Description:

Technologies that use light are all around us, both in well-established and rapidly developing areas. Examples abound! Our streaming and cloud services would not function without optical fiber technology. Autofocus in smart phone cameras makes photography easy. LED light sources drastically reduce energy use for illumination. Lasers are crucial in communication, medicine, and metrology. Optical quantum communication and computation is poised to make an impact. This introductory optics course aims for students to see the potential of optics. Students will learn geometric optic and imaging, including our visual system, wave optics with diffraction and interferometry applications, and use of light sources and student presentations. **Optical technologies** (depending on class interest) e.g., precision measurements, holography, bio photonics, lasers and applications, fiber optics and communication.

Prerequsites: Junior or senior standing (MA 221, MA222, PY211, PY212)

Credits: 4

Course objectives

To provide students with hands-on experience with optical components and experimental techniques. To raise awareness of optical solutions for technical problems. Laser safety.

Lecture:	MW4:30-6:15 (all stu	idents) CAS 227	
Labs:	R 11-1pm (B1)	R 2-4 pm (B2)	
Instructor:	Anna Swan	Office PHO228	
		Phone 3-1275	
		Email swan@bu.edu	
	Preferred contact:	In person or Piazza	
	Student hours	Tuesday 12-1 pm or by appointment	
Lab assistants	Parker Landon	landonp@bu.edu and Piazza	
	Hriteshwar Talukder	hritesh@bu.edu and Piazza	
Reference textbooks "A first Course in Laboratory Optics", Andri Gretarson			
	Cambridge University Press		
	"Introduction to Optics" Pedrotti, Pedrotti, Pedrotti		
	Cambridge University press		
Webpages	Blackboard for material Piazza for communication		
Requirements	Labs 70%, Quiz & HW 10%, Projects 10% presentation 10%		

Lecture topics

Introduction

The nature of light (rays, waves, polarization, particle-wave duality, quantum light) A brief history, photon -particles, Electromagnetic spectrum, Radiometry, Light sources

Geometric Optics (Ray optics)

Geometric optics, ray optics, physical optics (when $\lambda \rightarrow 0$) Law of Reflection, Law of Refraction, Snell's law, Huygens' Principle, wavefronts Fermat's principle, Total internal reflection. (and applications)

Geometrical optics and image formation Optical pathlength, Lenses and lens shapes, Thin lenses, cylindrical lenses Gaussian optics (first order expansion $sin(x) \sim x$, $cos(x) \sim 1$) **Optical Instrumentation** Stops, pupils and windows, Aberrations, Prisms, The camera.

Eye piece Microscope and Kohler illumination Telescope

Wave Optics

Wave-optics 1D wave equation, Harmonic waves, Complex numbers, Harmonic waves and complex functions Plane waves, Spherical waves

Superposition of waves Superposition principle of same frequency, standing waves, random and coherent sources

Interference of light 2 beam interference, double slit, dielectric films and thickness measurements, Newton's rings.

Optical interferometry Michelson interferometer, Fabry Perot interferometer, Laser cavity, LIGO

Coherence FT of finite wave train, application to OCT

Diffraction grating Free, spectral range, Dispersion, resolution and instrumentation, Spectroscopy

E&M radiation, Polarized light

Matrix Representation of Polarization Jones vectors and Jones matrices Polarized light from selective absorption, reflection, scattering. Interaction with matter Bi-refringence, optical activity

Guest lectures/lab visits

Optical Tweezers Interference bio-detection (Virus) Birefringence biodetection (Brain) Deformable mirror for phase-front engineering Zygo Interferometer for precise height measurements Optical circuits Fibers

PROJECTS

- Pinhole camera, long exposure
- Interference phenomenon
- Polarization phenomenon

LABS

Lab	Week of	Lab	
	22-Jan	Project Pinhole camera	
1	29-Jan	Geometric optics 1	alignment and imaging
2	5-Feb	Geometric optics 2	f-stop and Aperture
3	12-Feb	Wave-optics	Optical interference
4	19-Feb	Wave-optics	Diffraction and spectroscopy
5	26-Feb	Wave-optics	Interferometry 1
6	4-Mar	Polarization	Polarization components, birefringence
	11-Mar	SPRING BREAK	
		Build: Optical coherence	
7	18-Mar	tomography	Lab choice
8	25-Mar	Thorlabs: Michelson applications	Lab choice
	1-Apr	Thorlabs: Optical Spectroscopy	catch-up
9	8-Apr	Thorlabs: Fourier optics	Lab Choice
10	15-Apr	Thorlabs: "Quantum eraser"	Lab choice
	22-Apr	Thorlabs: "Quantum cryptography	Catch up
		Holography kit	
		other ideas	