ME 310 Instrumentation: FALL 2022

NOTE: It is your responsibility to read and familiarize yourself with the policies and dates described in this document. Some dates may be subject to change; changes will be announced in class, via email, and on the course website. Please check this document prior to emailing us for logistical information.

LECTURE: MW 10:10 – 11:55 AM, PHO 210
Prof Caleb Farny, 110 Cummington Mall, Rm 207, 617-353-8664
Office hours: Tuesdays 10-12 pm, Wednesdays 2-4 pm, or by appointment

LAB: Rm 113A, 110 Cummington Mall
C1 Mon 2:30 – 6:15 pm C3 Thurs 5:30 – 9:15 pm
C2 Tues 5:30 – 9:15 pm C4 Fri 2:30 – 6:15 pm

GSTs: Guoyao Shen (guoyao@bu.edu) (Tuesday, Thursday lab sections)
Kirk Pierce (kcpierce@bu.edu) (Thursday lab sections)
Ran Jing (rjing@bu.edu) (Tuesday lab sections)
Samad Amini (smdamini@bu.edu) (Monday, Friday lab sections)
Xing Ye (xingye@bu.edu) (Monday, Friday lab sections)

Course description
Designing, assembling, and operating experiments involving mechanical measurements; analyzing experimental data. Safety considerations in the laboratory. Wind tunnel testing. Mechanical and electrical transducers for flow, pressure, temperature, velocity, strain, and force. Electric circuits for static and dynamic analog signal conditioning. Computer use for digital data acquisition and analysis; instrument control. Introduction to frequency domain analysis. Professional standards for documenting experiments and preparing reports, including formal uncertainty analysis involving elementary statistics. Discussion of commercial instrument development. Interpretation of experimental results. Includes lab and design project.

Goals
1. To teach basic techniques for designing experiments and analyzing data
2. To introduce the operating principles and uses of transducers, output devices and signal conditioning elements of measurement systems
3. To introduce the concepts of signals and systems and their interaction in both static and dynamic measurements
4. To provide hands-on experience in professionally conducting experiments in a modern, real laboratory setting with emphasis on safety, documentation, computer use and uncertainty analysis. The uncertainty analysis reflects standardized practice, providing an introduction to professional codes and standards and elementary probability and statistics.

Hub Learning Outcome: Writing Intensive
School, Department, and/or Program Outcomes
ME310 is a required course for the Mechanical Engineering B.S. degree program. Its prerequisite courses are CAS WR120, ENG EK307, EK381, and ME303.

Course Learning Outcomes
As an outcome of completing this course, students will successfully:

i. Design and implement experimental solutions to engineering problems, including static and dynamic mechanical, electrical and thermal measurements, and justify the tradeoffs between cost, performance and complexity of measurement schemes.

ii. Analyze the uncertainty of experimental results, including identification of sources & types of uncertainty, combination & propagation of uncertainties.

iii. Hub unit: Writing Intensive. Demonstrate proficiency in technical writing and documentation of experimental work through use of standardized lab reporting policies and requirements.

iv. Demonstrate the operating principles and justify the uses of transducers, output devices, and signal conditioning elements of measurement systems for flow, pressure, temperature, velocity, strain, and force.

v. Apply the concepts of signals and systems and their interaction in both static and dynamic measurements, including mathematical modeling of such systems' static and time-dependent behavior.

vi. Demonstrate knowledge of the theory and practical application of analog-digital conversion in the context of data acquisition and MATLAB and LabVIEW interface data acquisition control software.

vii. Work efficiently in individual and team settings by performing labs and projects in both self-organized and instructor-organized groups.

viii. Present experimental design and results in an oral presentation.

Reading resources
Due in part to the technical writing component, you will benefit from carefully reading all of the resources that are available to you. These resources consist primarily of the course textbook (see below), the lab manuals, your course notes, and the various digital documents (including this syllabus and embedded lab manual guide!!) that will be posted on the website and described by your instructor. Web resources may also contain helpful written explanation. We strongly encourage you to read through these documents carefully, particularly as you prepare your pre- and postlab reports.

Note: Any edition after the 4th edition is likely cheaper and is acceptable also.

Website/Digital materials
Blackboard (learn.bu.edu): All of the course material will be hosted on Blackboard. I have transitioned to a Blackboard Ultra website, so the format may look different from what you’re used to seeing. Please check the course Blackboard site to review your grades and submit digital copies of your lab reports. Note that I do NOT use Blackboard to calculate your final grades, so disregard whatever grade assignment or total number of “points” that Blackboard says you have.
Piazza: I will use Piazza as a discussion board. You must first sign up via the link below (also available on the Blackboard site) in order to connect to the course-specific site: piazza.com/bu/fall2022/22fallengme310

We encourage you to ask questions when you're struggling to understand a course policy or concept (you can post questions anonymously) and to chime in with a response to someone else's question if you think you have a good grasp on the question. We will monitor and respond to questions during normal business hours.

