ENG ME 305 Mechanics of Materials

2008 - 2009 Catalog Data:

ENG ME 305 Mechanics of Materials Prereq: ENG EK 301. Introduction to stress and strain. Axial and shear loading. Torsion of shafts and thin-walled tubes. Bending of beams. Virtual work. Combined loadings. Stress and strain transformations. Column buckling. Includes lab and design project. 4 cr.

Class/Lab Schedule: 4 lecture hour per week, Four 2 hour labs per semester

Status in the Curriculum: Required

Textbook(s) and/or Other Required Material:

J.M. Gere, Mechanics of Materials, 7th edition, Brooks &Cole, 2009

Coordinator: Elise Morgan, Assistant Professor, Mechanical Engineering

Prerequisites by Topic:

- 1. Basic calculus and differential equations
- 2. Fundamentals of statics (equilibrium, FBD, moments, vector treatment of rigid bodies)

Goals:

This course introduces junior-level engineering students to the concepts of stress and strain with applications to design and analysis of structures. The goals include:

- 1. Development of problem solving ability with respect to modeling and analysis of simple structure subject to axial, torsional, and bending loads. This includes a clear understanding of the assumptions and methods, as well as the development of some physical intuition of realistic outcomes
- 2. Hands-on experience with testing and familiarity with standard test methods for the mechanical properties of a range of materials.

Course Learning Outcomes:

As an outcome of completing this course, students will:

- i. Understand the concepts of stress and strain. The students are taught linearized strain measures, Cauchy stress, principal directions, maximum stress and strain, and material failure theories. (A, E)
- ii. Learn material behaviors of classical engineering materials. Tension and other classical tests of metals and other materials. (A, E)
- iii. Be able to solve problems involving simple stress analysis. Lectures, homework and in-class quizzes and/or examinations give students practice in problem solving. (E)
- iv. Be able to carry out a long-term design project. (C, G, N)

- v. The design project requires the use of a computer program to determine the mechanical behavior of a flexible structure. (E, I, K, L)
- vi. Learn to conduct and interpret experiments in solid mechanics. Students perform several labs throughout the semester. These require lab reports and "pre-lab" assignments, which discuss the phenomena of interest and the design of the experiment. (B, E, G, N)

Course Learning Outcomes mapped to Program Outcomes:

(For Program Outcomes, please see attached page or Department Web Site)

Program:	Α	В	C	D	E	F	G	Н	I	J	K	L	M	N
Course:	i, ii	vi	iv	-	i-iii,		iv, vi	i, ii	\mathbf{v}	-	v, vi	iii,	v -	i, ii,
					v, vi									iii, iv
Emphasis:	5	3	3	1	5	1	3	2	2.	1	3	3	1	3

Topics (time spent in weeks):

- 1. Introduction to stress, strain, and material behavior (1.5)
- 2. Axial loads (1.5)
- 3. Torsion (1.5)
- 4. Shear and bending stresses in beams (2)
- 5. Beam deflection (1)
- 6. Buckling of columns (1)
- 7. 2 + 3-D states of stress. Mohr's circle, principal stresses, failure theories (3.5)
- 8. Review and tests (1.5)

Contribution of Course to Meeting the Professional Component:

Engineering Topics: 100%

Status of Continuous Improvement Review of this Course:

Date: May 8, 2008 **Reviewed by**: Structures-Dynamics Committee

Prepared by: Elise Morgan **Date**: February 5, 2009