off the axis of rotation, or 25◦
from the plane normal to the axis of rotation. The latter value is slightly different
from the model angle prediction of 31◦, but consistent with the experimental transition
value of 27± 2◦ (Bird et al. 2009).

Previous attempts to model this problem have neglected the influence that fluid
inertia has on the neck shape. The results presented here indicate that the neck grows
as t2/3 when θ > θc, in contrast to previous predictions of t1/2 (Helmensdorfer 2012;
Helmensdorfer & Topping 2013). As a point of reference, it is unlikely that electric
fields could produce conical drops with an angle sharper than that of a Taylor cone
without other effects such as electrospraying. Therefore it is important to note that
the Taylor cone angle of θ = 49.3◦ = 0.86 (Taylor 1964) is at an angle less than
the transition angle, when the cones would already be predicted to recoil. Finally,
because our model is independent of any electrical effects, we would expect it to be
valid in non-electrical coalescence situations in which nearly inviscid conical drops
contact. Facing cone-like protrusions have been observed when drops are pulled apart
(Yoon et al. 2007), which can lead to coalescence (Bremond, Thiam & Bibette 2008).
Our results suggest that there may be a similar coalescence–recoil transition for these
separating drops.
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