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When a drop of liquid wets two identical solid spheres, the liquid forms a capillary bridge between the
spheres to minimize surface energy. In the absence of external forces, these bridges are typically assumed
to be axisymmetric, and the shape that minimizes surface energy can be calculated analytically. However
under certain conditions, the bridge is axisymmetrically unstable, and migrates to a non-axisymmetric
configuration. The goal of this paper is to characterize these non-axisymmetric capillary bridges.
Specifically, we numerically calculate the shape of the capillary bridge between two contacting spheres
that minimizes the total surface energy for a given volume and contact angle and compare to experi-
ments. When the bridge is asymmetric, finite element calculations demonstrate that the shape of the
bridge is spherical. In general, the bridge shape depends on both volume and contact angle, yet we find
the degree of asymmetry is controlled by a single parameter.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

When a small amount of liquid wets two identical solid spheres,
the liquid will typically form a meniscus, or capillary bridge,
between the spheres. Provided that bridge is sufficiently small,
gravitational effects are negligible, and the liquid is drawn to the
axis of the spheres to minimize surface energy. Extensive research
has been carried out to characterize capillary bridges, both because
of the elegance of the mathematics [1,2] and because of their
importance to a variety of processes in physics and engineering
[3–6]. Capillary bridges are important to granular and suspension
rheology [7,8]. They trap liquids and gases in soil [9,10] and porous
rock [11], as well as influence the adhesion of pharmaceutical pow-
ders [12] and sandcastles [13,14]. Yet, almost all studies of capil-
lary bridges between spheres have restricted their analysis to
situations in which the bridges are axisymmetric [15–21]. Of the
few studies that have pointed out the existence of asymmetric
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capillary bridges between spherical particles [22,23], there is an
indication that these bridges might adopt a spherical shape; yet
the authors were careful not to claim that the asymmetrical spher-
ical bridge indeed minimized surface energy.

The shape of both an axisymmetric and non-axisymmetric cap-
illary bridge can be demonstrated experimentally (Fig. 1a and b).
Two glass spheres are adhered to needles and brought to contact.
Water, dyed blue, is injected on the spheres and forms a capillary
bridge between the spheres and the surrounding air. An axisym-
metric capillary bridge forms between the spheres (radius
R = 1 mm) when the water volume is V = 0.27 lL and the apparent
contact angle is h = 32� (Fig. 1a). As will be described further in the
method’s section, the particular contact angle is achieved by
vapor-depositing a layer of (3-mercatopropyl)trimethoxysilane
onto the glass spheres prior to assembly. Above a critical drop vol-
ume and apparent contact angle, however, the capillary bridge
spontaneously breaks axial symmetry and bulges to one side
(Fig. 1b). The goal of this paper is to numerically calculate the
shape of bridges that minimize the surface energy for various com-
binations of volume and contact angle.

In the absence of external forces, the liquid bridge will rear-
range until it locally minimizes the cumulative surface energy of
each of the interfaces. When a liquid, gas, and solid phase are pre-
sent, the total surface energy can be expressed as
E = cLGALG + cSGASG + cSLASL, as there are three distinct interfaces
(liquid–gas, solid–gas, and solid–liquid) each with their own inter-
facial tension c and surface area A. In the absence of any roughness
or chemical heterogeneities, the relative strengths of the surface
energies manifest themselves through the equilibrium contact
angle heq that the three phases make when they meet, following
Young’s relation [4]: (cSG � cSL)/cLG = cos heq. In practice, micro-
scopic heterogeneities can be significant and the angle
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Fig. 1. Experiments and simulations illustrating axisymmetric and asymmetric
morphologies. (a) A photograph of 0.27 lL of water wetting two glass spheres with
contact angle h = 32�. (b) At an increased volume (V = 3.5 lL) and contact angle
(h = 60�), the water adopts a non-axisymmetric topology. (c) Minimal energy
surface simulated for conditions in part a. (d) Axisymmetric minimal energy surface
simulated for conditions in part b. (e) Stable minimal energy surface simulated for
conditions in part b. (f) Identification of parameters measured from the simulations.
macroscopically observed, referred to here as the apparent contact
angle, can deviate from the equilibrium value [24,25]. In addition,
the apparent contact angle can modulate between values adopted
when the contact line is quasi-statically receding and when the
contact line is quasi-statically advancing, a phenomenon referred
to as contact angle hysteresis [26,27]. Although the experimental
system in Fig. 1 exhibits contact angle hysteresis, the analysis in
this paper demonstrates that hysteresis is not necessary to adopt
an asymmetric capillary bridge. In this paper, we will refer to the
fluid that forms the capillary bridge as a liquid and the surrounding
fluid as a gas to be consistent with Fig. 1. However, it should be
noted that the analysis presented here does not restrict these
phases to be liquid and gas respectively, but rather generalizes to
any two immiscible fluids.

