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1 Introduction. Continuum description.

Elements of kinetic theory

Physics of gases and solids is well understood on a microscopic (molecular) level: given the interaction

potential U(ri − rj) between the particles , where rn defines position of nth particle, we, based on theory or

using powerful computers, can explain why at the low temperatures T → 0 the matter tends to a well-ordered

state (crystal), while in the opposite limit of high temperatures - everything has to be in a totally disordered

state which is called gas. For example, in the temperature interval T > 373o K, water is in a gaseous or

vapor state, while when 0 < T < 273oK, it is a crystal called ice. Only in a tiny temperature interval

273oK < T < 373oK, water is a life supporting liquid. The microscopic nature of a liquid state is not

completely understood: we do not have a quantitative theoretical explanation of what makes liquid water

flow. However, not understanding microscopic dynamics of the liquid state did not prevent development

of hydrodynamics or science of a fluid flow, based on a macroscopic or continuum level of description.

A gas or liquid can be characterized by the mean-free -path which is a typical distance λ it takes a small

perturbation (kick) of a fluid at at a point r = 0 to disappear or relax to zero. In the air at normal pressure

p = 1atm and T = 293K this length-scale is λ ≈ 10−5cm. This means that the volume element of linear

dimension ≈ 2λ contains approximately 8nλ3 ≈ 105 particles. This number is large enough to conclude that

if we take a set of such fluid elements, the mean deviation of number of particles within each element from

the estimated nv ≈ 105, will be smaller that 1%.

Traditionally, one is interested in a fluid flow varying on a length-scale L >> λ , for example if L � 1µm

the volume of linear dimension λ ≈ 10−5cm, called fluid element can be approximately treated as a

mathematical point. Indeed, in this flow no characteristics can vary on such a small scale. We must remember

that the fluid element, though very small, must contain a large (macroscopic, nv � 1) number of particles

and pay attention to, for example the gas density. While at the normal conditions the mean -free -path in

the air λ ≈ 10−5cm, in a low-pressure (rarified ) gas say p ≈ 0.1− 0.01atm λ ≈ 10−4− 10−3cm and the fluid

element must be defined accordingly. In these cases, a flow varying on a length- scale L ≤ 10−4 − 10−3cm

cannot be described using approximation of continuum mechanics.

The goal of continuum mechanics is to describe macroscopic fluid flow not dealing with the detailed

properties of microscopic (atomic or molecular) features. The number of fluid particle is so huge that a

detailed accounting for their configurations in both time and space is simply impossible. Thus, continuum

mechanics is valid only for description of relatively large and slowly varying in time volumes of fluids. The

physical condition of applicability of continuum description can be understood easily. If a flow velocity U is

time-dependent, then time-scale characterizing temporal variations is T ≈ L
U . The microscopic state can be

irrelevant only if in the time interval T any molecule in the fluid volume element λ3 � L3 undergo a huge

number of collisions, so that the state, the liquid had at at the beginning of the time interval T , is totally
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mixed or forgotten. The microscopic relaxation time in a gas of particles of mass m is τm ≈ λ/cs where

cs ≈
√

kBT
m is called speed of sound which is approximately equal to the typical (mean) velocity of a gas

atom (molecule). Thus, the limit of validity of continnum mechanics is

τm
T

=
λU

csL
= Kn Ma� 1

where Ma = U/cs and Kn = λ/L are called the Mach and Knudsen numbers, respectively.

It follows from this relation that the micro-flows where λ ≈ L or the so called rheological flows like solutions

of polymers, blood flows in small blood vessels cannot be described in terms of continuum mechanics.

Forces and stresses. Let us define the stress τ as a force per unit area of a surface. If a solid cube of a

volume V = L3 is subjected to the normal force Fn, it develops the deformation δL such that the elastic

force κδL = F exactly compensates the applied external force. This condition also defines the magnitude

of the displacement δL. The normal stress τn = p = Fn/S where S = L2 and parameter p is also called

pressure.

Figure 1: Solids. Response to applied forces.

Similar effect happens when the shear force Fs , which is tangential to the surface and normal to n, is

applied : the shear leads to the body deformations and generation of the deformation-resisting force, which

eventually compensates the action of the shear force. The value of the deformation is determined from the

force balance. In this case the shear stress τs = Fs/S.

Figure 2: Liquid state. Response to applied shear forces.
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In the fluids, the situation is dramatically different: even infinitesimal shear force leads to the shear defor-

mation of the fluid element which is never compensated and, eventually, the element becomes thinner and

longer until it forms a mathematical surface.