Grading

- 10% Video questions, Class & Lab performance
- 15% Design Project
- 15% Homework Sets
- 20% Labs and Lab Reports
- 20% Each exam

Nominally, the mean of the overall score across the class will set the dividing line between a B and a B-.

Lab Notebook: Any bound notebook is fine.

Class

ME310 is now a “flipped class” to a certain extent; some lectures will involve a discussion of new concepts while others will focus on group-based measurement challenges. These challenges are meant to help you explore new concepts and get hands-on experience with the measurement aspect of the course. In order to prepare for these challenges, it is imperative (and required) that you watch the course videos that I’ve prepared for you on the course website. It is expected that you will have watched the videos and answered the corresponding worksheet questions PRIOR to coming to class, and that you will participate with your group on the in-class measurement challenges.

The course instructors are aware of and in agreement with Boston University’s **Policy on Religious Observance**, whereby absences for any religious beliefs are understood and missed assignments on such occasions will be given a chance to be made up. Students are required to notify their instructor at least a week in advance for such occasions, particularly if an accommodation must be made.

Videos

The course has 5 content modules that have an accompanying set of videos that we have created for you to watch. Each module covers a discrete concept that is central to the course and understanding the content in the videos is a key step to understanding and passing this course. There are 2 – 4 videos per module; each ranges from 9 – 14 minutes, depending on the complexity of the topic. NOTE that we will not formally cover these topics in class, and that they represent some of the most challenging material in this course! Also note that a few questions are embedded in most videos. You are responsible for writing these questions down and answering them! These make up your “worksheet questions” and are due in class on the day of the corresponding active learning exercise that accompanies that specific module. Make sure to take notes and post any questions that you have from the videos to Piazza.

Why assign videos instead of watching us scribble on the board in class? Pedagogical research has demonstrated that listening to a chalkboard lecture results in low retention of material, not to
mention transcription mistakes from the presented material to your notes. This is why we provide the videos, transcripts, and digital lecture notes for your reference. They are valuable resources that you should reference as you study the course material.

Homework
Homework assignments are given out (roughly) every other week in class. They are due in stapled, printed format at the BEGINNING of class on the due date listed. LATE HOMEWORK WILL NOT BE ACCEPTED unless circumstances merit the exception. Some of the homework analysis will explicitly overlap with the lab analysis, so be sure to keep a record of your analysis and you are encouraged to directly apply this homework analysis towards your lab report whenever relevant.

Exams
Your understanding of the class-based material will be assessed via a midterm and final exam. Each will cover a specific section of the material and as an upper-level course, they will be thorough and challenging. "Make-up" exams will rarely be given. In the case of prior knowledge of a time conflict you must arrange to take the test before you are away. A "make-up" exam will be different from the exam given in the class.

Design Project
You will design and implement a complete transduction system to measure the frequency-dependent displacement of a damped mass on a spring. This will occupy roughly the final 5 weeks of laboratory meetings. Note that it is a design as well as lab project, and as such there will be significant work done OUTSIDE and BEFORE lab.

COVID 19 & BU Community Health Expectations: You are expected to follow all university guidelines with respect to your vaccination and symptom check. For a detailed description of official BU policies regarding COVID, please visit:

https://www.bu.edu/back2bu/campus-life-undergraduates/

There exists the possibility that any of us may be required to quarantine and miss class. The University has been clear that class-via-Zoom is not an environment that is supported going forward. We will do our best to be in touch with you about contingency plans should we need to quarantine, and we ask that you be in touch with Prof Farny should you need to miss class. We have some, but not unlimited, digital resources available to present you with the course material, should you need to miss class, but it is important that you remain proactive in doing so should you need to quarantine.

Drop and Withdrawal Dates
The last day to DROP: October 7th. The last day to WITHDRAW: November 5th
"Incomplete" grades are reserved for the most extreme of circumstances and are a NEGOTIATED CONTRACT between the student and instructor.

Collaboration
A. Homework and worksheets: Do it individually. However, you are encouraged to consult with classmates on general concepts.
B. Lab reports: Also to be done individually. All pre-labs are also to be done individually. This policy extends to ALL components (text, figures, tables, etc) of the document. Do NOT share
digital files other than whatever raw data needs to be shared within your group. For some experiments, there will only be one copy of your raw data/results, which you must copy later for inclusion in your own reports. Your lab report should be a stand-alone document, and therefore you may not ‘reference’ any section in one of your lab partners’ reports. However, you must consult with your lab partners even after the lab period to discuss findings and results. Take this guidance very seriously but PLEASE feel free to come talk to us if you’re unsure about boundary lines!

C. Design project: This is a group collaborative project, and we expect to see some division of labor here; there will only be 1 report per group, so each group member will receive the same grade. Despite the division of labor each member of the group must understand the other member’s contributions.