The topological transition illustrated in Fig. 1a and b is reminis-
cent of the non-axisymmetric instability observed when a drop is
squeezed between two parallel disks [28–30]. In that scenario,
the capillary bridge adopts a rotund shape and breaks symmetry
when the free surface is tangent to the flat surface of the disk.
Yet, the contact line on the parallel disks is pinned, whereas on
the spheres we will assume that it is free to move along the surface.

Therefore, a closer analogy to the shape transition
(Fig. 1a and b) might be the roll-up process of a drop on a cylinder
[31–35]. Depending on the contact angle and the volume, a drop
will spread around a long cylinder in a shape resembling a barrel
shape or alternatively roll-up into a non-axisymmetric shape
resembling a clamshell. The drop and cylinder geometries provide
a seemingly simple system; yet, even though the morphologies
have been calculated numerically [33–35], the precise instability
criterion and non-axisymmetric topology are still uncertain [35].
A challenge is the existence of metastable states in which a drop
can conform to a topology that is a local energy minimum while
not necessarily being a global minimum. The double-sphere geom-
etry (Fig. 1) may be a simpler system to characterize
non-axisymmetric bridge morphologies due to rotational symme-
tries. Yet, as far as we are aware, the stable, non-axisymmetric
topologies for drops on the double-sphere geometry have not been
calculated analytically or numerically.

In the following sections, we describe our procedure to model
the capillary bridge between identical spheres both experimentally
(Fig. 1a and b) and numerically (Fig. 1c–e) for a given liquid volume
V and contact angle h. From the finite element calculations, we
measure the principle curvatures jrz and jrh, as well as the mini-
mum r1 and maximum r2 extent of the bridge from the point of
contact (Fig. 1f). These parameters are collected for various combi-
nations of volume and contact angle and form the basis of our
analysis.
2. Methods

2.1. Experimental methods

To obtain the images in Fig. 1a and b, borosilicate glass beads
with a diameter of 2 mm are adhered to the tip of 16 gauge nee-
dles. The beads are coated with (3-mercatopropyl) trimethoxysi-
lane by chemical vapor deposition under low pressure so that
they are partially wetting. Once coated, the needles are mounted
vertically so that the glass beads can be aligned and brought into
contact by articulating a 3D stage. Water, dyed blue, is injected
between to form a capillary bridge between the separated spheres.

For small volumes, the capillary bridge remains axisymmetric
when the glass beads are brought into contact. In these cases only
a single photograph is taken. For larger volumes, however, the
bridge becomes non-axisymmetric as the beads are drawn
together. In these cases, a second photo is taken while the beads
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are separated and the capillary bridge is axisymmetric. The volume
of the axisymmetric capillary bridge is calculated from the pho-
tograph using a custom MATLAB image processing script. The con-
tact angle is measured from the bridge profile when the spheres
have contacted (Fig. 1a and b), as are the principle radii r1 and r2.

2.2. Numerical methods

We calculate the capillary bridge shape for a given liquid vol-
ume and contact angle numerically using Surface Evolver [36,37],
a finite element solver. Surface Evolver is designed to minimize
the energy of a surface down to an arbitrary level of refinement.
To control the shape of the capillary surface, we specify an equilib-
rium contact angle heq via the relative interfacial surface tensions
on the different interfaces, as well as a dimensionless volume
V/R3, where R is the radius of the solid spheres.