Problem. Two identical trains of mass M travel along parallel tracks with velocities U > V . At the instant

of time t = 0 the trains exchange two identical bodies of mass m thrown with velocities v perpendicular to

the rails. Find the forces acting on the trains if the time the bodies loose their momenta is to..

Solution. The change of the momentum projection on a direction of the train motion is δP± = ±m(U − V ).

Thus, in accord with the Newton law, the forces are F± = δP±
to

= ±m(U−V )
to

. we see that as a result of the

exchange the speed of the faster train tends to decrease while that of the slower one - to increase. The force

is zero if V = U .

To understand the nature of the shear force in fluids, consider two layers of unit area separated by the

distance λ moving in a gas relative to each other with velocity δu. Due to the thermal motion, the fluid

molecules moving with the layers exchange their positions, i.e. the molecule from a faster layer jumps onto

the slower one and vice versa. As a result, the momentum change per one exchange is mδu. The number

of exchanges per second is is equal to the number of particles crossing the unit surface area per second: vtn

where vt and n are thermal velocity and number density n = N/V , respectively. Thus according to Newton’s

law, the force acting on the fluid element of a unit area (stress) is estimated as:

τs = nmvtδu = nmvtλ
δu

λ
= nmvtλ

∂u

∂y
≡ µ∂u

∂y
(1.1)

where the dynamic viscosity µ ≈ nmvtλ ≈ ρ
√

2kBT3m and ρ = nm stand for the density of the fluid. Deriving

the expression (1.1), we used the fact that in continuum mechanics, the microscopic length-scale λ is treated

as zero and δu
λ ≡ limd→0

u(y+d)−u(y)
d = ∂u

∂d . We can also define a very useful for the future kinematic viscosity

ν = µ/ρ (1.2)

and ν ≈ vtλ. The relation (1.1) for the shear stress was derived for the case of small velocity gradients,

i.e. when the velocity difference between the layers can be represented as u(y + λ) − u(y) ≈ ∂u(y)
∂y λ. When

the gradients are large, we cannot limit ourselves by the first term in expansion (1.1) and must take into

account the high-order velocity derivatives. The fluids where the estimate (1.1) is reasonably accurate are

called Newtonian as opposed to the non-Newtonian ones which will be considered in this course.

Now, let us consider a gas particles colliding with a solid wall of the area ds. We assume a perfectly elastic

collisions, so that the particle momentum change per collision is δM1 = 2mv where v is the normal to

the wall component of the particle velocity . In time dt only the molecules from the volume vdt ds can
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reach the wall. The number of these particles is then 1
6nv dt ds where the factor 1/6 takes into account

that only the particles moving toward the wall can collide. The momentum change per unit time is thus:

dM ≈ 1
3nmv

2 dt ds ≡ nkBTds dt. The force acting on the surface element ds is: dn = nkBT ds and the

normal stress (pressure) is:

P =
dF

ds
= nkBT = ρ

kB
m
T = ρ RT

We would like to stress that while the Boltzmann constant kB is a universal constant, the gas constant R,

depending on the molecular weight of the gas molecules, is not.

Since viscosity µ ∝
√
T and if pressure P ≈ const, then ρ ∝ 1/T and kinematic viscosity of a gas :

ν ∝ T 3
2 (1.3)

Viscosity of air is well approximated by an empirical relation valid in a wide range of temperature variation:

µ =
AT

3
2

T + S
(1.4)

where A = 1.46·10−6 kg

m·sec·K
1
2

. This formula is often referred to as Sutherland’s Law. The absolute (Kelvin’s)

scale of temperature will be used everywhere in these notes.
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2 Elements of kinematics.

Consider a particle (material point) of zero linear dimension at a point in space r = xi + yj + zk at time t.

Velocity of the particle is :

u =
dr
dt

= lim
τ→0

r(t+ τ)− r(t)
τ

(2.1)

and its acceleration

a =
du
dt

= lim
τ→0

u(t+ τ)− u(t)
τ

(2.2)

According to Newton’s law, the force acting on a particle:

F = ma (2.3)

where the scalar coefficient m is called the particle mass. This differential equation, which is to be solved

subject to initial conditions r(t0) = r0 and u(t0) = u0, describes the entire time evolution of a particle. The

force F can originate from the interaction between the particles, external fields, like gravity or electromagnetic

field etc.

On the simplest level of description , we can treat atoms or molecules of a fluid interacting with each other

via the pair potential U(ri − rj) and as a result , the force acting on a particle number i is:

Fi = −
∑
j

∂U(|ri − rj|)
∂rj

(2.4)

It is in principle possible to describe a flow by following time evolution of velocities and positions of each

particle. If the fluid consists of, say 1019 particles in a cubic centimeter, this is impractical.

