Boston University College of Engineering Division of Systems Engineering

EK 500: PROBABILITY AND STATISTICAL METHODS

FALL 2022

(4 credits)

http://people.bu.edu/cgc/ek500

Professor Christos G. Cassandras

Room 425, 8 St. Mary's St. (PHO Building)

TEL: 353-7154, E-MAIL: cgc@bu.edu, WWW: https://christosgcassandras.org/

• Organization: Lectures: M,W 2:30-4:15, EMB 105

• **Prerequisites:** Elementary Linear Algebra and Differential Equations; A course on elementary Probability Theory would help, but is not required

• Requirements:

1. Weekly Homework Assignments	25%
2. Midterm Exam	35%

3. Second Midterm 40%

• Objectives:

- 1. Develop a solid foundation in probability theory and random processes.
- 2. Learn fundamental modeling and analysis techniques for stochastic systems so you can use them in applications found in various Engineering disciplines, Operations Research, Management, and Computer Science.
- 3. Develop the ability to read technical journals and learn more advanced material based on random processes.
- Office Hours: W: 12:30-1:30 pm.

• Books:

Recommended but not required: <u>Probability, Random Variables, and Stochastic</u> Processes, A. Papoulis, McGraw-Hill.

Required: *Lecture notes* (provided)

COURSE OUTLINE

1. FOUNDATIONS OF PROBABILITY THEORY.

- 1.1. Basic concepts (sample space, event space, probability space)
- 1.2. Probability measures and probability functions
- 1.3. Discrete and continuous probability spaces
- 1.4. Dependent and independent events, conditional probability

2. RANDOM VARIABLES.

- 2.1. Definitions
- 2.2. Probability distribution and density functions
- 2.3. Functions of random variables
- 2.4. Expectation, moments, characteristic functions
- 2.5. Sequences of random variables, convergence, laws of large numbers and central limit theorem

3. RANDOM PROCESSES.

- 3.1. Definitions
- 3.2. Random process properties (stationarity, ergodicity, correlation)
- 3.3. Spectral analysis, random process transformations
- 3.4. Special random processes used in modeling:

Gaussian, Poisson, Markov; applications

3.5. Introduction to Estimation

ADDITIONAL REFERENCES

Consult the bibliographies in the textbook, especially books by **Davenport and Root**, **Drake**, **Feller**, **Parzen**, **and Wong**.

Some suggestions depending on your interests:

• If you are need a refresher on **basic probability theory**:

Clarke, A. B., and Disney, R. L., *Probability and Random Processes*, Wiley, 1985.

Bertsekas, D, and Tsitsiklis, J., *Introduction to Probability*, Athena Scientific, 2008 (http://athenasc.com/probbook.html)

• If you are interested in **performance evaluation**, **discrete event systems**, **computer simulation**, **computer engineering** applications:

Cassandras, C.G., and Lafortune, S., *Introduction to Discrete Event Systems*, 2nd Edition, Springer, 2008.

Law, A.M., and Kelton, W.D., *Simulation Modeling and Analysis*, McGraw-Hill, New York, 1991.

Trivedi, K.S., *Probability and Statistics with Reliability, Queuing and Computer Science Applications*, Prentice-Hall, 1982.

• If you are interested in **signal processing and communication** applications:

Stark, H., and Woods, J.W., *Probability, Random Processes, and Estimation Theory for Engineers*, Prentice Hall, 1986.

Schwartz, M., and Shaw, L., Signal Processing, McGraw Hill, 1983.

Proakis, J., Introduction to Digital Communications, McGraw Hill,, 1983.

• If you are interested in more advanced theoretical material on random processes:

Asmussen, S., Applied Probability and Queues, Wiley, 1987.

Parzen, E., Stochastic Processes, Holden-Day, 1962.

Wong, E., and Hajek, B. Stochastic Processes in Engineering Systems, Springer-Verlag, 1971.