In our system, the liquid–gas interface is free to deform,
whereas the solid–liquid and solid–gas interfaces are constrained
to lie on the interface of the solid spheres. In Surface Evolver, facets
comprising a constrained surface are especially sensitive to many
of the built-in commands that refine and evolve. In lieu of these
facets, a path integral is used to calculate their contribution to
the total surface energy and volume. Using the documentation as
a guide [33], we obtain path integrals accounting for the volume
and surface area contributed by the upper and lower spheres:

Vupper ¼
I
@S

zð3R� 2zÞ
6ð2R� zÞ y~̂i� x~̂j

� �� �
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The results of this simulation are quite sensitive to the accuracy
of these path integrals. Therefore, we verify the path integral sim-
ulation by comparing it to a simulation that excludes these ele-
ments (Fig. 2). Both simulations are run with the same initial
a

Fig. 2. Verification of surface evolver simulation implementing path integrals. (a) Simulat
contributed by bounding spheres. (b) Simulation results when path integrals are used t

a b

Fig. 3. Typical evolution of a non-axisymmetric capillary bridge. (a) The initial surface is
it reaches an equilibrium shape. (c) The surface is perturbed and evolved until it reache
conditions and to the same tolerance at the same maximum level
of refinement. The result of the free interface shape using the path
integrals (Fig. 2b) is indistinguishable to the shape when facets are
used to account for the volume and surface area of the bounding
spheres (Fig. 2a). The difference between the images is the facets
that would otherwise be constrained to the surfaces of the spheres,
and therefore we conclude that the path integrals are implemented
correctly.

The procedure to carry out these simulations is illustrated in
Fig. 3. An initial axisymmetric profile is defined about the origin
with a specified volume (Fig. 3a). This surface is refined and
evolved until it reaches an equilibrium shape (Fig. 3b). This shape
corresponds to an axisymmetric minimum surface energy configu-
ration of the liquid bridge given the volume, contact angle, and
solid boundary constraints. Note that the configuration in Fig. 3b
will always be axisymmetric because the initial conditions and
perturbations are axisymmetric. Thus, we next introduce
non-axisymmetric perturbations. If the axisymmetric bridge con-
figuration is stable, it will return to axisymmetric configuration.
Otherwise, the bridge shape will further evolve into a new, stable
non-axisymmetric configuration (Fig. 3c).

Simulations are run for more than 2500 unique combinations of
contact angle heq and dimensionless bridge volume V/R3. The
results of each simulation, a triangular mesh of the bridge profile,
are exported to MATLAB. Once imported, custom MATLAB scripts
slice the triangular mesh into two-dimensional sections along
two independent planes of symmetry. A circular regression [38]
is used on these slices to determine r1, r2, jrz and jrh.
3. Results and discussion

Provided that the fluid is static and the effects of gravity are
negligible, the pressure both inside and outside the capillary bridge
must be constant. However, because of the curvature of the bridge,
these pressures are not necessary the same. The pressure jump
across the interface, known as the Laplace pressure, is proportional
to the mean curvature. Therefore the shape of the bridge that min-
imizes surface energy must belong to the class of
b

ion results when facets (top surface) are used to account for volume and surface area
o account for volume and surface area contributed by bounding spheres.

c

defined. (b) The surface is refined and evolved without additional perturbation until
s a new, stable equilibrium shape.
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Fig. 4. Apparent contact angle measured from the simulation results as a function
of the specified equilibrium contact angle heq. From theoretical considerations, it is
expected that the apparent and equilibrium contact angles should be equivalent
(solid line). The black points are simulation results, with the white circles depicting
the mean apparent angle for each equilibrium angle.

Fig. 5. Multiple simulations illustrate how the minimum radius r1 and maximum
radius r2 compare to the axisymmetric radius ra. (a) At fixed contact angle, the radii
bifurcate at a critical volume. (b) At fixed volume, the radii bifurcate at a critical
angle. The dashed lines depict the critical values and the dash-dotted lines intersect
the points that correspond to Fig. 1d–e.
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constant-mean-curvature surfaces, sometimes referred to as
Delaunay surfaces.

The constant mean curvature of the bridge continues as it meets
the solid double-sphere surface forming at an apparent contact
angle h at the triple line. Therefore if the bridge is axisymmetric,
the apparent contact angle and bridge volume are sufficient to
determine the bridge shape, regardless of the physics responsible
for the apparent contact angle observed. In the absence of any con-
tact angle hysteresis or microscopic heterogeneities, the apparent
contact angle takes the value of the equilibrium contact angle
heq. This equality has been proved formally for arbitrary axisym-
metric geometries by casting the energy minimization as a varia-
tional problem and imposing the tranversality condition [39].
Indeed, the apparent contact angles in our simulations are consis-
tent with this result.