Often, it is much easier to measure the fluid properties at a fixed point r. We define a fluid element of a

volume λ3 occupying vicinity of a point r and containing large number of particles N . If λ � L where L

is a scale of the macroscopic flow velocity variation, then we can forget about the particles contained in

this element and treat it as a mathematical point. Moreover, if N � 1, the fluctuations of the O(1/
√
N)

number of particles in the element can also be neglected. This way we can introduce such mean properties

of a fluid as number density n = N/V , density ρ = mn, momentum ρu, kinetic energy density ρ u2/2 For

computations, it is more useful to introduce the local definitions. If, for example the number of particle in

a fluid element N(r) depends on the element position, then the number density is:

n =
∂N(r)
∂V

≡ ∂3N(r)
∂x∂y∂z
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Let at a time t the velocity of a fluid element at a point r be u(r(t)). At an instant of time t+ τ , the fluid

element moves with a flow to a new position r(t+ τ), while another one arrives in a point r from a position

r(t− τ). Thus, the acceleration measured at a point r is:

a = lim
τ→0

u(r(t), t)− u(r(t− τ), t− τ)
τ

(2.5)

Velocity is an analytic function, so we can use the Taylor expansion:

f(x+ ∆) ≈ f(x) +
f(x)
dx

+
1
2
d2f(x)
dx2

+ ...

Thus in the limit τ → 0:

r(t− τ) ≈ r(t)− (
dx

dt
i +

dy

dt
j +

dz

dt
k)τ = r(t)− (uxi + ujj + uzk)τ

and

u(r(t− τ), t− τ) = u(r(t), t)− ∂u(r(t), t)
∂t

τ − ∂u(r(t), t)
∂r

· ∂r
∂t
τ (2.6)

Substituting (2.6) into (2.5) gives

a =
du
dt

=
∂u
∂t

+ u · ∇u =
∂u
∂t

+ (ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z
)u (2.7)

We see that the acceleration consists of two contributions: the temporal one (∂u∂t ) is due to the explicit

time-dependence of the velocity field caused by the time variation of boundary conditions , external forces

etc and the second one - due to the spatial dependence of the velocity vector u. It is clear that even in a

time-independent flow, the acceleration and the force acting on a fluid element is not necessarily zero.

Problem. Consider a one-dimensional flow with velocity :

u =
x

t
i

Find: a. Convective, unsteady and total acceleration.

b. Repeat the calculation for u− = −x/t.

Solution.

Unsteady: at = ∂u
∂t = − x

t2 i.

Convective: ac = ux
∂u
∂x = x

t
1
t i = x

t2

Total a = at + ac = 0.

Problem: Find acceleration if u = U
H (xi + yj− 2zk).

Problem; For the same velocity field, find position r of a Lagrangian particle and its trajectory. At initial

instant t = t0, x = x0, y = y0. Solution:
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dr
dt

=
x

t
i;

dx

x
=
dt

t
;

dy

dt
= 0

ln
x

x0
= ln

t

t0
; x = x0

t

t0
= ux(t0); y = y0 = const

Trajectory: y(x) = y0 = const
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2.1 Fluxes.

The flux or current of any property Ψ across an infinitesimal surface element ds ≡ nds

dJψ = ψu · ds = ψu · nds (2.8)

where n is a unit vector normal to the surface element, and ds is its area. The quantity ψ = dΨ
dV = dΨ

dxdydz

is the density of Ψ. It is clear from this definition that flux or current is equal to amount of Ψ crossing the

surface are ds per unit time. Thus:

dJm ≡ dṁ = ρu · nds (2.9)

dJp = ρuu · nds (2.10)

dJK = ρ
u2

2
u · nds (2.11)

dJe = enu · nds (2.12)

are the mass, momentum , kinetic energy and electric currents (fluxes) respectively.

Problem. A V = 1m3 aquarium is being filled with water by a circular pipe of diameter 20cm. Find: the

mean velocity of water in this pipe if this job takes one hour .

Problem. Consider a flow near stagnation point for which velocity is:

u = Axi−Ayj

where A = const > 0. Calculate the mass and momentum fluxes across the planes I and II (See figure).

Figure 3: Stagnation point flow.