Academic Conduct Statement
Cheating on homework, quizzes, exams, project reports, or any form of assignment, may be a form of plagiarism and is an infringement of every code of engineering ethics. Plagiarism is a serious academic offense and should not be taken lightly. Understanding your ethical responsibilities is an integral part of becoming a professional. A copy of the Code of Ethics of engineers, promulgated by the Accreditation Board for Engineering and Technology (ABET) and the National Society of Professional Engineers, can be found on the main course web site.

Recall that when you enrolled at Boston University, you agreed to an Academic Honesty Pledge. The Academic Conduct Code details your responsibilities as well as the results of code violations, and is posted at: https://www.bu.edu/academics/policies/academic-conduct-code/

Accommodations for students with documented disabilities: If you are a student with a disability or believe you might have a disability that requires accommodations, please contact the Office for Disability Services (ODS) at (617) 353-3658 to coordinate any reasonable accommodation requests. ODS is located at 19 Deerfield St, on the second floor. I will make every effort to accommodate such requests but (a) please notify me at the beginning of the semester if you’ve received approved accommodations in previous semesters (even if you haven’t received your paperwork for this semester yet!) and (b) my policy is that I need at least one week’s notification prior to each exam so we can make the necessary arrangements.

Matlab Access
We highly recommend the use of MATLAB for analysis and plotting for ME310, and will require it for some of the homework analysis. You can now download Matlab to your personal computer: http://www.bu.edu/tech/services/cccs/desktop/distribution/mathsci/matlab/
Most of you have taken EK125 and were familiar with MATLAB at one point, and it’s not difficult to learn the basics if you studied a different programming language. We are more than happy to give assistance and guidance if you need help!
LAB AND LAB REPORT POLICIES AND PROCEDURES

1. Groups
Organize yourselves into groups of no more than 4 students each. There will be no more than 4 groups per each lab period. Remember that lab reports are done individually.

2. Notebooks and Reports
a. Lab Notebook: Buy a bound notebook. A version that has page numbered and is square-ruled is best but not required. You will record all your in-lab data and observations for ALL LABS in this notebook, which is to be photocopied and submitted with each full lab report. Identify your notebook on the cover with your name, term and year, course number, and lab partner’s names.

b. Lab Report: Each student will generate a lab report for each experiment, the elements of which are spelled out in the sections below. These reports will be generated on a word processor with inclusion of plots and plots (typically generated in a spreadsheet or other calculation program) and also with the inclusion of the photocopied pages of the lab notebook corresponding to the experiment.

c. All entries (notebook especially) must be in permanent ink. Pencil is only used for drawings and plots. Do not erase or ‘white-out’ mistakes. Instead, cross out with ONE mark and explain. Use only the right-hand side of pages.

d. Format, content and neatness will be graded. Your writing or typing must be legible, intelligible, and concise but complete. As mentioned above, these reports are stand-alone documents. Do NOT assume that ‘everyone knows that’.

e. If you use information from a previous class or from some textbook (even our own) or even use pictures, plots, text, etc. from the lab manual handout, or from the Web, you MUST document such with a citation. A standard point deduction of 10 points will be applied for missing citations (when relevant).

f. The pre-lab section of the report is due at the beginning of the lab. The GST will check, sign and date the prelab or you will receive no credit.

g. The in-lab data section completed in the notebook must also be signed and dated by the GST, or no credit will be received.

3. Lab preparation
The lab component for this course bears considerably more responsibility than other lab exercises you’ve had. You will be in charge of connecting the instruments and collecting the data – not the GSTs! Their role is primarily to help you troubleshoot whatever problems may arise. A 4-hour lab session sounds long but it can go by faster than you’d like, with regards to completing the entire procedure. In order to complete everything, you’ll need to be adequately prepared. To help you stay organized, you’re expected to carefully read through the lab manual and prepare a thorough prelab document (see below).

4. Due dates
Based on the schedule below, you are required to submit a printed copy of your report to your GST at the beginning of your lab session, AND a digital copy to Blackboard SafeAssign before your lab session. LATE LAB REPORTS WILL NOT BE ACCEPTED OR GRADED unless dire circumstances warrant the exception; see me if you are unable to complete your report on time. The GSTs take attendance, and failure to show up for a lab session will result in an Incomplete for the course. See me as far in
advance in possible if you have a scheduling issue and we’ll arrange for you to make up
the lab. Most lab reports are handled slightly differently:

 Lab 1: This lab does not have a required post-lab analysis but the pre-lab document
 will be collected in lab and graded.

 Lab 2: The full report is due in 1 week, even if you have a free period on the next
 week.

 Labs 3 & 4: Since the analysis is significantly more complex, you will be given 2
 weeks to submit the report for labs 3 & 4.