Multiple simulations illustrate the one-to-one relationship
between the apparent contact angle h and specified equilibrium
contact angle heq (Fig. 4). Small circles denote observed contact
angles computed from the intersection of contact-line facets and
their corresponding spheres (approximately 800,000 points from
the 2550 runs). Large circles denoting mean values of these
observed contact angles closely match the expected one-to-one
relationship between the observed and specified contact angles
(solid line).

Because the equivalence of the equilibrium and apparent con-
tact angles in our simulations, we will no longer differentiate them
in this manuscript and refer to them both as the contact angle h.
We expect that all of our results equally apply when microscopic
heterogeneities are present, provided that contact angle is not
pinned and thus free to move along the surface. In these instances,
the apparent contact angle may not be the thermodynamic equilib-
rium contact angle, but acts as an equivalent equilibrium contact
angle in constraining the bridge shape.

By setting the volume and contact angle to be equivalent to the
experiment in Fig. 1a and minimizing the surface energy, the the-
oretical bridge shape is computed (Fig. 1c). The experimentally
observed shape (Fig. 1a) is similar to the simulation (Fig. 1c), con-
firming that gravity and other external forces are indeed negligible.

When simulations are carried out with the volume and contact
angle to be equivalent to the experiment in Fig. 1b, the
axisymmetric configuration that minimizes surface energy
(Fig. 1d) is noticeably different than the experimentally observed
shape (Fig. 1b). Furthermore, when the non-axisymmetric pertur-
bations are introduced, the simulated bridge shifts to an asymmet-
ric configuration (Fig. 1e) that is qualitatively similar to the
experimentally observed shape (Fig. 1b).

The experimental observations and computations suggest that
there must be critical states of volume and contact angle that sep-
arate the axisymmetric and non-axisymmetric configurations.
Setting an origin at the contact point of the spheres, we record
the minimum radius r1 and maximum radius r2 in the plane of
symmetry (Fig. 1f). If the bridge is axisymmetric, the minimum
and maximum radii are equivalent and equal to the axisymmetric
radius ra. By carrying out numerous independent simulations, we
systematically compute these radii for different volume and con-
tact angle combinations.

Starting with the constraints in Fig. 1b (dotted-dashed lines in
Fig. 5), the simulations suggest that the non-axisymmetric bridge
would become axisymmetric if either the volume were decreased
(Fig. 5a) or the contact angle decreased (Fig. 5b). There is a distinct
bifurcation point where the axisymmetric bridge transitions from
being stable to unstable (Fig. 5a, dashed lines). Here the radii and
volume are non-dimensionalized by the radius of the solid spheres R.

The overall stability is illustrated by plotting the ratio r1/r2 as a
function of the volume and contact angle (Fig. 6). The bridge is
axisymmetric when r1/r2 = 1 and non-axisymmetric for all other
values. The simulations demonstrate that the ratio is equal to
one when the volume and contact angle are sufficiently small
and monotonically decreases as the volume and contact angles
increase. Although these results are sufficient to tabulate the
degree of asymmetry, they do not provide a deep understanding
as to why this asymmetry develops.

In addition to the minimum and maximum bridge radius, we
also calculate the principle curvatures jrh and jrz of the simulated



Fig. 6. The radius ratio r1/r2 as a function of bridge volume for various contact
angles. The liquid bridge is axisymmetric when r1 = r2, and the triangles denote the
experimental conditions in Fig. 1a and b.
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Fig. 7. The principle bridge curvatures indicate the internal pressure and shape of
bridge. (a) Bridge capillary pressure is calculated from simulations with various
volumes and contact angles. The simulations reveal a zero capillary pressure
contour that is consistent with the exact solution for a catenoidal bridge between
spheres (dashed line). The triangles locate the experimental conditions in Fig. 1, and
the direction of the arrow indicates increasing capillary pressure. (b) The ratio of
the principle curvatures provides insight into the shape of the bridge. Exact
solutions for catenoidal and spherical bridges are plotted with a dashed and solid
line respectively. All values beyond the range of the scalebar are depicted with the
color of the extrema for clarity.
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bridge surface (Fig. 1f). The capillary pressure inside the bridge can
be related to these principle curvatures with DP = cLV(jrh + jrz). For
each contact angle h < 90�, there exists a volume Vc for which the
bridge is a catenoid (see Appendix) and the capillary pressure
changes sign. The catenoid volume for a given contact angle can
be calculated analytically (Fig. 7a, dashed line), and the agreement
with the sign change in the numerically calculated pressure pro-
vides further verification of the numerical model. It is interesting
to note that the pressure monotonically increases as the contact
angle increases for a given volume; yet, for a given contact angle,
the pressure is non-monotonic as the volume changes.

