EC551 - Advanced Digital Design with Verilog and FPGAs
Fall 2023

Class: Tuesday and Thursday, 1:30 pm – 3:15 pm in CDS 262
Lab: Section N/A
Number of credits: 4, Prerequisites: EC311, EC413

Course Objectives

This course introduces advanced undergraduates and early-stage graduate students to advanced digital logic design by presenting the “electronic design automation” (EDA) design methodology and associated workflows. This methodology includes the steps of Design specification, Design partition, Design entry, Simulation/functional verification, Design integration and verification, Presynthesis sign-off, Synthesize and map gate-level netlist, Postsynthesis design validation, Postsynthesis timing verification, Test generation and fault simulation, Cell placement, scan chain and clock tree insertion, cell routing, DRC, Extract parasitics, and Design sign-off. All but the topics highlighted in RED will be covered in this course.

Content includes the use of a hardware description language (HDL; in particular Verilog) for the specification, synthesis, simulation, and exploration of principles of register transfer level (RTL) designs. Programmable logic, such as field programmable gate array (FPGA) devices, has become a major component of digital design. In this class, the students have the opportunity to write HDL models that can be automatically synthesized into integrated circuits using FPGAs. Alternatively, they can choose to write programs to implement aspects of the EDA design flow. Programming and homework exercises include writing HDL models of combinational and sequential circuits, synthesizing models, performing simulations, writing testbench modules, and synthesizing designs to an FPGA by using automatic place and route EDA tools.

The course material is broken down into four areas: Electronic Design Automation (EDA), Verilog, Reconfigurable Computing (RC), and the course Project. The topics are scheduled and organized so that these topics are woven together in lecture to provide breadth and depth in select areas. Homework (HW) and Programming exercises are created to reinforce lecture material and provide the required knowledge for the larger course project. At the conclusion of the course, the students should understand a digital EDA design flow and how to program reconfigurable computing hardware using this flow.

The course project plays a major role in the course. Students are expected to create a fully demonstrable digital system on an FPGA OR create a software project that demonstrates their understanding of the traditional EDA digital logic synthesis design flow. This project is done in groups of 4-5 students and should represent 15 hours of work (or more) per student per week.
Staff Information

Instructor
Name: Prof. Douglas Densmore
Office: CILSE 403
Office phone number: 617-358-6238 (email is best)
E-mail address: dougd@bu.edu *(Best way to contact me - Include EC551 in the subject line)*
Office Hours: CILSE 403, Thursdays at 4 pm.
Zoom Link: https://bostonu.zoom.us/j/4602829913

Lab Assistant
Name: TBD
E-mail address: TBD@bu.edu *(Include EC551 in the subject line)*
Office Hours: TBD TBD or by appointment

Grader
TBD
Email Address: TBD@bu.edu *(Include EC551 in the subject line)*

Course Resources

Required Textbooks

1. Author: M.D. Ciletti
 Title: Advanced Digital Design with the Verilog HDL (2nd Edition)
 ISBN: 0136019285

Optional Textbooks

1. Author: David R. Smith, Paul Franzon
 Title: Verilog Styles for Synthesis of Digital Systems
 ISBN: 0201618605
 Hard to find but HIGHLY recommended

2. Author: Samir Palnitkar
 Title: Verilog HDL
 ISBN: 0132599708

Announcements, course material, and other useful links

Will be posted on Blackboard Learn (http://learn.bu.edu)
- EC551/Fall 2023
We will also use Piazza as a forum for questions on HW, programming assignments, and the class project
- https://piazza.com/bu/fall2023/engec551/home
Goals
To provide students with:

- An experience of how to write HDL models that can be automatically synthesized into integrated circuits using programmable hardware such as FPGAs.
- An understanding of how to take an electronic design from concept to register transfer level (RTL) verification and synthesis to final programmable device implementation.
- An experience in writing HDL models of combinational and sequential circuits, synthesizing models, performing simulations, writing test modules, and fitting designs within resource, power, and timing constraints of an FPGA by using automatic place and route CAD software.
- An experience writing software tools that perform various aspects of the EDA workflow ultimately tying the tools together into one cohesive program.

