This is a syllabus discussing what we will cover in class. References [CRLS] identify sections for source material in the required text: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms (Third Edition), MIT press, 2009:

1. Fundamentals [CRLS] 1-4
 - Analysis of algorithms
 - Asymptotic notation
 - Recurrences
 - Average Case
 - Amortized analysis
 - Overview of C/C++ – Style vs Efficiency

2. Basic 1D data structures and algorithms [CRLS] 6-9
 - Searching and Sorting
 - Worst, best, average case analysis of algorithms
 - Stacks and queues

3. Basic Trees and Data Structures [CRLS] 12,13,14
 - Balanced search trees
 - AVL, Red–Black
 - Self–adjusting
 - Priority queues
 - Heaps, binomial heaps and Fibonacci heaps
 - Leftist heaps, tries, treaps

4. 2D Graphs and Networks [CRLS] 22,23,24,25
 - Representations
 - Traversals
 - Minimum spanning trees
 - Shortest paths – Max Flow
 - MinCost flow

5. Possible Advanced topics [CRLS] 28, 30,32,35
 - Fast Fourier Transforms
 - NP Completeness
 - Machine Learning
 - Quantum Computing