5. Error Analysis
An estimate of your errors, their sources, and impact on results is required in every lab
report. Additionally, Labs 3 & 4 require a full formal uncertainty analysis (see details
below). Both these reports have two weeks prior to their due date to ensure adequate
time for preparation of the longer and more extensive lab report.

6. Late or missed labs
Only in the most extreme of circumstances will you be allowed to be late or miss a lab
and schedule a makeup. These labs require a large amount of overhead in terms of
equipment, prep, coordination and manpower, and it is not fair to anyone to reschedule
without compelling cause.

7. Lab Report Content
We have sample reports available via office hours for your perusal. A section by
section breakdown of what is expected appears below.

8. Academic Honesty
Labs 1 – 4 are meant to be individual efforts. While discussion of the analysis with your
peers is ok (and encouraged), ‘sharing’ of ANY written/digital content among your
current peers (or those who have already completed the course) is considered
plagiarism. Discovery of plagiarism cases will result in an Academic Misconduct
investigation. Distribution of data within your lab group is permissible and expected,
for certain labs. Do NOT share digital files other than whatever raw data needs to
be shared within your group.

9. Safety
Safety is paramount. Never work alone. Tie up loose ends (hair, clothing and jewelry).
Keep workspaces free of clutter. NO FOOD OR DRINK IS ALLOWED IN THE LAB!

10. Equipment
 Two bad things happen to lab equipment:
 a. An instrument fails or is made to fail via an accident. Do your best to prevent the latter
 (set your power supply levels carefully and handle with care!), but our MAIN priority is
 to ensure a smooth lab experience for the next group that comes along. Please report
 broken equipment directly to me and your GST as soon as possible, so we can
diagnose, and fix or replace as necessary. We promise we won’t get upset!
 b. The tools necessary to set up the experiment aren’t available. This scenario typically
 occurs because mechanical engineers love tools and try to procure them with all means
 possible. Please fight this temptation and leave the ME310 tools for future students
 (this includes yourself). The toolbox lives in the GST office, and has a sign-out sheet. It
 is your responsibility to sign out all tools that you need throughout your lab session,
 and to return them accordingly. If a tool is missing after a lab session, the GST will
 come looking for YOU! Please keep the lab environment neat and in working order.
ME 310 LAB REPORT CONTENT AND LAB NOTEBOOK USE

GENERAL INFORMATION
- Number your report and notebook pages (by hand in your notebook if you have to). Double-sided printing is encouraged.
- Copies of the relevant pages of your lab notebook must be included in your lab report for each experiment when you turn it in post-lab.
- Longer ≠ better! We absolutely do not expect 40-50 page reports. As a technical report, communicating the relevant information in a clear and concise manner should be your main goal. The theory section has a maximum page length but do your best to keep the overall length of your report to a minimum length as well.

PREPARATION BEFORE LAB (Prelab Report Section)
- Title page
- Objectives of lab
- Theory and preparation for analysis
- Appropriate tables of symbols and equations
- Spot check preparation
- Listing of data needs
- Tentative equipment lists
- Procedure checklist

1. Title Page
This should include only the title of the experiment, the date the experiment was actually done, your name, your lecture section & instructor, and the names of the students in your group who worked on the same lab apparatus as you.

2. Objectives
Before each lab you must read and understand the lab write up. Then you must prepare your notebook for the lab. First, the objectives of the lab should be stated. This should be a brief and concise statement of what the scientific and/or engineering goals of the experiment are (e.g., investigate a phenomenon and/or demonstrate a theorem).

Do not just copy the handout. In the conclusion section at the end of your lab you should return to the objectives to ascertain how well the objectives were realized. Since the conclusions depend on the results of the experiment, what is included in the results section will also depend on the objectives, so check what is asked for (or what will be obtained) in the results section before writing your objectives.

3. Theory
Next, a brief summary of pertinent theory or established empirical evidence related to the experiment should be given. You should base (and cite!!) your explanation off the lab manual, class notes, and textbook, so read these sources carefully. The purpose is to understand the basis of the experiment and how these data are to be reduced and analyzed to meet the lab’s objectives prior to arriving to lab. It is your responsibility to understand the theory well enough to know what measurements need to be made (e.g., if a Reynolds Number is required, then you
need to measure temperature, which will allow you to look up the fluid’s viscosity). All derivations or dimensional analyses requested in the lab manual be done in this section.

Longer ≠ better! You will be graded, in part, on conciseness. The Theory section should be no longer than 5 pages, double-spaced (this is a limit, not a goal!).

4. **Equation Summary**
This is a listing of the equations you will need to find your results from your data and the theoretical values to which you will be comparing them. Also, list the meaning of all the symbols used in your equations and their units.

