Systems Engineering PhD Qualifying Exam

WRITTEN EXAM: Tuesday, May 21st 2024 9:00AM-1:00PM, 15 Saint Mary's Street, Room 105

- NO ELECTRONIC DEVICES (smartphone, iPad, smartwatch) permitted
- Calculators and a ruler are allowed.
- CLOSED BOOK. Only the notes indicated below will be allowed.

INSTRUCTIONS:

- 1) Write your **EXAM NUMBER** on every sheet of paper
- 2) Write clearly and legibly as the exam may be scanned to faculty for grading.
- 3) **Answer 3 out of 5 questions** completely from the five sections below:

Section I: Dynamic Systems Theory (SE 501, Baillieul)

- CLOSED BOOK, NO NOTES
- Section II: Discrte Stochastic Processes (SE 714, Perkins)
 - CLOSED BOOK, NO NOTES
- Section III: Optimization (SE 674, Paschalidis)
 - CLOSED BOOK, 2 8.5 x 11 sheets (4 pages) of <u>handwritten</u> notes
- Section IV: Dynamic Programming and Stochastic Control (SE 710, Caramanis)
 - CLOSED BOOK, NO NOTES
- Section V: Kinetic Processes in Materials (SE 762, Wang)
 - CLOSED BOOK, NO NOTES

*AM refreshments and grab n go lunch boxes served

ORAL EXAM: Thursday, May 23rd 2024 9:00AM-6:00PM, 15 St. Mary's Street, Room 121

Time Slot	Student	Committee
9AM – 10AM		
10AM - 11AM		
11AM – 12PM		
12PM-1PM		
1PM-2PM		
2PM-3PM		
3PM-4PM		
4PM-5PM		
5PM-6PM		

Section I, SE 501

Systems Engineering Control Qualifying Exam — May 2024

1. (a) The matrix exponential e^{Mt} where

$$M = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right).$$

has the form $A + B \sinh t + C \cosh t$. Find A, B, C.

(b) Write a closed-form expression for the matrix exponential e^{Nt} where

$$N = \left(\begin{array}{rrr} \lambda & 1 & 0\\ 1 & \lambda & 1\\ 0 & 0 & \lambda \end{array}\right).$$

- 2. Consider the system $\ddot{x} = u$, y = x.
 - (a) Write the system in (first order) state-space form.
 - (b) Is the system you have written *controllable*? Observable?
 - (c) Design a state feedback control law such that the closed loop system has all poles at -1.
 - (d) Design a full-state observer with poles at -1, -2, -3.

3. (a) State in words the definition of *controllability*.

(b) Given a constant coefficient linear system $\dot{x} = Ax + Bu$ with $x \in \mathbb{R}^n$, the following are known to be equivalent:

(i) The system is controllable.

(ii)
$$rank (B, AB, ..., A^{n-1}B) = n.$$

- (iii) $\lambda \in \mathbb{C}, \ p^T A = \lambda p^T, \ p^T B = 0 \Rightarrow p = 0.$
- (iv) rank $[\lambda I A, B] = n \ \forall \lambda \in \mathbb{C}.$

Prove (ii) \Rightarrow (iii)& (iv).

4. (a) For the finite dimensional linear system

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) \tag{1}$$

Please turn over ightarrow

where A(t) and B(t) are $n \times n$ and $n \times m$ matrices, consider the problem of steering the system from $x_0 \in \mathbb{R}^n$ to $x_1 \in \mathbb{R}^n$ in T > 0 units of time so as to minimize

$$\eta = \int_0^T \|u(t)\|^2 \, dt.$$

(a) Prove that the optimal value of η is

$$\eta_0 = [x_0 - \Phi(0, T)x_1]^{\mathrm{T}} W(0, T)^{-1} [x_0 - \Phi(0, T)x_1]$$

where W(0,T) is the controllability Grammian:

$$W(0,T) = \int_0^T \Phi(0,t) B(t) B(t)^T \Phi(0,t)^T dt.$$

(b) Consider two finite dimensional linear systems in \mathbb{R}^n :

$$\dot{x} = Ax + b_1 u$$
, and
 $\dot{x} = Ax + b_2 u$,

where A is an $n \times n$ constant matrix, and b_1 , b_2 are non-zero *n*-vectors such that the (A, b_1) system is controllable, but the (A, b_2) system is not controllable. Let $B = (b_1 \vdots b_2)$ be the $n \times 2$ matrix whose columns are the vectors b_1 and b_2 . Prove that the two-input system

$$\dot{x} = Ax + Bu \ (= Ax + b_1u_1 + b_2u_2)$$

is controllable.

(c) Let x_0, x_1 be arbitrary points in \mathbb{R}^n . Compare the costs of steering each of the three systems in part (b) from x_0 to x_1 in *T*-units of time. Are the costs all defined, and among them, which has the smallest value?

