
EC527: High Performance Programming with Multicore and GPUs -- Spring, 2022

Instructor: Martin Herbordt, PHO 333
 Office Hours: T3-5, W3-5, other days/times by appointment
 Phone: x3-9850 Email: herbordt@bu.edu Web page: http://learn.bu.edu
TFs: Sahan Bandara (GTF), Ben Li, Shaivya Gupta (UTFs)
 Lab TA Hours: -- TBD Emails: sahanb@bu.edu, liben002@bu.edu, sgupta89@bu.edu

Mission Statement: “Programming for performance using the capabilities of modern processors’’

Course Description (catalog): Considers theory and practice of hardware-aware programming. Key theme is
obtaining a significant fraction of a program’s potential performance through knowledge of the underlying
computing platform and how the platform interacts with programs. Studies architecture of, and programming
methods for, contemporary high-performance processors. These include complex processor cores, multicore
CPUs, and graphics processors (GPUs). Labs include use and evaluation of programming methods on these
processors through applications such as matrix algebra and the Fast Fourier Transform.

Prerequisites: Computer Organization (EC413 or equivalent), programming in C, and academic maturity
sufficient, e.g., (i) to learn new programming tools from professional documentation, (ii) to design basic
experiments, and (iii) perform simple data analysis, including using spreadsheets, plotting data, etc.

Course Motivation:
For several decades programmers found the von Neumann (vN) model to be an adequate worldview for
obtaining most of the potential performance from target systems. This model is familiar: instructions are
executed serially in a single stream and data are stored in a single image of memory. Instruction executions have
uniform performance, as do all memory accesses. Except for specialized processors--DSPs, Supercomputers,
MPPs--good vN programming plus a good compiler meant taking advantage of most of a computer’s capability.
 Current directions in processor architecture—complex memory hierarchies with many layers of cache,
superscalar and deeply pipelined CPUs, multicore, and accelerators such as AVX extensions and GPUs—have
made the vN approach to obtaining performance obsolete. For many applications performance is secondary;
but for applications requiring performance, a deeper level of machine understanding is required. The
programmer must be aware of the underlying hardware at all stages of software development from algorithm
selection and numerical analysis, through coding, to interaction with system tools such as compilers and
libraries, and finally debug, tuning, optimization, and maintenance.

Texts and Organization (supplemented with additional articles, lecture notes, and tutorials):
For complete (tentative) readings see “Readings” document.
Part 0 – Methods
• Timing and Timers – See Lab 0 documentation
• Performance Models – Patterson & Hennessy 5e, Chapter 6.1, 6.2, 6.10, 6.11
Part 1 – Single core
This part of the course is based on sections of courses taught at CMU and ETH.
• “How to Write Fast Code,” Markus Pueschel, Lecture Notes from CMU and ETH
• “How to Write Fast Numerical Code: A Small Introduction,” S. Chellappa, et al.; CMU Tech Report
• Computer Systems: A Programmer’s Perspective, Bryant & O’Hallaron, Chapter 5 and parts of Chapter 6
• H&P 4th Edition -- Appendix F: Vector processors
Part 2 – Multicore
This part is a condensed and applied version of material from EC713 Parallel Computer Architecture.

http://courseinfo.bu.edu/courses/10springengec500_a1
mailto:sahanb@bu.edu
mailto:liben002@bu.edu
mailto:sgupta89@bu.edu

• Computer Architecture (Chapter 4): Hennessy & Patterson 4e
• Parallel Computer Architecture (Chapter 5): D. Culler, et al.
• Parallel Programming (Chapters 2 and 3): D. Culler, et al.
• Threads Primer: A Guide to Multithreaded Programming (Chapters 2-5): Lewis & Berg
• OpenMP Lecture Notes: SCV at BU
Part 3 – GPUs
This part is based on a course taught at UIUC by Wen-mei Hwu.
• CUDA Reference Manual(s): NVIDIA
• Programming Massively Parallel Processors: Kirk & Hwu

Course Mechanics
• Style: The primary mission of this course is how to create high performance code. Another mission to be a

practicum associated with the computer organization and architecture curriculum. For both we explore
contemporary high-end processors in some depth and then practice using that knowledge to obtain high
resource utilization with real programs. The emphasis is therefore on programming, with lectures in support
of the labs. Lectures will also introduce appropriate theory when necessary, especially with respect to
performance evaluation.