Solution. On plane 1, n1 = −j, thus
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u · n = (Axi−Ayj) · (−j) = Ay

Denoting the width of the planes W (into the page), the mass flux:

ṁ =
∫
S

ρu · n1dS = W

∫ h

0

ρ(Ay)y=hdx = ρWAh2

The momentum flux across the plane I:

Ṁ =
∫
S

ρu(u · n1)dS = ρWAh3(
i
2
− j)

Calculate a. fluxes across the plane 2.

Problem. The flow in an infinite channel of the width 2H and span W is given by the relation u =

U(1− ( yH )2)i. Find mass and momentum fluxes width.

Solution. The vector normal to the crossection is i.

ṁ =
∫
S

dsρ(u · i) = UWρ

∫ H

−H
(1− (

y

H
)2)dy =

4
3
ρUH ≡ uS

This relation defines the mean velocity

u =
1
S

∫
S

udS

Momentum flux:

Ṁ =
∫
dsρu(u · i) =

16
15
ρU2Hi

Mass flux can also be defined in terms of the so called mean velocity: ṁ = ρuS where S is the area of the

crossection. Comparing this definition with the result obtained above, we get u = 2
3U .

Problem. Consider a flow in a pipe of a radius R. The velocity distribution is U = umax(1− r2

R2 ). calculate

mean velocity and mean momentum flux and compare the results with the ones in a channel flow.
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2.2 Streamlines and pathlines.

Eulerian description of a flow operates with velocity field u(r, t), providing us with information on the

instantaneous magnitudes and directions of velocity vectors of all fluid elements (particles) of a flowing fluid.

Let us define a line, which at each point (r,t) in space and time is tangent to velocity vector u. These lines

are indispensable in analysis and visualization of flow patterns. Choosing small time interval dt, so that

during this time the velocity field does not vary, we have for the element dl along stream line:

dl = dxi + dyj + dzk = (uxi + uyj + uzk)dt

This relation defines three equations for components of the vector dl: dxi = uidt (i=1;2;3). Eliminating the

time leads to three (in a three-dimensional flow) equations for the streamline:

dt =
dx

ux
=
dy

uy
=
dz

uz
(2.13)

Often, one is needs information on coordinates of a particular fluid particle. This is important if we are

interested in motion of a particular object (contaminant, chemical reactants etc). The particle coordinates

are defined by three differential equations:

ui = ∂txi (2.14)

which must be solved subject to initial conditions: xi = x0
i . Solution to these equations xi = xi(x, y, z, t)

define the so called pathlines which are tangential to the fluid particle velocity vector at a point (x, y, z),

provided initially this particle was at xi = x0
i . We shall see that in the steady ( time independent flow) the

pathlines and streamlines are identical. However, in time-dependent flow this is not so.

Problem: The velocity field is u = Axi−Ayj.

Plot: a. streamlines; b. pathlines; c. find coordinates of a fluid particle wihch at the time t = 0 was at the

point x =x 0; y = y0;

Solution. a. The equation for the streamline is:

dy

dx
=
v

u
= −y

x

or dy
y = −dxx . Integrating this equation gives: ln y = −ln x + C with the solution xy = C1 = eC . The

streamlines are plotted bellow.
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Figure 4: Streamlines for stagnation point flow. C1 = 1.

b. Equations for the particle coordinates: ∂x
∂t = u = Ax and ∂y

∂t = −Ay. The solutions are: y = y0e
−At; x =

x0e
At. Excluding time we have xy − x0y0. We see in this case streamlines and pathlines are the same.

Problem. Consider an unsteady velocity field u = Ui + U sinωtj . calculate and plot streamlines and

pathlines.

Streamlines are one of the most useful tools for the flow visualization, which is essential in a

design process. On an example shown on a Figure one can identify such delicate features of a

flow as shedded vortices behind a car and vortices on a hood and roof strongly contributing to

the drag and lift. The vortices shedded from a mirror are the source of noise. The information

about flow structure is crucial for design of aerodynamically efficient, elegant and economics

vehicles. Experimentally, the streamlines can be observed by adding tiny particles into the air

flow in the wind tunnel combined with modern optical methods of the particle detection. The

surface streamline are found by covering the body (car) surface by a thin film by ”dipping” an

entire car in a pool filled with oil. In this case, the particle in a flow scratch the film leaving

the traces which are very close to the streamlines.

One of the most important processes in fluid mechanics is vortex formation which can be

studied, for example, on a well-controlled flow past backward facing step, which is a flow

in a channel with sudden expansion. Here the streamlines enable one to follow the vortex

generation, study its properties and use the information for scientific research and engineering

design.