Problem 1. Consider successive flips of a fair (i.e., unbiased) coin. Determine the expected total number of flips until the pattern HHTHHTH occurs for the first time.

Problem 2. Consider the Markov chain given by the one-step transition probability matrix

$$P = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 0.25 & 0.25 & 0 & 0.25 & 0.25 \end{bmatrix}$$

with state space $S = \{0, 1, 2, 3, 4\}.$

- a. Determine all communication classes of this Markov chain and, for each class, specify if it is positive-recurrent, null-recurrent, or transient. For each recurrent class, determine its period.
- b. Describe all stationary distributions of the chain.
- c. Determine $E[T_{3,3}]$ and $E[T_{4,4}]$, where $T_{i,j}$ is the first passage time from state *i* to state *j*.
- d. Determine all eigenvalues of P and their multiplicities.
- e. Determine $\lim_{n\to\infty} P^{(2n+1)}$
- f. Given the initial state $\pi(0) = [.2.2.2.2.2]$ (that is, $\pi_j(0) = .2$ for j = 0, 1, 2, 3, 4), will the limiting probability vector $\lim_{n\to\infty} \pi(n)$ exist and be unique? If so, determine this vector. If not, explain why.

Problem 3. Recall that N is **stopping time** with respect to a sequence of random variables $\{X_n : n \ge 1\}$ if the event $\{N \ge n\}$ is independent of $\{X_n, X_{n+1}, X_{n+2} \dots\}$. Consider a renewal process defined by the inter-renewal times $\{X_n : n \ge 1\}$. Let S_j be the time of the j^{th} renewal, N(t) be the number of renewals in (0, t], and m(t) = E[N(t)] be the renewal function. Define the age at time t as $A(t) = t - S_{N(t)}$ and the residual life at time t as $Y(t) = S_{N(t)+1} - t$. Assume $E[X_1] < \infty$, $E[X_1^2] < \infty$ and the renewal process is not lattice.

- a. Write $\lim_{t\to\infty} E[Y(t)]$ and $\lim_{t\to\infty} E[A(t)]$ in terms of $E[X_1]$ and $E[X_1^2]$. [You do not need to derive these equations.]
- b. Using either the definition of A(t) or the definition of Y(t) determine

$$\lim_{t \to \infty} \left(m(t) - \frac{t}{E[X_1]} \right)$$

Division of Systems Engineering Ph.D. Qualifying Exam Boston University May 2024

Area Qualifying Exam in Optimization

Due: Tuesday, May 21, when instructed by SE proctors.

Last Name	First Name	Student ID $\#$

Honor Code: I have not received nor given any unauthorized aid during this exam in accordance with the indicated rules communicated by the SE Division. I further certify that all work is entirely my own and does not violate the Boston University Academic Conduct Code.

Signature: _____

- The exam is closed book; you can only use your cheat sheets (4 pages, 8.5x11 of your own notes).
- Calculators and computing devices would not be needed. Communication devices and access to the Internet are *not* permitted.
- It goes without saying, but any form of collaboration or help from others will not be tolerated and, if detected, it will be taken very seriously and will have consequences.
- All work you want graded must go in this exam booklet.

*** GOOD LUCK!!! ***

Problem	Points earned	out of
Problem 1		30
Problem 2		70
Total		100

Problem 1

For each one of the following statements please state whether they are true or false, **with** a detailed justification. LP refers to a linear programming problem. Grading will be done as follows:

Correct answer with correct justification: 6 points,

Correct answer with missing or wrong justification: 4 points,

No answer: 1 point,

Wrong answer: 0 points.

1. Consider the LP $\min_x \{ \mathbf{c'x} \mid \mathbf{Ax} \ge \mathbf{b} \}$ and assume it is feasible. It has finite cost if and only if \mathbf{c} can be written as a nonnegative combination of the rows of \mathbf{A} .

2. A problem in which a piecewise linear and concave function has to be minimized subject to linear constraints can be transformed into a linear programming problem.

3. Consider a positive definite (hence, symmetric) matrix \mathbf{X} . Then its maximum eigenvalue $\lambda_{\max}(\mathbf{X})$ is convex in \mathbf{X} .

4. LPs can be solved in polynomial time and the simplex method is an algorithm which can be used to that end.

5. It is impossible for both the problems in a primal-dual pair of LPs to have unbounded objectives.

Problem 2

Let **A** be an $m \times n$ matrix and let **b** be a vector in \mathbb{R}^m . Consider the problem of minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty}$ over $\mathbf{x} \in \mathbb{R}^n$ and let v be the optimal value. Here, $\|\cdot\|_{\infty}$ is the vector norm defined by $\|\mathbf{y}\|_{\infty} = \max_{i=1,\dots,m} |y_i|$ for $\mathbf{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$.