• Grading: Exams: 35%
Programming/Homework Assignments: 40%
Final Project: 25%

Please note that these percentages are tentative. Also, that the impact of an assignment/exam grade on the
final grade depends on the variance in addition to the percentage.

• Weekly Programming Assignments: Until the beginning of the project there will be weekly assignments, 9
in all (0 - 8). All involve programming, mostly exploring small amounts of code in great depth. Some
assignments include pencil-and-paper problems in addition to programming.

• Lab Groups: Programming assignments have been designed to be done by single students. But by popular
demand, you may work in groups of at most two students.

• Late Policy: Assignments must be submitted on time, usually on Fridays at midnight. There is a 20% per day
penalty. You will get a total of 5 “free” late days to handle special (but common) occurrences such as illness
and interviews. Otherwise the only acceptable excuses will be “uncommon” events such as long term
disability or a family crisis.

• Academic (Dis)Honesty versus Collaboration: You are encouraged to work together to learn the material
and to discuss approaches to solving problems. However, you must come up with and write up the programs
and other solutions on your own, or, if you are working with another student, only from you and your partner.

• Exams: There will likely be two mid-term exams. One will be after the multicore part of the course, the
second towards the end of the semester. There may also be a final exam.

• Academic Conduct Code: Read the academic conduct code. Please note that the penalties are severe.
• Final Project: The purpose is to add depth and to practice the concepts learned in an extended case study.

Results will be written up conference paper style and presented to the class. For the project only, you may
work in teams of up to three students. Please note – the larger the group, the larger the expectations. Group
projects work the best when there are distinct parts done by the different group members.

Course Objectives
Review

• Computer architecture including memory hierarchy and basic pipelined CPUs.
Learn about

• Various contemporary high-end processors, in particular, recent CPU cores and memory hierarchy,
multicore cache, and GPUs

• Methods of performance evaluation
• Methods of hardware-aware code development
• How to program complex hardware to obtain high utilization

Gain experience with developing efficient programs, including
• using extended instruction sets (AVX) with implicit code and intrinsics
• synchronization
• methods of parallel programming, including PThreads and OpenMP
• cache-aware optimizations
• CUDA for GPU programming (and possibly OpenCL or OpenACC)

From the Course Requisition Form
Basic Goals
1. Students should learn enough about processor architecture and programming to write fast code (code with

high utilization of available resources) on contemporary processors.
2. The knowledge and experience should enable students to extend this capability to new processors and to

large and varied applications.

Detailed Goals
Students should have a good understanding of theory and practice of
1. Measuring and analyzing performance
2. Developing fast code using methods such as decomposition, mapping, load balancing, blocking, basic block

optimizations, and many others
3. Using advanced capabilities such as SIMD vector extensions and use of intrinsics
4. Parallel processing with small-scale (multicore) shared memory processors with both PTreads and OpenMP
5. Programming GPUs, including dealing with the standard inhibitors to getting good performance
Students should also develop a deeper understanding of one of the three technologies (CPU, multicore, GPU)
with an extended project. This will consist of examining a more complex numerical or data processing problem.

Course Outcomes
1. Sufficient knowledge of various processor architectures to be able to write high-performance programs
2. Basic knowledge of principles and practice of performance evaluation and writing high-performance

programs with the goal of applying this knowledge to other processors.
3. Ability to use AVX instructions set extensions
4. Ability to write parallel programs using PThreads and OpenMP
5. Ability to write GPU programs in CUDA
6. Ability to formulate and design programs at a high level accounting for a target architecture

	EC527: High Performance Programming with Multicore and GPUs -- Spring, 2022