The vortex dynamics in the wake of a moving body is a complex time-dependent process. Two

images of the Figure below demonstrate the streamlines at two different instants of time. We

see the vortex formed on a top image separates from a body (shedding), while another one is

generated on a ”top corner” of a cylinder.(lower image). The shedded vortices form a chain

called Karman street.
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Figure 5: Numerically simulated streamlines in a flow past a car. Courtesy of EXA Corporation.

Figure 6: Numerically simulated streamlines in a flow past backward facing step.

2.3 Vorticity.

One of the most important characteristics of a fluid flow is vorticity ω defined as:

ω = ∇× u ≡ curlu =

∣∣∣∣∣∣∣∣∣
i j k

∂x∂y∂z

uxuyuz

∣∣∣∣∣∣∣∣∣ = (∂yw − ∂zv)i− (∂xw − ∂zu)j + (∂xv − ∂yu)k

Two-dimensional (2D) flow is defined on a plane, say (x, y), by the velocity vector u = uxi(x, y)+uy(x, y)j ≡

ui + vj. In this case the vorticity vector

ω = (∂xv(x, y)− ∂yu(x, y))k

which is perpendicular to (x, y)-plane is often called pseudo-scalar. In this case The importance of this

property can be best illustrated by the fact that if the velocity field is such that ω = 0, this field cannot

have closed streamlines. This statement is proved readily: consider the velocity circulation round a closed

contour:
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Figure 7: Left:Tme dependent vortex generation and shedding in the flow behind the cylinder. Experimental

visualization of Karman street in a flow past behind cylinder.

Γ =
∮

u · dl =
∫
s

∇× uds =
∫
s

ω · ds =
∫
ω · nds (2.15)

where s is the area limited by the contour. Let us assume that there exist at least one closed streamline.

Then choosing the integration contour along this streamline and taking into account that, since velocity

vector is tangential to the streamline at any point and u · dl > 0 (or < 0), we conclude that Γ 6= 0. This

result contradicts the condition ω = 0.

Now, imagine a get of fuel issued into the non-moving oxygen enviroment. It is clear that the fuel-oxygen

interface is a streamline. If it never forms a closed line, the mixing of the fuel with oxygen can happen

exclusively due to very slow diffusion process across the interface. In case on a non-zero vorticity, the

closed streamlines are rapidly generated on the interface, enabling rapid transport of the oxidizer across the

interface. This process is absolutely necessary for efficient combustion and other chemical reactions.

The flow with ω = 0 is called irrotational and the one with ω 6= 0 - rotational.

Problem. Calculate vorticity of a flow rotating with angular velocity Ω = Ωk = const

Solution. In this case velocity is: u = Ω× r = Ω(−yi + xj) and ω = (∂xv − ∂yu)k = 2Ωk = 2Ω.

In cylindrical polar coordinates (r, θ, z): x = r cos θ; y = r sin θ; z where the unit vectors are defined

as: er = i cos θ + j sin θ and eθ = −i sin θ + j cos θ:

∇× u = ω = er(
1
r

∂w

∂θ
− ∂uθ

∂z
) + eθ(

∂ur
∂z
− ∂w

∂r
) + k(

1
r

∂

∂r
(ruθ)−

1
r

∂ur
∂θ

) ≡ ωrer + ωθeθ + ωzk
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It follows from this expression that for a potential vortex defined by velocity field u = Γ
2πreθ, the vorticity

ω = 0. Indeed, in this case ur = uz = 0 and ω = k 1
r
∂
∂r (ruθ) = 0.
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3 Mass Conservation. Continuity Equation.

Let us consider a fluid volume V inside a closed surface S. Adopting a convention we choose the direction

of the unit vector n out of the volume.

The mass within this volume is

M =
∫
V

ρ(r)dV (3.1)

If no sources and sinks are contained inside the surface, the mass variation in unit time is equal to the flux

through the surface S:

∂M

∂t
=
∫
V

dV
∂ρ

∂t
= −

∮
S

ρu · ds (3.2)

In accord with the divergence theorem the integral over an arbitrary closed surface:

∮
S

B · ds =
∫
V

div BdV ≡
∫
V

dV∇ ·B (3.3)

where B is a vector. Using this result, we have:

∫
V

dV [
∂ρ

∂t
+ div ρu] = 0 (3.4)

This integral is equal to zero independently of a particular choice of the volume V . This can happen only if

the integrand in (3.4) is equal to zero. This leads to a continuity equation:

dρ

dt
≡ ∂ρ

∂t
+ div ρu = 0 (3.5)

which is one of the basic equations of theoretical physics. The importance of (3.5) becomes clear since the

derivation presented above can be literally repeated for any conserved scalar space-time -dependent property

of a physical system. As a result, the continuity equation is one of the most general and important equations

of physics.

