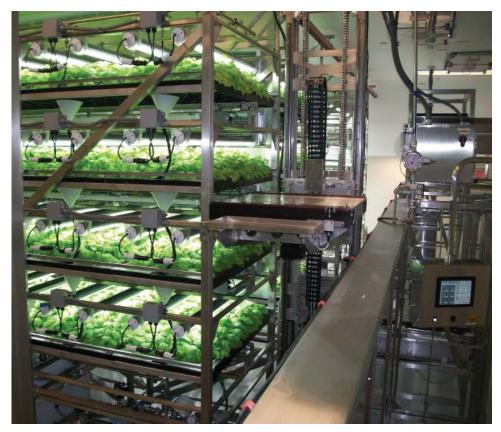


Fraunhofer Center for Manufacturing Innovation (CMI)

In collaboration with Boston University, Fraunhofer CMI conducts advanced research and development leading to engineering solutions for a broad range of industries, including biotech/biomedical, photonics, and renewable energy. Engineers, faculty, and students at the Center scale up basic research into advanced technologies that meet the needs of both domestic and global client companies. The primary focus is on the development of next-generation high-precision automation systems, instruments and medical devices.

First-of-a-kind, plant-based vaccine factory



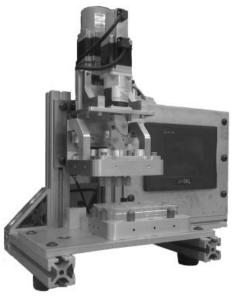
Fraunhofer USA News Briefs

News Brief January 2011

Fraunhofer Center for Manufacturing Innovation

Fully Automated Plant-Based Vaccine Factory

Fraunhofer CMI, working jointly with Fraunhofer CMB and Boston University, has developed a fully automated, scalable "factory" that uses natural (non-genetically-modified) green plants to efficiently produce large quantities of vaccines and therapeutics within weeks. Such a rapid vaccine production facility will play a crucial role in addressing and containing future pandemics and emerging biological threats.


This first-of-a-kind, plant-based vaccine factory takes advantage of plant viral vector technology that enables production of specific proteins within the leaves of rapidly growing plant biomass. The factory's robotically tended, custom engineered machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein and harvest the biomass once the target has accumulated in the plant tissue. Traditional methods of vaccine production can take many months. This plant-based technology enables rapid, large scale production of vaccine material in a costeffective manner. It has the potential to revolutionize how biological materials are manufactured. The factory was designed to be time, cost and space efficient. It has the capacity to grow tens of thousands of plants in one batch. The plants are grown in multi-plant trays that are used to handle and transport the plants to the different processing stations. To automate the process, robots glide up and down a track, tending the plants - delivering trays from the lighted, irrigated growth modules to each processing station at the appropriate time. In order to quickly produce large quantities of vaccine material or other proteinbased medicines, such as antibodies, in compliance with cGMP, (Current Good Manufacturing Practices), it was necessary to develop a consistent, repeatable process. Even though the process of making vaccines from plants includes many aspects of traditional horticulture such as growing, watering and harvesting, the entire process was automated

using techniques found in industrial type processes. This enabled quick, safe, and cost-effective scale-up from a few milligrams in a laboratory setting to the many kilograms that would be required in case of a pandemic. The resulting process is faster, less expensive, safer, and does not require the sophisticated culturing or fermentation necessary in the current vaccine production processes. This will be the first cGMP facility for plant-based protein production.

This unique, plant-based vaccine factory resulted from a three-year collaboration between Fraunhofer and Boston University. "This is a perfect example of coupling engineering expertise and scientific advancement to cost-effectively meet a societal need," remarked Robert Brown, president of Boston University and a chemical engineer. "It is a model for collaboration that we strongly believe in on our campus, as they do at Fraunhofer as well."