5. **Spot Check Preparation**
It is almost always desirable to do an analysis of some data points in the lab while the experiment is running. This is called a spot check. A spot check permits you to see if the results make sense, or if the experiment is generating data that is obviously erroneous and either the experiment or your method of analysis needs correcting. In a comprehensive experiment with a detailed procedure, it is easy to overlook a step or make a mistake, leading to poor data. Conducting a spot check allows you to make sure that your results are consistent with the expected values and phenomena.

All ME310 labs include spot checks to help you identify bad data, bad analysis, bad lab technique or faulty equipment. **Your prelab preparation should identify the relevant equations, along with the necessary unit conversions & constants to reduce in-lab time.** Then in the lab, you will only need to plug in your experimental values.

6. **Data Needs**
This section should include a list of data needs, including the range of variables the data will include. The purpose of this is to simplify in lab the construction of neat data tables that are easy and informative to read. It also allows you to determine a complete list of the data you’ll need in lab, to reduce the chance you’ll forget or miss a measurement.

 Headings for table rows and columns should be devised as well as tentative unit assignments. In this section your tables should be “skeleton” or model tables containing no actual data. For example, if your data is to be voltage as a function of frequency, then you’ll need to specify the min, max, and increment for the frequency. **If you have prepared only sample data tables for the prelab, keep in mind that the actual data tables, containing the actual data, must go in the data section (which follows the safety check) in your lab notebook and are to be constructed and filled with data only during the lab.**

7. **Equipment List**
Next should come a tentative list of equipment. It is a tentative list because there will be probably be some additions to the list to be made in the lab and for information on **equipment manufacturer and model number** (if available). Also, you should record the **instrument resolution** (smallest increment, or least count). You should construct this list in the form of a table (with plenty of blank spaces) and should fill it in with the unknown information during the lab.
Data Sheets: You’ll need these for your Uncertainty Analysis. Instrument data sheets will be posted on the course website for obscure instruments only; otherwise it is your responsibility to go to the manufacturer’s website for all other instruments.

8. Procedure Checklist
With the exception of Lab 1, a comprehensive description of the lab procedure AND a detailed and bulletized list accompanies the lab manual. You should attach a photocopy (or re-typed) printout of this procedure to the end of your prelab. Note that while you are not asked to re-write the procedure in your own words for the prelab, you are still expected to have read through and familiarized yourself with the procedure BEFORE coming to lab. You’ll notice that the bulletized checklist contains some blank spaces where the proper settings for certain steps are left out. You should fill in these setting values yourself as part of your prelab preparation. Note that for Lab 1, the bulleted procedure list does not exist; you’ll need to write your own for this particular lab.

These steps should be your direct guide to completing each step involved in the lab exercise. This is to help you to remember when to turn crucial valves so the lab doesn’t flood out and when to take crucial data or perform spot checks so you don’t have to repeat portions, or all, of an experiment. The labs can become somewhat confusing while in progress and it is easy to forget a procedure step, so pay close attention to this section. You may find that you may need to revise or add further steps to this list during the procedure.

There is a fair amount of work involved in prelab preparation. It is a very significant part of doing an experiment and should not be raced through just prior to lab. The prelab comprises 25% of your lab grade.

LAB NOTEBOOK USE DURING LAB (Inlab Report Section)
- Complete equipment list
- Make and record a safety inspection
- Follow procedure checklist
- Take data
- Perform spot checks
- Note general observations
- Draw experimental setup

1. Complete Equipment List
Include the manufacturer, model number, and resolution information (if known). Put this information into the table in your prelab section or record it directly in your lab book.

2. Perform Safety Inspection
Before beginning the experiment, consider and note in your lab notebook the safety issues related to this experiment. Include the issues that were addressed and also those that were not addressed. For those issues that were not addressed, comment on how the safety of the experiment might be improved in the future. Note that this includes safety FOR the equipment, not just FROM it – you should be aware of the limitations of all equipment you use and take appropriate steps to ensure no input or output loads exceed those limits.
3. Follow Procedure Checklist
Check off each step as you proceed through the checklist. You should write in procedure changes if they become necessary. If there is extensive revision of the procedures necessary, you should record the revised procedures in the lab notebook.

4. Take Data
Record data in either in the tables which you’ve pasted into your lab notebook OR construct data tables based on the models you developed in your prelab and add these tables in the lab notebook. Be sure to include appropriate units and other comments (e.g., which of several instruments you were using – e.g., which temperature sensor – or which scale you were using on your instrument). Be sure to record the raw data before you make any calculations, e.g., the height of the manometer column and not just the difference in height (which would be the result of a calculation and result in the loss of some information – e.g., where on the scales you were working). All data must be recorded neatly and be easily legible to the graders (including the units of the data) or else loss of credit will result. The 5% credit given for this section is primarily given for format, presentation, and completeness. More credit will be lost if the data is faulty, leading to poor analysis and results.

5. Perform Spot Checks
Usually you will be told what spot checks to do, but for some labs you are expected to come up with some of your own. Regarding spot checks, it is not enough to simply do them. Comment on what information they supply, e.g. “demonstrates a linear relationship”, or, “corresponds to a theoretical expectation”, etc. Spot checks should be performed in the data section, near the relevant data.