(a) Formulate this problem as a linear programming problem.

(b) Let $\mathbf{p} \in \mathbb{R}^m$ such that $\sum_{i=1}^m |p_i| = 1$ and $\mathbf{p'A} = \mathbf{0'}$. Show that $\mathbf{p'b} \leq v$. *Hint:* $\|\mathbf{Ax} - \mathbf{b}\|_{\infty} = \|\mathbf{Ax} - \mathbf{b}\|_{\infty} \sum_{i=1}^m |p_i|$. (c) To obtain the best possible bound in (b), we form the linear programming problem

$$\begin{array}{ll} \max \quad \mathbf{p'b} \\ \text{s.t.} \quad \mathbf{p'A} = \mathbf{0'}, \\ \sum_{i=1}^{m} |p_i| \le 1. \end{array}$$
(1)

Show that the optimal cost of this problem is equal to $\,v\,.\,$ $\mathit{Hint:}$ Use duality \ldots

Section IV, SE 710

Qualifying Examination in Dynamic Programming (SE710). *Closed book and notes*!

<u>Consider</u> a stochastic shortest path problem defined on a network connecting *n* nodes containing the terminal node n^* . The node that the system resides at time *t* is the observable state of the system at initial time *t*, x(t)=i, *i* in {1,2,3,..., $n^*,..N$ }. There are *M* discrete controls u^m , with *m* in {1,2,3,...,*M*} which can be applied at will after state *i* is observed and guide the state from x(t)=i to x(t+1)=j with unknown probabilities $p(i,j,u^m)$, which, however, are known to result in a communicating state transition probability controlled system. The period cost, $g_t(i,j,u^m)$, is also observable.

Consider a Q function with input in the state-control space,

 $Q(i,u^m) = \sum j p(i,j,u^m) \{ g_t(i,j,u^m) + J_{\mu(j)}(j) \}$

where $\mu(j)$ is a given policy for each *j* used from time *t*+1 till the system arrives at the terminal node. You can assume that the controlled system associated with policy $\mu(j)$ is uni-chain and that the expected time to arrive at the terminal node is finite.

Devise a "*Q* learning Algorithm" that can be used to asymptotically derive $J_{\mu^*(j)}(j)$ where $\mu^*(j)$ is the optimal policy for all *j* in {1,2,3,...,n*,...N}. More specifically:

- Design the algorithm to be driven by input consisting of: #the observed initial state *i* #the initially selected control, *u^m* #the observed next state *j* and the observed period cost *g_t(i,j,u^m)* #the next control selected, *u^{m'}* #the observed next state *j'* and period cost *g_{t+1}(j,j',u')* #the observed next states and period costs that follow, as well as the selected controls that follow.
- 2. Describe rules, if any, on selecting controls u^m , $u^{m'}$, $u^{m''}$,... at each time period and on updating Q (Hint: Robbins-Monroe) to guarantee convergence to $Q^*(i,u^m) \approx g_T(i,j,u^m) + J_{\mu^*(j)}(j)$ for large T.
- 3. Discuss how $\mu^*(j)$ is derived/related to $Q^*(i,u^m)$.

SE Qualifying Exam Nonlinear Systems and Control May 21, 2024

- 1. Give a precise mathematical definition of the following terms:
 - (a) Uniformly asymptotic stability of an equilibrium point x_0 of $\dot{x}(t) = f(t, x(t))$.
 - (b) Positive definiteness of a continuous function $W : [t_0, \infty] \times \mathbb{R}^n \to \mathbb{R}$.
 - (c) Positive limit set of a bounded solution $x(t, x_0, t_0)$.
- 2. Consider the system
 - $\dot{x}_1 = x_2 x_1 f(x_1, x_2)$ $\dot{x}_2 = -x_1 - x_2 f(x_1, x_2)$

where $f(x_1, x_2)$ is a convergent power series with f(0, 0) = 0. Determine the stability of (0, 0) for the following cases:

- (a) $f(x_1, x_2) \ge 0$, $\forall x \in B_r(0)$ (b) $f(x_1, x_2) > 0$. $\forall x \in B_r(0)$
- (c) $f(x_1, x_2) < 0, \quad \forall x \in B_r(0)$
- 3. Consider the following nonlinear control system

$$\dot{x}_1 = (-1 - \alpha)x_1 - 2x_2 + (1 + \alpha)u - ux_1(1 - \alpha)$$

$$\dot{x}_2 = (1 - \alpha)x_1 + (1 - \alpha^2)u - ux_2(1 - \alpha)$$

where α is a real number. Determine for which values of α there exists a continuously differential feedback control u = k(x), k(0) = 0 such that 0 is an asymptotically stable equilibrium point of the resulting closed loop system.