Although it may be tempting to relate the sign change in
Laplace pressure with the emergence of asymmetry, past studies
have argued that axisymmetric bridges remain stable until the
point in which they become spherical [22,23]. Indeed, we obtain
further insight by plotting the ratio of the principle curvatures jrz/-
jrh (Fig. 7b). Here a value of �1 corresponds to a catenoidal bridge,
a value of 0 corresponds to a cylindrical bridge, and a value of 1
corresponds to a spherical bridge. Other values of this ratio signify
that the bridge can be described by constant-mean-curvature sur-
faces referred to as unduloids and nodoids [1,6].

The noteworthy feature of Fig. 4b is that nodoidal bridges with
positive curvatures jrz/jrh > 1 are absent. Fig. 1d illustrates such a
shape, yet as expected this particular bridge is unstable to
non-axisymmetric perturbations. For this particular volume and
contact angle, the ratio of curvatures for the stable bridge is
jrz/jrh = 1, suggesting that the asymmetric bridge shape is spherical.
Indeed for each contact angle h < 90�, there exists a unique volume
Vs for which an axisymmetric bridge is a spherical (solid line in
Fig. 7b). All of the simulations conducted in which the volume of
the bridge was greater than Vs, equilibrated to a spherical bridge
shape with jrz/jrh � 1.

To highlight the importance of the spherical bridge, we rescale
Fig. 5 so that the bridge volume is normalized by the axisymmetric
spherical bridge volume Vs. With this scaling, all of the curves in
Fig. 6 collapse together with r1/r2 � 1 when V/Vs < 1 (Fig. 8a).
When V/Vs > 1, the ratio r1/r2 decreases and the bridge is no longer
axisymmetric. Given the near collapse of the different contact
angle simulations, it is natural to inquire whether analytic solu-
tions to the asymmetry ratio r1/r2 are obtainable. We now solve
for the exact solution by exploiting the rotational symmetries
afforded by the solid spheres and the spherical bridge.

For every contact angle, there exists a spherical bridge with
radius of curvature rs and volume Vs [3,21]. For example, for
h = 60�, the axisymmetric bridge is spherical only when rs = R and
Vs = p/2 R3 (Fig. 8b). If the contact angle is fixed and bridge volume
V increased, an axisymmetric constant-mean-curvature surface
can be constructed, but it will no longer be spherical (Fig. 8c).
Suppose that the solid spheres were not constrained to contact,
but instead free to drift apart. The spheres would separate until
the attractive force due to the line tension was exactly balanced
by the repulsive capillary pressure. It has been proven in an
axisymmetric configuration that these forces balance when the
bridge is spherical [3,16]. The source of these forces is a potential
reduction in surface energy, thus the minimum surface energy pos-
sible for a particular contact angle and volume is achieved when
the spheres are separated by a distance 2d so that the resulting
bridge is spherical (Fig. 8d). Because the spherical bridge is rota-
tionally symmetric, one of the solid spheres could be rotated about
the center of the bridge without modifying the surface areas ALG,
ASG, and ASL (Fig. 8e). Thus the solid spheres can be brought into
contact while maintaining the minimized surface energy. Finally,
the solid spheres can be rotated back to their original contacted
alignment (Fig. 8f), revealing an asymmetric bridge configuration
with a lower surface energy than the equivalent axisymmetric con-
figuration (Fig. 8c). Although this argument illustrates that the
total surface energy of the system would be reduced if it were able
to satisfy the constraints and adopt a spherical shape, it does not
rule out the possibility that a different non-axisymmetric shape
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could exist with a lower surface energy. Here our numerical results
are vital, as they provide strong evidence that these axisymmetri-
cally unstable bridges will reach a minimum energy state when
they are spherical.