6. Note general observations
In addition to taking data, general observations that relate to the lab, such as problems and inconsistencies, should be recorded. However, problems that can be corrected by the students (e.g., an incorrect calibration) should be corrected as well as noted.

7. Document experimental setup
Finally, in order to make sure you understand and remember how the experiment was set up, draw a block diagram of the measurement and instruments involved. Nothing fancy is necessary, but it should show the electrical connections between the instruments and the basic idea of how the instruments were positioned relative to the phenomena that they’re measuring. Scan in or reproduce (manually or digitally) the block diagram as part of the lab report.
ANALYSIS AFTER LAB (Postlab Report Section)

- Analysis
- Uncertainty analysis
- Results
- Discussion and Conclusions

1. Analysis

The chief purpose of the analysis section is to show the calculations ("analysis") that you performed to transform the data into results. The analysis should appear in the lab report following your data pages from the lab. It is very important that your analysis be clear to someone who did not do the lab. Therefore, you should describe it with text to orient the reader. Sample calculations for each unique analysis/calculation must be included. Be sure to specify which data point is being used in each sample calculation and to identify the source (including the page number in the lab notebook) of any typical data and reference data you use (e.g. viscosity values). Also, be certain to use and check units. Hint: sometimes it is easier to convert all data into SI units and then do your calculations.

Following the sample calculations, analysis of all of the data points should be summarized in tables, including intermediate as well as final results. The data points used in the sample calculations should also be included in these analysis tables as a check that the analysis behind the tables is working properly. All tables must have a name (e.g., Table 1) which you should use in your text (e.g. “Table 1 lists the intermediate calculations performed for determining the relativistic correction to the mass”), clearly labeled columns and rows (variable names and units), and an explanatory caption. The name and caption are usually combined, for example, “Table 3a. List of relevant acoustic and thermal properties for tissue-mimicking gel. All values are experimentally determined as described in Section 2, except where citation indicates another source for the values”.

Calibration curves and other curves needed for the analysis of data should also be included in the Analysis Section, however, all results plots belong in the Results Section only. All plots must have name (e.g., Figure 1), which you should reference in your text (e.g. “Figure 1 plots the output gain as a function of frequency”), and an explanatory caption below the plot which describes the features and parameters of the plot. The name and caption are usually combined, for example, “Figure 5. Light emission as a function of duty cycle for 5 different pressures with symbols as indicated in the legend. Frequency = 1 MHz, DGC = 0.03”). If there is more than one curve on a plot, clearly distinguish them by different symbols, line types, and/or colors in a legend included somewhere on the plot. The scales of the x- and y-axes must be clearly shown and labeled with variable names and units. Be sure to use the appropriate plot axis type in your plotting application: log-log, semi-log, etc. Plots should be sized so that they take up most of a report page width.

Sample calculations may be done by hand or using a symbolic manipulator program, but the rest of analysis, as well as uncertainty analysis and plots should be done with a computer. Hand-written sample calculations may be done in the lab notebook for convenience, then photocopied for the report. Alternatively, you may simply leave space in your report pages for the appropriate hand-written calculations.
2. Uncertainty Analysis
The uncertainty analysis should include your elemental experimental uncertainty in each measurand (both systematic and random, identified as such, as well as total uncertainty), statistical analysis of data where appropriate, and uncertainty propagation for equations and results using partial differential root sum square propagation equations, and sample calculations. Discuss the uncertainties introduced by all relevant instrumentation, and combine & propagate with the random uncertainty for all results, as is relevant.

Sample calculations must be shown for a single point for each unique analytical equation and a single example for each type of resultant. Following the sample calculations, uncertainty in ALL values and results must be calculated and displayed in tables. Uncertainty analysis counts for 20% and is only required for labs 3, 4, and the design project.

Note that some elements of the uncertainty analysis for these labs will be featured in advance as homework problems. The goal here is to provide a separate setting to consider how to consider the role of uncertainty and to reduce the overall course workload. I expect that you should use this homework analysis as part of your lab report analysis, and to not necessarily duplicate the work associated with these analyses.

3. Results
Results should be given in terms of tables and plots whenever possible (refer to above paragraph on plots for format), but should include at least some guiding text so that the reader can understand what is being presented. Do not include intermediate calculations (those belong in the analysis section), only final results in the results tables. Final results are those that are needed to meet the objectives of the experiment. Data points should have error or uncertainty ranges indicated, where appropriate, in both tables and plots (on plots it should be represented as error bars when possible). If a plot will convey the same information as a table, then just use a plot.

