BOSTON UNIVERSITY Department of Electrical & Computer Engineering

ENG EC591 Photonics Laboratory Fall 2022

Catalog Description: Introduction to optical measurements. Basic theories of light.

Principles of laser operation. Laser safety issues. Laboratory

experiments: introduction to laser light and basic optical components; interference; Fabry-Perot resonators; beam optics; diffraction and Fourier optics; optical spectroscopy; polarization components; fiber optics. Optical simulation techniques. Waveguide design and modeling for integrated optics. Nanophotonics simulations based on the finite

difference time domain (FDTD) method.

Prerequisites: Modern Physics (PY313 or equivalent)

Recommended

corequisite: Engineering Optics (EC562)

Credits: 4

Lecture: T 9-10:45 (all students) EPC 203

Labs: R 9-10:45 (section B1) PHO 701 W 10:10-11:55 (section B2) PHO 701

Instructor: Roberto Paiella Office: PHO 529

Phone: 3-8883

e-mail: rpaiella@bu.edu

Office hours: R 1-3 or by appointment

Lab Assistant: Mete Aslan email: maslan@bu.edu

Reference textbook: B. E. A. Saleh & M. C. Teich, "Fundamentals of Photonics" (Wiley, NY, 2019), volume 1 of 2-volume set

Web Page: available on Blackboard Learn (https://learn.bu.edu)

Requirements: Homework (lab reports and simulation projects) 90% Ouiz 10%

NOTE: Lab experiments will be carried out in groups, but individual reports will be expected.

Course Calendar (tentative)

Wk	Date	Lectures	Labs
1	T-9/6	Course Introduction	Duos
2	T-9/13	Ray Optics	
3	T-9/20	Lab 1: Introduction to Laser Light and Basic	W-9/21 (section B2)
		Optical Components	R-9/22 (section B1)
4	T-9/27	Lab 2: Optical Interference	W-9/28 (section B2)
			R-9/29 (section B1)
5	T-10/4	Lab 3: Fabry-Perot Resonators	W-10/5 (section B2)
			R-10/6 (section B1)
6	T-10/11	No class (substitute Indigenous People's Day	
		schedule)	
7	T-10/18	Lab 4: Beam Optics	W-10/19 (section B2)
			R-10/20 (section B1)
8	T-10/25	Lab 5: Diffraction and Fourier Optics	W-10/26 (section B2)
			R-10/27 (section B1)
9	T-11/1	Lab 6: Optical Spectroscopy	W-10/2 (section B2)
			R-10/3 (section B1)
10	T-11/8	Lab 7: Polarization Components	W-11/9 (section B2)
			R-11/10 (section B1)
11	T-11/15	Lab 8: Waveguide Design (Beam Propagation	W-11/16 (section B2)
		Method)	R-11/17 (section B1)
12	T-11/22	Quiz	
13	T-11/29	Lab 9: Fiber Optics	W-11/30 (section B2)
			R-12/1 (section B1)
14	T-12/6	Lab 10: Finite-Difference-Time-Domain	W-12/7 (section B2)
		Simulations	R-12/8 (section B1)

Course Objectives

The objective of this course is to provide the students with hands-on experience with modern optical components and experimental techniques. Laser safety issues and computer-aided optical design will also be emphasized.