Thus from simple geometry, we conclude that the degree of
asymmetry can be expressed as r1

r2
¼ 1 when V/Vs 6 1 and

r1
r2
¼ rs�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþRð Þ2�R2

p

rsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþRð Þ2�R2

p ¼ 1�
ffiffi
n
p

1þ
ffiffi
n
p when V/Vs P 1, revealing that asymmetric

morphology is controlled by a single parameter
n = 1 � 2jrhR cos h (see Appendix). We have solved for values of
this expression and these values agree well with the collapsed sim-
ulations (dashed line in Fig. 8a), as well as with the experimental
water bridge illustrated in Fig. 1b (triangles in Fig. 8a).
4. Conclusions

In this paper, we numerically calculate the shape of the capil-
lary bridge between two contacting spheres that minimizes the
total surface energy for a given volume and contact angle. We find
that the bridges adopt a non-axisymmetric shape if the volume of
the liquid V is greater than volume required to form an axisymmet-
ric spherical bridge Vs. Moreover, the numerical results provide
evidence the minimum energy configuration is itself spherical so
that the degree of asymmetry r1/r2 is controlled by a single param-
eter n = 1 � 2jrhR cos h. Both the numeric simulations and our
analysis demonstrate that the asymmetry does not require contact
angle hysteresis to break the symmetry. In situations in which con-
tact angle hysteresis is present, the equilibrium shapes that we
compute should be identical in terms of the apparent contact angle
provided that the contact line is not pinned. Indeed, apparent con-
tact angles measured in our experimental observations likely devi-
ate from the equilibrium contact angle; yet still, the resulting
bridge shape is well-modelled upon specifying only the apparent
contact angle and bridge volume.

This finding is relevant to a variety of applications that involve
capillary bridges because the asymmetry we calculate affects both
the shape and force of the bridge. Even though we have focused on
the bridges between two identical spherical particles that are in
contact, we anticipate that spherical bridges are a minimum
energy configuration for separated spheres with various size and
contact angles. Additionally, the results can be extended to predict
the bridge shape when the contact angles are greater than 90�. In

this case, rs <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ Rð Þ2 � R2

q
so that r1 is negative and the bridge

no longer surrounds the origin. Finally, our findings have implica-
tions for the forces exerted onto the spheres from the capillary
bridges. Our numerical results support the conclusion by Niven
[23] that rather than exhibiting capillary repulsion when V/Vs > 0,
the asymmetry in the bridge leads to no net capillary forces.
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Fig. A2. Schematic drawing of a cylindrical liquid bridge between solid spheres.
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Appendix A. Exact solutions of capillary bridge profiles

A.1. Catenoidal bridge

The relationship between bridge volume Vcat and contact angle
h for a catenoidal profile between two solid spheres (Fig. A1) is
determined by modifying a similar problem examined by
Rubinstein and Fel [40]. After appropriate alterations and simplifi-
cations, we are left with a system of equations in three variables -
dimensionless volume Vcat/R3, contact angle h, and filling angle w.
The filling angle refers to the angle between the axis of symmetry
and the contact line of the capillary bridge. An analytical solution
may exist for this system; limited work was done simplifying it
before resorting to a numerical solver.

t¼h�w ð1Þ
C¼sintsinw ð2Þ

C ln tan
h
2

� �
�coswþ1¼0 ð3Þ

Vcat=R3¼2pC3 cost

sin2 t
þ ln cot

t
2

� �� �
¼�4

3
pC2ðcos3w�2coswþ2Þ ð4Þ
A.2. Cylindrical Bridge

For a cylindrical profile between two solid spheres (Fig. A2),
solving the relationship between bridge volume Vcyl and contact
angle h is more straightforward than the catenoidal case. Unless
otherwise stated, assume here and elsewhere that the solid
spheres are in contact. For this special geometry, the contact and
filling angles are complementary. The bridge volume is determined
by subtracting spherical caps from a cylindrical volume of radius r
and height h. A numerical solver is unnecessary in this case; a
closed-form solution exists.