4. Discussion and Conclusions
In the discussion section you should evaluate your results and discuss the physical meaning of the numbers and plots. If there are relevant theoretical or empirical results available, compare your results with them, and attempt to explain any discrepancies. Answer any and all questions asked in the procedure section of the lab handout. Mention experimental limitations and ways the lab might be improved. Were the lab’s objectives met? Remember to include uncertainty in this discussion. If results or experimental objectives were unsuccessful, try to provide a coherent discussion as to why this was the case. Because it is important to think about and communicate experimental results as well as get them, this section comprises 16% of your lab grade.

ADDITIONAL GRADING
Presentation
The presentation quality of your lab report will, at a minimum, be graded for readability, conciseness, completeness and placement of items in the proper section. The GSTs have some flexibility to award extra credit for superlative writing and analysis.
SUMMARY OF LAB REPORT ORDER AND CREDIT

For each experiment, the report should consist of:

<table>
<thead>
<tr>
<th>Section</th>
<th>Max. Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prelab</td>
<td></td>
</tr>
<tr>
<td>Title page</td>
<td>1%</td>
</tr>
<tr>
<td>Objective</td>
<td>3%</td>
</tr>
<tr>
<td>Theory</td>
<td>7%</td>
</tr>
<tr>
<td>Equation summary</td>
<td>2%</td>
</tr>
<tr>
<td>Data needs</td>
<td>5%</td>
</tr>
<tr>
<td>Equipment list</td>
<td>2%</td>
</tr>
<tr>
<td>Procedure checklist and safety</td>
<td>3%</td>
</tr>
<tr>
<td>Inlab</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>5%</td>
</tr>
<tr>
<td>Spot checks, block diagram</td>
<td>5%</td>
</tr>
<tr>
<td>Postlab</td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>14%</td>
</tr>
<tr>
<td>Uncertainty analysis</td>
<td>20%</td>
</tr>
<tr>
<td>Results</td>
<td>12%</td>
</tr>
<tr>
<td>Discussion</td>
<td>16%</td>
</tr>
<tr>
<td>All Sections</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td>5%</td>
</tr>
</tbody>
</table>
Some thoughts on lab report word processing…

You are free to use whatever word processor you prefer when you go about typing up your weekly lab reports. HOWEVER: Personal experience and lots of student feedback has shown that Microsoft Word can make your life very difficult when it comes to assembling long documents that contain both embedded figures and equations. It can be done, but you might have gained some bags under your eyes and lost a few hairs by the time you’re finished. As a less stressful alternative, I recommend learning how to use LaTeX. It’s an open source platform (so its name was clearly not generated by a marketing team!) and it has a short learning curve, but it will be your best friend after the initial time investment. Also, it’s (virtually) free, in that the package for the Mac platform (TeXShop) is free and the Windows platform (WinEdt) has a recommended payment reminder that can be ignored if you’ve got the patience.

So what’s LaTeX you ask? LaTeX is a document formatting software that relies on a user-programmable typeset language that makes embedding figures, figure numbers, equations, equation numbers, tables, table numbers, and section headings, etc, all much easier to update and position within your document. It performs all this and produces a slick-looking report that’s sure to get you an A based just on its appearance! (if you were still in high school, that is…)

In a nutshell, the program consists of an editor window, where you write your text, provide links to your figure files, and program your equation symbols, and a window where it displays the typeset document in PDF format.

The only downside is that proofreading can be difficult, since the editor window is not always formatted in a well-presented manner (depending on the particular software package you’re using). I highly suggest carefully proofreading the PDF version, and then making notes where you’ll want to make changes on the editor window side.

There are many versions available, so feel free to search online yourself, or you can use either of these links:
Mac download:
http://pages.uoregon.edu/koch/texshop/

Windows download:
http://www.tug.org/protext/
or
http://www.winedt.com

Don’t be surprised if it’s a large download! I’ve posted a lab report template on Blackboard for your reference. Feel free to use it as a basis for your reports.

For group projects, you may want to take advantage of a good online resource for sharing Latex code: http://www.sharelatex.com
ME310 Semester Schedule