In incompressible flows, where the density ρ = const, this equation gives the incompressibility condition:

∇u ≡ divu = ∂xu+ ∂yv + ∂zw = 0
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Problems. Consider a two-dimensional velocity field: u = Axyi + v(x, y)j with A = const. If the flow is

irrotational (ω = 0) and incompressible, find the y -component v.

Solution.

1. Incompressibility: ∂xu+ ∂yv = Ay + ∂yv = 0;

2. Irrotational: ω = ∂xv − ∂yu = ∂xv −Ax = 0;

This gives: v = −Ay
2

2 + f1(x) = Ax2

2 + f2(y). It follows from the second equation that ∂yv = ∂yf2 = −Ay.

Thus, f2(y) = −Ay
2

2 + const. The y component of the velocity field is thus v = A
2 (x2 − y2) + const.
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4 Navier- Stokes Equation. Qualitative Derivation.

Now, we again choose a volume V inside a closed surface S and using Newton’s law, evaluate the force acting

on a fluid element of mass ρdV is equal to momentum chance per unit time:

dF =
d

dt
(dV ρu)

and, using the expression (2.7) for a = du
dt , the total force acting on a volume V :

F =
∫
V

dV
d

dt
ρu =

∫
V

dV [u
dρ

dt
+ ρ(

∂u
∂t

+ u · ∇u)] (4.6)

This force is a sum of all forces acting on a fluid element at point r and time t. We will subdivide the forces

in a few groups. 1. The surface forces FS from the surrounding fluid acting on a chosen volume through the

interface. We define them in terms of pressure field p(r):

FS = −
∮
s

p(x, y, z)nds (4.7)

Body forces due to acceleration of the frame of reference, gravity, electromagnetic fields etc:

Fb =
∫
V

dV ρg (4.8)

The last force which we would like to introduce here in a qualitative way is the viscous force, defined in terms

of the viscous stress in the introduction.

Fvisc =
∮
s

µ∇ : uds (4.9)

where ∇ : u is the vector directed opposite to u and the derivative is taken in the direction perpendicular

to u. Summing up (4.6)-(4.9) and using the divergence theorem we have:

0 =
∫
V

dV
d

dt
ρu =

∫
V

dV [u
dρ

dt
+ ρ(

∂u
∂t

+ u · ∇u) +∇p− µ∇2u] (4.10)

By continuity equation (3.5) dρ
dt = 0, which gives:∫

V

dV [
∂u
∂t

+ u · ∇u +
1
ρ
∇p− ν∇2u] = 0

The force balance is independent upon our choice of the volume V , only if:

∂u
∂t

+ u · ∇u =
1
ρ
∇p+ ν∇2u (4.11)

which together with the continuity equation

∂ρ

∂t
+∇ρu = 0 (4.12)
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form the set of the Navier-Stokes equations, governing a vast variety of hydrodynamic phenomena. In the

steady flow, where ρu = U(x, y, z), the equation (4.12) gives:

∇ · ρu ≡ ∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (4.13)

In the incompressible flow (ρ = const), ∇ · u = 0.

4.1 Boundary conditions.

The Navier-Stokes equations are to be solved subject to boundary conditions which, being constraints im-

posed on fluid mechanics, must often be obtained from microscopic considerations. Typically, interested in

a flow over a body, the inlet and outlet boundary conditions are readily defined as a given velocity field of

a free flow far from a body. Much more interesting and involved is the problem of boundary conditions at

various interfaces. If we define a solid body as a surface , the fluid cannot penetrate, the zero flux boundary

condition is reduced to a constraint on a velocity component un normal to the solid wall:

un = 0 (4.14)

A more difficult condition is that on a tangential to the solid surface component of velocity field. Let

us consider a process of a fluid interaction with a wall. As a result of collision, a microscopic particle

(atom/molecule) is adsorbed by a solid, gives away part of its momentum and energy, rapidly coming to

thermal equilibrium with it . It means that a particle ”forgets” all information about its state prior to

the collision and its kinetic energy becomes equal to K ≈ 3
2kBT . After some time τ , which depends upon

the nature of the atom-wall interaction, the particle is randomly emitted back into the flow with a typical

velocity u ≈
√
kBT/m. Since the direction of the particle velocity vector is random and the number of

particles in a close proximity to the wall N >> 1, the velocity vectors of different particles belonging to a

fluid element sum up to a close-to-zero number, defining the so called no-slip boundary condition on a solid

surface:

uss ≡ ut = 0 (4.15)