r� ¼ r=R ¼ cos h ð5Þ
h� ¼ h=R ¼ 2ð1� sin hÞ ð6Þ

Vcap=R3 ¼ 1
3
p 1

2
h�

� �2

3� 1
2

h�

� �
¼ 1

3
p 1� sin hð Þ2ð2þ sin hÞ ð7Þ

Vcyl=R3¼pr2
�h� �2Vcap=R3¼2

3
pð1�sinhÞð1þsinh�2sin2 hÞ ð8Þ
Fig. A1. Schematic drawing of a catenoidal liquid bridge between solid spheres.
A.3. Spherical bridge

The relationship between bridge volume Vs/R3 and contact angle
h for a spherical profile between two solid spheres (Fig. A3) is
determined by subtracting asymmetrical lenses from a spherical
volume. The volume of these asymmetrical lenses is determined
from the intersection of two spheres [41]. No numerical solving
is needed here; a closed-form solution exists. In order to compare
the behavior of this case with the solutions for catenoidal and
cylindrical bridges, the solid spheres are assumed to remain in
contact.

r� ¼ rs=R ¼ 2 cos h ð9Þ

Vlens=R3 ¼ 1
12

pr3
� ð8� 3r�Þ ð10Þ
Vs=R3 ¼ 4
3
pr3
� � 2Vlens=R3 ¼ 1

2
pr4
� ¼ 8p cos4 h ð11Þ

Shown in Fig. A4, the solutions profiles for catenoidal, cylindri-
cal, and spherical bridges exhibit similar inverse relationships
between bridge volume and contact angle. For spherical bridges,
Fig. A3. Schematic drawing of a spherical liquid bridge between solid spheres.



Fig. A5. Schematic drawing of a spherical liquid bridge between solid spheres with
a gap.
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this problem remains tractable even if a gap is added between the
solid spheres. This family of solutions is examined later, since it is
of interest when trying to predict the behavior of an unstable liquid
bridge.

A.3. Spherical bridge (with gap)

Just as before, the relationship between bridge volume Vs/R3

and contact angle h is determined by subtracting asymmetrical
lenses from a spherical volume. Now, however, we specify offset
‘ = R + d separating the solid spheres (Fig. A5). In the special case
where the solid spheres are in contact, the offset is equal to sphere
radius R.

r� ¼ rs=R ð12Þ

‘� ¼ ‘=R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
� � 2r� cos hþ 1

q
ð13Þ

Vlens=R3 ¼ 1
12‘�

p 1þ r� � ‘�ð Þ2 ‘2
� þ 2‘�r� � 3r2

� þ 2‘� þ 6r� � 3
� �

ð14Þ

Vs=R3 ¼ 4
3
pr3
� � 2Vlens=R3

¼ 1
6‘�

p �‘4
� þ 6‘2

�r
2
� þ 6‘2

� � 8‘� þ 3r4
� � 6r2

� þ 3
� �

ð15Þ

As a final check, these equations reduce to Eqs. 9–11 in the lim-
iting case where the gap between the solid spheres vanishes
(d = ‘ � R = 0).

In Fig. 8 of the main text, we plot r1/r2 as a function of V/Vs. As
noted in the text,

r1

r2
¼

rs �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ Rð Þ2 � R2

q

rs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ Rð Þ2 � R2

q ð16Þ

which is equivalent to

r1

r2
¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘2
� � 1Þ=r2

�

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘2
� � 1Þ=r2

�

q ð17Þ

Note that the expression can be written in terms of one variable

n ¼ ð‘2
� � 1Þ=r2

� ¼ 1� 2
r�

cos h ð18Þ

Meanwhile, we can calculate the value of V/Vs that would corre-
spond to a particular ‘⁄ and h by combining Eqs. (11) and (15)

V=Vs ¼
1

48‘� cos4 h
�‘4
� þ 6‘2

�r
2
� þ 6‘2

� � 8‘� þ 3r4
� � 6r2

� þ 3
� �

ð19Þ
Fig. A4. Bridge volume V/R3 as a function of contact angle h for catenoidal,
cylindrical, and spherical bridge profiles.
By calculating corresponding values of r1
r2

and V
Vs

for various n, we

produce the theoretical curve in Fig. 8 of the main text.
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