<table>
<thead>
<tr>
<th>L</th>
<th>Dates</th>
<th>Topics/Classroom Activities</th>
<th>AL exercise/GST</th>
<th>Video</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/7</td>
<td>Course, lab & report overview</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9/12</td>
<td>Measurement methodology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9/14</td>
<td>Measurement methodology; error analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9/19</td>
<td>Analog-digital conversion; sampling theory</td>
<td>1. ADC</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9/21</td>
<td>Uncertainty overview</td>
<td>2. Uncertainty intro</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9/26</td>
<td>Random vs Systematic Uncertainty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9/28</td>
<td>Uncertainty, linear measurement systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10/3</td>
<td>Measurement overview: Temperature sensing</td>
<td></td>
<td></td>
<td>Labs 3 (Drag and pressure) and 4 (Temperature calibration)</td>
</tr>
<tr>
<td>9</td>
<td>10/5</td>
<td>Measurement systems: response functions,</td>
<td>3. Linear regression</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sensitivity, linear regression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10/11</td>
<td>Regression, weighted fit; Instrumentation error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10/12</td>
<td>Exam 1 review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10/17</td>
<td>Measurement overview: Filters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10/19</td>
<td>Exam 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10/24</td>
<td>Project descriptions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>10/26</td>
<td>1st order systems</td>
<td>4. First order step</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10/31</td>
<td>1st order systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>11/2</td>
<td>2nd order systems</td>
<td></td>
<td></td>
<td>Design Project</td>
</tr>
<tr>
<td>18</td>
<td>11/7</td>
<td>Coupled systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>11/9</td>
<td>Quality factor, experimental methods for time-dependent systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11/14</td>
<td>Continue time-dependent analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>11/16</td>
<td>Continue time-dependent analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>11/21</td>
<td>In-class project work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>11/28</td>
<td>In-class project work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>11/30</td>
<td>In-class project work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>12/5</td>
<td>Project presentations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>12/7</td>
<td>Project presentations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>12/12</td>
<td>Final exam review</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester dates
- 10/7: Last day to withdraw (without a 'W')
- 10/11: Indigenous People's Day (holiday)
- 11/5: Last day to drop with a 'W'

Concept Textbook (Chapter: section)
- **Overview**: Ch 1
- **Uncertainty Analysis**: Ch 4: 1-4, Ch 5: 1-6
- **Temperature sensing**: Ch 8: 2, 4, 5
- **Regression**: Ch 4: 7
- **Analog filters**: Ch 6: 8
- **Digital filters**: Ch 7: 7
- **General signal conditioning**: Ch 6: 9
- **Amplifiers**: Ch 6: 6
- **Aliasing**: Ch 7: 2
- **Dynamic inputs**: Ch 2
- **System response to dynamic input**: Ch 3
- **Sensors**: Remaining chapters!
FALL 2022 ME 310 Lab Schedule

Note: Each group must have a maximum of 4 students

Labs 3 & 4 are scheduled based on your group number. Be sure to determine your group number by your 1st lab meeting

<table>
<thead>
<tr>
<th>Section</th>
<th>GSTs:</th>
<th>C1 Mon 2:30-6:15</th>
<th>C2 Tues 5:30-9:15</th>
<th>C3 Thurs 5:30-9:15</th>
<th>C4 Fri 2:30-6:15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Group #</td>
<td>Group #</td>
<td>Group #</td>
<td>Group #</td>
</tr>
<tr>
<td>Week of</td>
<td></td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>5-Sep</td>
<td>Holiday</td>
<td>No lab meeting</td>
<td>No lab meeting</td>
<td>No lab meeting</td>
<td></td>
</tr>
<tr>
<td>12-Sep</td>
<td>Lab 1</td>
<td>Lab 1</td>
<td>Lab 1</td>
<td>Lab 1</td>
<td></td>
</tr>
<tr>
<td>19-Sep</td>
<td>Lab 2</td>
<td>Lab 2</td>
<td>Lab 2</td>
<td>Lab 2</td>
<td></td>
</tr>
<tr>
<td>26-Sep</td>
<td>3 f 4 f 4</td>
<td>3 f 4 f 3 f 4</td>
<td>3 f 4 f 4 f 3 f 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Oct</td>
<td>f 3 f 4 4</td>
<td>f 3 f 4 f 3 f 4</td>
<td>f 3 f 4 f 3 f 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-Oct</td>
<td>Holiday</td>
<td>No lab meeting</td>
<td>4 f 3 f 4 f 3 f 4</td>
<td>No lab meeting</td>
<td></td>
</tr>
<tr>
<td>17-Oct</td>
<td>No lab meeting</td>
<td>No lab meeting</td>
<td>No lab meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24-Oct</td>
<td>4 f 3 f 3</td>
<td>4 f 3 f 4 f 3</td>
<td>Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-Oct</td>
<td>f 4 f 3 3</td>
<td>f 4 f 3 3 f 4</td>
<td>Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28-Nov</td>
<td>Project</td>
<td>Project</td>
<td>Holiday</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-Dec</td>
<td>* * * *</td>
<td>* * * *</td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-Dec</td>
<td>*</td>
<td></td>
<td>* * * *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Possible pts**
 - 33 1 Intro to scope, MM/DMM, and DAQ (Prelab and in-lab due but no analysis!)
 - 80 2 Strain Gauges (1 week for report)
 - 100 3 Flow Over a Sphere (2 weeks for report)
 - 100 4 Temperature Measurement and Calibration (2 weeks for report)
 - 100 DESIGN PROJECT: Mechanical 2nd Order System and Digital Data Acquisition

- **Labs 3, 4 and Design Project require formal uncertainty analysis**
 - f: Free lab period for your group
 - * Project presentations will be held during last week, in class or lab section