If the fluid number density n is small, so that the number of particles in the volume V ≈ λ3 is not too large,

then the no slip condition is violated leading to generation of the slip velocity on a solid wall. Similar effects

happen when the velocity of the flow is very large, so that the particles bounce from a wall so rapidly that

the thermodynamic equilibrium is not established. The slip velocity is also often formed in biological flows

and flows of polymer fluids or solutions, where the relaxation time of achieving the equilibrium is very long

and the particle is emitted back to the flow before reaching thermodynamic equilibrium with the solid..
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On a force - free surface (for example interface of water with the air ) the viscous forces are so weak that

can be neglected. This leads to the the following boundary condition:

∂u

∂n
= 0 (4.16)

where the derivative is taken in the direction normal to the interface.

To demonstrate the importance of boundary conditions we consider two flows governed by the equations:

∂u

∂t
= g + ν

∂2u

∂y2
(4.17)

with two different boundary conditions: a. u(±H) = 0 and b. u(−H) = 0; ∂u
∂y |y=H = 0, respectively. The

velocity distributions, corresponding to these equations are:

u(y) =
gH2

2ν
(1− (

y

H
)2)

and

u(y) =
gHy

ν
(− y

2H
+ 1) +

3gH2

2ν

Compare mass and momentum fluxes in these flows.

To conclude this section we would like to mention that the no-slip boundary condition implies vorticity

formation on a solid boundary. Indeed, locally choosing the x axis parallel to the wall, we have at y = 0 the

velocity u(0) = 0 and u 6= 0 outside. As a result, ωz = ∂u
∂y 6= 0.

5 Ideal flow.

According to the argument presented above, at a solid boundary u = 0. Let us consider a flow over a body

See Fig. 1.

Figure 8: Flow past cylinder of dimensionless radius R = 1. Incoming (free-stream velocity U = U i).
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Far from the boundaries, where the velocity difference between the points separated by the distance L ≈ R

is ≈ U, the spatial derivative can be estimated as ∂u
∂y ≈ U/L. As a result, the terms in the equation (4.11)

(see (5.1)) can be estimated as:

U

T
+
U2

L
≈ U2

L
+ ν

U

L2
(5.1)

The typical time of the flow variation is of course O(L/U). We find that the viscous term in (5.1) is small

when the Reynolds number

Re =
UL

ν
>> 1 (5.2)

In the vicinity of the wall, where u = 0, the local value of the Reynolds number is small and the relation

(5.2) cannot be correct. We can ask the following question: how close to the wall the inviscid (ν = 0)

approximation breaks down? To answer this question, we can use the Taylor expansion near the wall and

write a simple expression for the velocity component parallel to the wall:

u(y) ≈ u(0) +
∂u(0)
∂y

y =
∂u(0)
∂y

y = S1,2(0)y

With y ≈ L, one can introduce a local Reynolds number Rey = Sx,y(0)y×y
ν and define the viscous (boundary

layer) Rey ≤ 1. Thus, if the normal distance to the solid surface

y ≤
√

ν

|∂u∂y |wall
(5.3)

the flow are dominated by the viscous effects. The wall rate of strain Sx,y(0) must be found as a solution

to the Navier-Stokes equations subject to boundary conditions and initial conditions. For example in a flow

between parallel plates, separated by the gap 2H, considered above, the velocity derivative at the wall is:

|∂u
∂y
|wall =

g

νH

This general relation can be obtained by integrating (4.17) in the interval 0 ≤ y ≤ H taking into account

that at the centerline of a channel (y = 0) the derivative ∂yu(0) = 0. Substituting this into (5.3) gives:

y ≤ ν

√
H

g
(5.4)

This relation tells us that as ν → 0, the width of the ”sublayer” dominated by the viscous effects tends to

zero. We will see below that despite this extremely important fact, even in this limit the sublayer plays a

crucial part in a flow and viscosity cannot be neglected.

Problem. Introducing a characteristic velocity U = const and the length-scale L, write the Navier-Stokes

equations for the dimensionless velocity V = u/U in dimensionless coordinates X = r/L. ( For example, to
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describe a flow over a body (car, plane..) , it is convenient to take U as a speed of a body and the typical

linear dimension of a body as L.

Solution. The equation for V is:

∂τV + V∇X ·V = −∇XP +
1
Re
∇2
XV

Here τ = tU/L, P = p
ρU2
2

and ∇X = x
L i + y

L j + z
Lk are dimensionless variables. The Reynolds number is

defined as: Re = UL/ν. This equation tells us that the similar geometry flows of various fluids differ by

the Reynolds number only. This is important from the engineering view-point: we can use the small-scale

models in the low viscosity fluids to understand the flow physics of the large- scale scale, provided the Re is

kept unchanged. This statement is called law of similarity and is summarized as u = Uf( rL , Re).

