MS/ME 503 Kinetic Processes in Materials

Spring 2025

Prof. Soumendra Basu

Rm. 204, 730 Commonwealth Avenue

Office Phone: 617-353-6728

Email: basu@bu.edu (preferred mode of contact)

Lectures: M, W: 10.10AM – 11.55AM

Location: CAS B20

Office hours: 2-3 PM Fridays

Required Textbook:

Materials Kinetics Fundamentals: Principles, Processes, and Applications, Ryan O'Hare, John Wiley and Sons Inc., 2015

Other Suggested Readings:

Essentials of Materials Science and Engineering, D. R. Askeland, and P. Phule

Diffusion in Solids, P. G. Shewmon

Chemical Kinetics, K. J. Laidler

Phase Transformations in Metals and Alloys, D. A. Porter and K. E. Easterling

Grading:

There will be 2 midterms and a final. The final is NOT cumulative. Midterm 1 will cover Lectures 1-7, and Midterm 2 will cover Lectures 8-14. The Final will cover the remaining lectures.

Grading will be as follows:

Midterm I - 30% Midterm II - 30% Final exam - 30% Homeworks - 10%

Homeworks:

3 HW sets will be handed out, one for each exam (each will have the same lecture coverage as one exam). Solutions must be submitted by the deadline to get credit. Solution sets will be handed out and will be discussed the in the lecture before each exam.

Academic Conduct Code:

BU's Academic conduct code can be found at:

https://www.bu.edu/academics/policies/academic-conduct-code/

In this class, discussing strategies to solve HW questions with others is permitted, but direct copying of solutions from others can lead to disciplinary action. Copying from other students and/or from unauthorized sources in the exams will lead to disciplinary action.

Syllabus

Ι	THERMODYNAMICS VERSUS KINETICS	
	Introduction to chemical thermodynamics	1 lecture
	Phase diagrams, driving force, flux	1 lecture
II	KINETICS OF MASS TRANSPORT	
	Fick's Laws and solutions to Fick's laws	3 lectures
	Interdiffusion, types of diffusivities	1 lecture
	Diffusion and chemical potential, multipath diffusion	1 lecture
	Atomistic models of diffusion, tracer diffusion	1 lecture
	Diffusion in ionic crystals	2 lectures
III	KINETICS OF CHEMICAL REACTIONS	
	Order of reaction, kinetics of gas/solid reactions	1 lecture
	Mixed rate control, CVD, vapor phase etching	1 lecture
IV	KINETICS DRIVEN BY MICROSTRUCTURE	
	Surface curvature, Gibbs Thompson effect	1 lecture
	Grain growth, particle coarsening, sintering	1 lecture
	Surface energy anisotropy	1 lecture

V KINETICS OF PHASE TRANSFORMATIONS

Nucleation and growth	2 lectures
Solidification	1 lecture
Spinodal decomposition	1 lecture