1. Contact

Matthias F. Schneider

mfs@bu.edu

office hours: Mo: 12-3pm

2. web resources:

None yet

3.Prerequisites

Calculus

Basic Physics

4. Course schedule

Mon, Wed 10-12pm, Room COM 212

5. Textbook and any recommended/reference texts

a) De Gennes: Scaling Concepts in Polymer Physics

b) Nelson: Biological Physics

c) T. Heimburg: Thermal Biophyiscs of Membranes

d) Boal: Mechanics of the Cell

e) Collected papers of A. Einstein (1901 – 1915)

You Do Not need to buy any of these books! Try to check them out from the library or get in touch with me.

- 6. Course learning objectives
 - 1. Understand how to apply physics and engineering in biology
 - 2. Learn to discuss critically old and new theories
 - 3. Be able to extract and present a scientific concept from literature
- 7. Grading/assessment policies; how will final grade be assigned.

Presentations and Term papers (50/50)

8. Exam schedule

none

- 9. Homework policy weight; frequency; collaboration policy...
- 10. Lecture by lecture topics and excurses. (may vary)
 - 1. Introduction, the origin of biological physics
 - 2. Introduction to Thermodynamics
 - 3. Thermodynamics like Einstein
 - 4. Diffusion
 - 5. Polymer Physics I

- 6. Polymer Physic II
- 7. Elasticity of Biopolymers Worm Like Chain
- 8. Single Molecule under Force
- 9. Enzymes and Motors
- 10. The Cytoskeleton
- 11. Life at Low Reynolds Numbers: The Navier Stokes Equation
- 12. Microfluidics
- 13. Microswimmers
- 14. Polymers under Flow
- 15. Phase Transitions and Landau Theory
- 16. Membranes as 2D soft films
- 17. Phase transitions in Lipid membranes
- 18. Electrostatics of Membranes
- 19. Ion Channels
- 20. Nerve Pulse Propagation
- 21. Anesthesia
- 22. Elasticity of Membranes
- 23. Adhesion of Membranes and Cells

11. Schedule of lab exercises tba