Course Outcomes
As an outcome of completing this course, students should be able to:

- Understand advanced topics in digital logic design
- Understand proven design methodologies based on standard EDA tools
- Understand the differences and similarities in hardware and software design
- Understand modern specification methods (HDL)
- Design combinational devices with a full set of EDA tools (skills)
- Understand modeling and verification with hardware description languages
- Understand synthesis with HDLs
- Understand programmable logic devices and FPGAs
- Design state machines, datapath controllers, and assorted CPUs with a full set of EDA tools
- Understand timing analysis
- Understand fault simulation and testing

Evaluation
Grading

Midterm - 10%
Final Exam - 10%
Final Project - 40%
Programs (3) - 30%; (10%, 10%, 10%)
Five Homework Assignments - 10% (2% each)

Class participation will help your grade if you are on the border of a grade (e.g. B+ to A-). Class participation includes but is not limited to answering questions in class, attending office hours, helping others when appropriate in the lab, and serving in a leadership role in your project group.

Homework
Homework assignments will be posted on the Blackboard website two or more weeks ahead of their due dates. Homework is to be submitted outside of CILSE 403 or in class before the beginning of the lecture (1:30 sharp) on the date specified. You can discuss your work in the abstract with other students in the class, but you must write up the solutions on your own.
Programs
In this class, you will have 3 programming assignments. These will be done in groups of 2 students. These programs can be written in any programming environment that you wish. More information will be provided on the programming assignments but the general areas are as follows:

Logic synthesis – The programming assignment will require you to enter a Boolean algebraic function(s), optimize it/them (via a variety of objective functions), and output the result in multiple formats.

FPGA Designer – This assignment will require that you create a virtual FPGA and “connect it” to the logic synthesis program you previously created. The program will assign the logic function to “LUTs” on the FPGA and connect those LUTs to realize the function as requested.

Physical Design – The final program will take your FPGA Designer tool, map it to a standard cell library, and perform a physical design activity of your choosing (partitioning, retiming, or placement/routing).

Programming descriptions will be posted on the Blackboard website two or more weeks ahead of their due dates. Programs are due via GitHub links at 11:59 p.m. on the due date. You may remain in the same group for the whole semester or change groups with each programming assignment. This is up to you. Any partner conflicts should be reported EARLY to Prof. Densmore.

Exams
There will be one midterm exam and a final exam. The midterm will be TAKE HOME and you have 24 hours to return the exam. If you are unable to work on the exam during this period, you must provide 1 week advance notice along with appropriate documentation. The final exam will be TBD. Make-up exams will only be given under extreme circumstances.

Project
Projects will be done in groups of four students (three and five-person groups will be allowed in extreme circumstances). The project will represent a SIGNIFICANT amount of work and will culminate in a demonstrable digital system running on an FPGA OR an EDA-based programming tool. There will be three project presentations and one demo session. The first two will be 10 minute, in-class updates. Final project presentations will be during the last weeks classes and all team members must be present (see schedule). Project presentations will be done in front of all students and should be treated as a professional presentation. More information regarding the projects will be provided during the semester. The project demo is the last day of class. Arrangements for the schedule and process of project demos will be made available later in the semester.

Previous project videos can be found at: https://www.youtube.com/channel/UCPYhfQIY30ftTfEg7LpRPQtw
Course Policy

• Homework/Programs: The homework assignments must be the result of your individual work (HW) or you and your partner (programs).