Automated Tissue Homogenization

Tissue homogenization is the process of separating and individuating the cells of a tissue sample. It is the first step in many laboratory sample preparation processes in a variety of settings, from the clinical laboratory to food safety testing. Various techniques are regularly used in practice,

CMI's prototype tissue homogenization instrument

ranging from large industrial high pressure valve processors that can homogenize liters of tissue at a time, down to the basic mortar and pestle for grinding a few milliliters of sample. When a procedure requires parallel processing of an array of samples, such as in high throughput assays, the options available to researchers are limited. The problem is that although some microplate-based bead beating and ultrasonic products are available, they require skilled users, or are not optimal for solid tissue samples. Furthermore, bead beating requires the careful addition and subsequent removal and sanitizing of the beads, which can be a costly and time-intensive process.

CMI has developed a prototype instrument that is capable of quickly homogenizing an array of unique tissue samples directly in a microtiter plate (See photos below). The instrument requires no special training to achieve uniform, repeatable results, and is thus adaptable to semi- and fully automated equipment. Additionally, the system is easy to clean and sterilize, has adjustable speed and force to control shear and unwanted heating, and is useful for sample sizes ranging the entire breadth needed for clinical samples (microliters to milliliters).

- 5. Rotary motor drives pestles around pre-programmed orbit
- 6. When homogenization is complete, pestle holder retracts
- 7. Microplate with homogenized samples is removed and proceeds to the next process step
- 8. Pestles are removed and are either disposed of, or cleaned and sterilized for re-use.

The primary mechanism in the homogenizer is a linkage that transmits torque from the rotary motor to the pestle plate and varies the orbit radius of the pestles through the vertical motion of the linkage. This mechanism serves a few integrated functions. It provides the orbital motion of the pestles, it brings the pestles into contact with the samples in the microplate wells, and it allows entering and retreating from the microplate with the pestles not touching the walls of the wells as they are lowered or raised. This is very important as to not smear sample along the walls of the well, increasing the risk of dripping and cross-contamination. This novel, multi-function, integrated mechanism greatly reduces the complexity and cost of providing an additional, independently actuated degree of freedom for controlling the orbit radius.

This prototype instrument addresses the shortcomings of existing commercially available automated homogenizers, namely not being arrayable at low cost or requiring additional components (beads) which must be subsequently removed from the sample. The design is suitable for homogenizing different types of samples that vary in consistency and size because the applied shear force, time, and resulting heat generation for homogenization can be controlled by varying the orbital velocity, pestle design, time of applied shear, and pressure. Moreover, the design can easily be scaled to higher throughput (smaller sample sizes and larger sample numbers) in a low cost manner. Additionally, the instrument is compatible with downstream molecular biological analysis.

The homogenization cycle involves the following steps:

- 1. Instrument is instructed as to which homogenization recipe to use
- 2. Disposable pestles are loaded into pestle holder
- 3. Microplate with samples is loaded into the machine
- 4. Pestle holder is lowered, inserting pestles into microplate wells

10 mg hotdog samples in 100 microliters of water, before and after 60 seconds of homogenization.

Fraunhofer USA, Inc., is a non-profit organization which performs applied research under contract to government and industry with customers such as federal and state governments, multinational corporations as well as small to medium-sized companies.

Fraunhofer USA is a wholly-owned subsidiary of Fraunhofer Gesellschaft which has over 80 research units in Germany, including 60 Fraunhofer Institutes. The majority of the 17,000 staff are qualified scientists and engineers who work with an annual research budget of \leq 1.7 billion.

Each Fraunhofer USA research center is closely affilated with at least one of the Fraunhofer Institutes in Germany as well as major research universities in the U.S.

Fraunhofer's research benefits society in many ways.

To learn more: www.fraunhofer.org

Fraunhofer Center for Manufacturing Innovation

Dr. Andre Sharon, Executive Director Fraunhofer Center for Manufacturing Innovation 15 St. Mary's Street Brookline, Massachusetts, 02446

Tel: 617 353 8776 sharon@bu.edu