EK 408 Introduction to Clean Energy Generation and Storage Technologies

Fall 2009

Course Syllabus

TEXT BOOK

Fundamentals of Renewable Energy Processes by Aldo V. DaRosa

SUPPLEMENTARY REFERENCE

Sustainable Energy by J. W. Tester, E. M. Drake, M. J. Driscoll, M. W. Golay and W. A. Peters Other reading materials will be handed out in class

CLASS SCHEDULE

Lecture: Classroom PHO 201, Tuesdays and Thursdays 12-2 PM

INSTRUCTOR	Prof. S. N. Basu (Tel.: 617-353-6728, e-mail: basu@bu.edu)
Office:	Room 204, 730 Commonwealth Ave. Office Hours: Friday 1.00 – 2.00 PM Other appointments must be scheduled in advance.

GRADING

Midterm	35 %
Final	35 %
Homework	15 %
Project	15 %

EXAMINATIONS

The course will have a midterm and a final, although the final will NOT be cumulative. Each examination will cover roughly half the course material.

HOMEWORKS

There will be 6 homework sets handed out. The homework solutions will be typically due a week from the date they are handed out. Collaborative discussion of the concepts and approach behind the homework questions is allowed; copying the answer from another student is strictly prohibited and will be grounds for disciplinary action.

PROJECT

The project will be undertaken by groups of two or three students. The deliverables will include an oral presentation in class (7 points) and a written report (8 points). The group should pick any current clean energy generation or storage technology and address the topics below. Groups with 2 students need only address the first two topics.

Topic 1: Overview of the technology chosen, and its advantages and challenges.

Topic 2: One major challenge limiting this technology and the current ongoing research to meet this challenge. The science and engineering principles should be clearly laid out. **Topic 3**: What is its current state of implementation and current and projected market

penetration of this technology? Who are the major players?

Class	Day	Month	Date	Year	Comments
1	Thursday	September	3	2009	
2	Tuesday		8	2009	
3	Thursday		10	2009	
4	Tuesday		15	2009	
5	Thursday		17	2009	
6	Tuesday		22	2009	
7	Thursday		24	2009	
8	Tuesday		29	2009	
9	Thursday	October	1	2009	
10	Tuesday		6	2009	
11	Thursday		8	2009	
-	Tuesday		13	2009	No class (Monday schedule)
12	Thursday		15	2009	
13	Tuesday		29	2009	
14	Thursday		22	2009	MIDTERM
15	Tuesday		27	2009	
16	Thursday		29	2009	
17	Tuesday	November	3	2009	
18	Thursday		5	2009	
19	Tuesday		10	2009	
20	Thursday		12	2009	
21	Tuesday		17	2009	
22	Thursday		19	2009	
23	Tuesday		24	2009	
-	Thursday		26	2009	No class (Thanksgiving break)
24	Tuesday	December	1	2009	
25	Thursday		3	2009	
26	Tuesday		8	2009	
27	Thursday		10	2009	Project Presentations
	?		?	2009	FINALS (University finals schedule)

LECTURE SCHEDULE

COURSE TOPICS

1. IntroductionEnergy resourcesEnergy utilizationEnvironmental impact	1 week
2. Fuels Fossil fuels Nuclear fuels Biomass	0.5 week
3. Introduction to thermodynamics Thermodynamics Kinetic theory of gases	1 week
4. Thermal Energy Conversion Mechanical heat engines and gas turbines Ocean thermal energy converters Alkali metal thermal electricity conversion Thermoelectricity Thermoionics	2 weeks
5. Energy from hydrogen Hydrogen generation technologies Fuel cells	2 weeks
6. Energy from the sun Solar radiation and solar collectors Photovoltaic converters	2 weeks
7. Nuclear Energy Fission and fusion reactors Fuel cycle	0.5 weeks
 8. Energy from wind and water Wind energy Hydroelectric power generation Ocean engines 	2 weeks
9. Energy storage Hydrogen storage technologies Batteries Other energy storage technologies	1.5 weeks
10. Team project report and presentation	0.5 weeks