• You may discuss the contents and general approach to a problem with your classmates but not the detailed solution. You are expected to formulate your approach and to write the solutions to HW/Lab problems by yourself/group. Copying the solution and/or answer from another student is considered cheating. Two identical HWs/Labs with the same mistakes are considered cheating. **No extensions on homeworks or labs will be provided.** If you will be absent on the day they are due you should make arrangements in advance with Prof. Densmore.

• Makeup exams: Makeup exams will be provided if the student receives **prior permission** from the instructor. Emergencies will be dealt with on a case-by-case basis. Note that oversleeping, being not ready, or overload due to projects or coursework in other classes are not valid excuses for requesting a makeup exam.

• Exam/Home/Program Grade discussion: Grade discussion/corrections should be done within one week after the graded exam of homework is distributed. **No grade changes will be made after one week, or after the last day of class.**

• I and W grades: As per University policy.

• Honor Code: If you are found cheating on HWs, labs, or examinations, you will be brought up on charges before the Student Academic Conduct Committee whose punishment may include suspension from the University without the right to transfer credits for courses taken elsewhere.
<table>
<thead>
<tr>
<th>Lecture #</th>
<th>Date</th>
<th>Topic Description</th>
<th>Programs Out/Due</th>
<th>Hw Out</th>
<th>Hw Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/5 (T)</td>
<td>Course Introduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/7 (Th)</td>
<td>EDA - Review of combinational logic</td>
<td>THQ1&2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9/12 (T)</td>
<td>EDA - Review of sequential logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9/14 (Th)</td>
<td>EDA – Quiz review and grading</td>
<td>THQ1&2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9/19 (T)</td>
<td>Verilog - Structural Verilog and Hierarchy</td>
<td>FGPA Tutorial</td>
<td>HW1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9/21(Th)</td>
<td>Verilog - Simulation and Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9/26 (T)</td>
<td>RC – FPGAs + Paper 1 Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9/28 (Th)</td>
<td>Verilog - Behavioral Verilog</td>
<td>Prog.1/Tut. (Fri)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10/3 (T)</td>
<td>Project - Plan and Goals Presentations</td>
<td></td>
<td>HW2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10/5 (Th)</td>
<td>RC - Paper Review 1 + Paper 2 Out</td>
<td></td>
<td>HW1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10/12 (Th)</td>
<td>EDA - Synthesis - Scheduling/Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10/17 (T)</td>
<td>Midterm (take home)</td>
<td></td>
<td>HW3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10/19 (Th)</td>
<td>EDA - Synthesis – ASMs</td>
<td>Prog.2/Prog.1 (Fri)</td>
<td>HW2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10/24 (T)</td>
<td>EDA - Synthesis - Multi-Level Logic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10/26 (Th)</td>
<td>RC - Paper Review 2 + Paper 3 Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10/31 (T)</td>
<td>EDA – Tool Review + Demo</td>
<td></td>
<td>HW4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>11/2 (Th)</td>
<td>Project - Review and Update Presentations</td>
<td>Prog.3/Prog.2 (Fri)</td>
<td>HW3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>11/7 (T)</td>
<td>EDA - Static Timing Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11/9 (Th)</td>
<td>Verilog - IP Cores and Microarchitecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11/14 (T)</td>
<td>RC - Paper Review 3 + Paper 4 Out</td>
<td></td>
<td>HW5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11/16 (Th)</td>
<td>EDA - Retiming</td>
<td>Prog.3 (Fri)</td>
<td>HW4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>11/21 (T)</td>
<td>EDA - Design for Test/ Testing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thanksgiving Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>11/28 (T)</td>
<td>EDA – Physical Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>11/30 (Th)</td>
<td>RC - Paper Review 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>12/5 (T)</td>
<td>Project - Final Presentations 1</td>
<td>Project Group1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>12/7 (Th)</td>
<td>Project - Final Presentations 2</td>
<td>Project Group2</td>
<td>HW5</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>12/12 (T)</td>
<td>Project Discussion and Class Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>12/?? (?)</td>
<td>Final Exam (24 hour take home)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>