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1 Introduction

This manual describes ExaFMM, an open-source implementation of the fast multipole
method (FMM) written in the C++ language. For maximum freedom of use, ExaFMM is
distributed under the MIT License. Please note that you must give proper attribution in
all derived works.

Copyright (© 2011 L Barba & R Yokota

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal in the
Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ExaFMM was released for the first time in November 2011. It is freely downloadable
from https://bitbucket.org/exafmm/exafmm, and we welcome correspondence with
potential users or those who wish to extend it for specific purposes.

Please write to exafmm®@barbagroup.bu.edu with any comments or questions.

2 Download & Install

2.1 Download
If you have mercurial, simply do
hg clone https://exafmm@bitbucket.org/exafmm/exafmm

if not, you may download the source from https://bitbucket.org/exafmm/exafmm/
overview. There is a link on the right that says ““get source".
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2.2 Install
To use ExaFMM as a black box library do

cd exafmm
./configure
make 1lib

set your library path to exafmm/wrapper, and add “*-lexafmm" to your library flags. An
MPI C++ compiler is required. If you want to run without MPI, open exafmm/Makefile
and change the variable CXX from mpicxx to g++. ExaFMM is designed so that the parallel
portion of the code is an extension of the serial portion of the code using class inheritance.
Therefore, all the serial parts of the code function with or without MPI, and there is no
need for a separate serial version.

The minimum installation of ExaFMM does not depend on any external libraries. How-
ever, it does provide visualization routines that uses VIK (downloadable form http:
//www.vtk.org/VTK/resources/software.html) if the user chooses to use them, but the
FMM itself will function without VTK.

3 Test suite

3.1 Unit tests

All unit tests can be found in the directory unit_test. The Makefile in this directory
contains the commands to run all the unit tests. For a very quick demonstration of an
N-body calculation for NV = 10, 000 bodies do:

cd unit_test
make serialrun

The result will be indicated by the output text. If you encounter any errors, please send
the full output text to exafmm@barbagroup.bu.edu.
Here is the full list of unit tests, and a short description of what they do.

index: Assigns Morton index to 107 bodies, and sorts the bodies according to
the index. If VTK is available, it will plot the group of bodies according
to the index, with a toggle bar that controls the group to be shown.

topdown: Constructs a tree structure top-down for 107 bodies. If VTK is avail-
able, it will plot the group of bodies according to the leaf index, with a
toggle bar that controls the group to be shown.

bottomup: Same as topdown, except the tree construction is bottom-up.

kernel: Checks the convergence of kernels by doing P2M, M2M, M2L, L2L,
L2P, and M2P translations for a single pair of particles. The distance
between the particles and the cells that contain them is varied and the
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difference between a direct summation is monitored. The default is the
Laplace kernel but changing D . kernelName on line 14 allows you to check
different kernels, as is the case with many other unit tests.

serialrun: Compares serial FMM with direct summation for 10* bodies.

unsort: Same as serialrun except it sorts back the bodies to their initial order.

(FMM reorders the bodies according to the Morton index).

Nserial: Same as serial run except it varies the number of bodies from 10 to

107 and checks the O(NV) scaling.

direct_gpu: Compares the serial direct summation on a GPU and CPU.

mpi:

Prints the hostname, rank, and size of all MPI processes in order.

check_gpus: Compares the parallel direct summation on many GPUs and CPUs.

Prints the MPI rank, GPU device ID, and Error between the CPU and
GPU for every MPI process.

shift: Verification of communication routine ““shiftBodies" for sending bod-

ies to the next process in round-robin fashion. This allows the source
bodies to be shifted to the next process so that an all-pairs interaction can
be calculated on distributed memory systems without increasing storage
requirements. If VTK is available, the same ““shiftBodies" routine will be
used to plot bodies on all processes without storing all of them in one pro-
cess. The toggle bar can be used to show bodies on different processes.

nth_element: Verification of parallel nth_element routine. The nth_element

finds the n'” element of a sorted vector without actually sorting the vec-
tor. Itis an efficient method for finding the median. The parallel nth_element
finds the global n'" element without performing an actual parallel sort. If
VTK is available, it will plot the bodies on both sides of the nth_element
and toggles between the two. Only the bodies on MPI rank 0 will be
plotted.

bisection: Verification of recursive multi-section partitioning. If VIKis avail-

let:

able, it will plot each of the partitioned domains (one per process), and
toggle between all domains. It will partition the domain into equal num-
ber of bodies for any number of processes.

Verification of local essential tree (LET). Partitions the domain using multi-
section, performs a parallel tree construction, and communicates the LET.
If VIK is available, it will plot the bodies and cells on each process, and
toggle between the bodies and cells on every process.

parallelrun: Parallel version of serialrun. Compares parallel FMM with

direct summation for 10? bodies. If VTK is available it will plot the same
thing as let, but this time for the actual bodies and cells that were used
in the FMM calculation.



unpartition: Same as parallelrun, except it (un)partitions the bodies back
to their original distribution among processes, and (un)sorts them back
to their original order within each process at the end.

ijparallelrun: Same as unpartition, except it has different distribution for
target bodies and source bodjies.

Nparallel: Parallel version of Nserial. Varies the number of bodies from 10*
to 107 and checks the O(N) scaling of the parallel FMM.

skip_tree: Verification of tree construction skipping. Same as parallelrun
except it does two FMM calculations, and in the second one it skips the
tree construction and uses the tree structure from the first FMM.

overlap_comm: Verification of communication overlapping. Same as skip_tree,
except it overlaps the communication with the computation of the local
tree using OpenMP.

vtk: Verification of VTK plotter. Plots two groups of bodies, with a bar that
toggles between them.

cuprintf: Verification of cuprintf --a printf routine that prints from inside
kernels that works even on old GPUs.

3.2 Regression tests

There are no regression tests at the moment.

4 Algorithm description

The fast multipole method (FMM) is an algorithm for accelerating computations of the
form:

N
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Such a computation may represent a field value evaluated at point y;, where the field is
generated by the influence of sources located at the set of centers {z;}. The sources are
often associated with particle-type objects, such as stellar masses, or charged particles.
The evaluation of the field at the centers themselves, therefore, represents the well-known
N-body problem. In summary: {y;} is a set of evaluation points, {z;} is a set of source
points with weights given by ¢;, and K(y, z) is the kernel that governs the interactions
between evaluation and source particles. The objective is to obtain the field f at all the
evaluation points, which requires in principle O(NN?) operations if both sets of points have
N elements. Fast algorithms aim at obtaining f approximately with a reduced operation
count, ideally O(N).



The FMM works by approximating the influence of a cluster of particles by a single collec-
tive representation, under the assumptions that the influence of particles becomes weaker
as the evaluation point is further away; i.e., the kernel K(y, z) decays as |z — y| increases,
and that the approximations are used to evaluate far distance interactions. To accomplish
this, the FMM hierarchically decomposes the computational domain and then it repre-
sents the influence of sets of particles by a single approximate value. The hierarchical de-
composition breaks up the domain at increasing levels of refinement, and for each level
it identifies a near and far sub-domain. By using the hierarchical decomposition, the far
field can be reconstructed as shown in Figure 1.

Using the computational domain decomposition, the sum in Equation (1) is decomposed
as
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where the right-most sum of (2), representing the far field, is evaluated approximately
and efficiently.

We now need to introduce the following terminology with respect to the mathematical
tools used to agglomerate the influence of clusters of particles:

Multipole Expansion (ME): a series expansion truncated after p terms which represents
the influence of a cluster of particles, and is valid at distances large with respect to
the cluster radius.

Local Expansion (LE): atruncated series expansion, valid only inside a sub-domain, which
is used to efficiently evaluate a group of MEs.

In other words, the MEs and LEs are series (e.g, Taylor series) that converge in different
sub-domains of space. The center of the series for an ME is the center of the cluster of
source particles, and it only converges outside the cluster of particles. In the case of an
LE, the series is centered near an evaluation point and converges locally.

As an example, consider a particle interaction problem with decaying kernels, where a
cluster of particles far away from an evaluation point is ‘seen’ at the evaluation point
as a ‘pseudo-particle’, and thus its influence can be represented by a single expression.
For example, the gravitational potential of a galaxy far away can be expressed by a single
quantity locally. Thus, by using the ME representing a cluster, the influence of that cluster
can be rapidly evaluated at a point located far away ---as only the single influence of the
ME needs to be evaluated, instead of the multiple influences of all the particles in the
cluster. Moreover, for clusters of particles that are farther from the evaluation point, the
pseudo-particle representing that cluster can be larger. This idea, illustrated in Figure ??,
permits increased efficiency in the computation.

The introduction of an aggregated representation of a cluster of particles, via the multipole
expansion, effectively permits a decoupling of the influence of the source particles from
the evaluation points. This is a key idea, resulting in the factorization of the computations



of MEs that are centered at the same point, so that the kernel can be written as,

K(zi,y;) = Y am (@) fm (y5) 3)

m=0

This factorization allows pre-computation of terms that can be re-used many times, thus
increasing the efficiency of the overall computation. Similarly, the local expansion is used
to decouple the influence of an ME from the evaluation points. A group of MEs can be
factorized into a single LE so that one single evaluation can be used at multiple points
locally. By representing MEs as LEs one can efficiently evaluate a group of clusters in a
group of evaluation points.

4.1 Hierarchical space decomposition

In order to utilize the tools of MEs and LEs, a spatial decomposition scheme needs to be
provided. In other words, for a complete set of particles, we need to find the clusters
that will be used in conjunction with the MEs to approximate the far field, and the sub-
domains where the LEs are going to be used to efficiently evaluate groups of MEs. This
spatial decomposition is accomplished by a hierarchical subdivision of space associated
to a tree structure (quadtree structure in two dimensions, or an octree structure in three
dimensions) to represent each subdivision. The nodes of the tree structure are used to
define the spatial decomposition, and different scales are obtained by looking at different
levels of the tree. A tree representation of the space decomposition allows us to express
the decomposition independently of the number of dimensions of the space. Consider
Figure ?? where a quadtree decomposition of the space is illustrated. The nodes of the
tree at any given level cover the whole domain. The relations between nodes of the tree,
represent spatial refinement. The domain covered by a parent box is further decomposed
into smaller sub-domains by its child nodes. Thus, in the FMM the tree structure is used
to hierarchically decompose the space and the hierarchical space decomposition is used to
represent the near-field and far-field domains. As an example, consider Figure ?? where
the near-field for the black colored box is represented by the light colored boxes, and the
far-field is composed by the dark colored boxes.

5 Using ExaFMM in application programs

Here we discuss at a high level, how to interact with ExaFMM. This section is PENDING.
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Figure 1: Tree structure associated to spatial decomposition.
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Figure 2: The sketch illustrates the upward sweep and the downward sweep stages on
the tree. Each stage has been further decomposed into the following substages: P2M-
-transformation of particles into MEs (particle-to-multipole); M2M--translation of MEs
(multipole-to-multipole); M2L--transformation of an ME into an LE (multipole-to-local);
L2L--translation of an LE (local-to-local); L2P--evaluation of a LEs at particle locations
(local-to-particle).
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