6 Euler Equation.

When the Reynolds number is large enough and far from solid walls, the viscous terms in (5.1) can be

neglected and the dynamics are approximately described by the Euler equation:

∂u
∂t

+ u · ∇u = −1
ρ
∇p (6.5)

Using the vector identity:

1
2
∇u2 = u×∇× u + (u · ∇)u (6.6)

the Euler equation can be rewritten as:

∂u
∂t

+
1
2
∇u2 − u×∇× u = −1

ρ
∇p (6.7)

If the motion is isentropic (entropy s=const), then the well-known thermodynamic equality for the heat

function per unit mass of fluid (enthalpy) w :

dw = Tds+ V dp = V dp =
dp

ρ
(6.8)

where V = 1/ρ is the specific volume, gives:

∂u
∂t

+
1
2
∇u2 − u×∇× u = −∇w (6.9)

The Euler equation (6.4) for a fluid in a gravity field reads:

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ g (6.10)

22



The equation of motions for rotating fluid can be written in a non-moving frame of reference with the

boundary conditions including the rotational component to the velocity field. In a rotating frame of reference,

this can be avoided. In this case though, the fluid is under the action of the centrifugal acceletaion a = −Ω×u

where Ω is a rotation rate. The Euler equation in this case is:

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ g − Ω× u (6.11)

To conclude this section, let us derive the equation for vorticity. Taking curl of equation (6.6), gives:

∂ω

∂t
+ u · ∇ω = ω · ∇u

Problem. Consider an unsteady flow in an incompressible fluid in the gravity field g. The velocity vector

is: u = U i + U cos[k(x − Ut)k and g = −gk, where U , k and g are constants. Find pressure p(x, y, z)

distribution in the flow. Solution.. The Euler equation in this case is:

∂u
∂t

+ u · ∇u = −1
ρ
∇p− gk

1. ∂tu = U2k sin[k(x− Ut)]k.

2. u · ∇u = (u∂x + v∂y + w∂z)u = −U2k sin[k(x− Ut)]k + 0 + 0

Substituting this into the Euler equation gives:

3. −∇p/ρ− g = 0.

The pressure distribution is thus: p = −ρgz+ f(t) where f(t) is the function to be found from the boundary

conditions.

6.1 Hydrostatics.

Ther hydrostatics u = 0 condition following the Euler equation is:

∇p = ρg (6.12)

This equation is to be solved subject to boundary conditions on a pressure field p(r). If g = 0, the pressure

field is: p = const. If density ρ = const, we, choosing the gravity field anti-parallel to the z-axis (k · g < 0),

write the equation:

∂p

∂x
=
∂p

∂y
= 0;

∂p

∂z
= −ρg (6.13)

with the solution

p = −ρgz + const (6.14)
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Let us consider a fluid at rest with a surface height denoted by h, to which a constant pressure p0 is applied.

The example is a pond under the normal atmospheric pressure. This condition is sufficient to find a constant

in the solution (6.13). Indeed, on a surface we have we have :

p0 = −ρgh+ const; h = (−p0 + const)/(ρg) (6.15)

and

p = p0 + ρg(h− z) (6.16)

We see that for an arbitrary bottom topology the surface is a horizontal plane h = z.

Problem. Find the shape of water layer surface (an aquarium) moving with acceleration a = ai. Initial

height of the layer when a = 0 is H. The fluid is incompressible. Solution. Placing the origin at x = 0; y = 0,

the Euler equation is:

∂u
∂t

+ u · ∇u = −1
ρ
∇p+ g − a (6.17)

The hydrostatic condition means :

∇p = −ρ(g + a);
∂p

∂y
= 0;

∂p

∂z
= −ρg;

∂p

∂x
= −ρ a; (6.18)

Solution to these equations is:

p = f(x, z); p = −ρgz + f1(y, x); p = −ρax+ f2(y, z) (6.19)

where the integration functions are yet to be found. Differentiating (6.18) gives:

∂f1(x, y)
∂x

= −ρa; f1(x, y) = −ρax+ ϕ(y); p = −ρgz − ρax+ ϕ(y) (6.20)

Substituting the expression for f1(x, y) with the integration function ϕ(y) derived above, into (6.18) and

differentiating over y gives ∂yϕ(y) = 0 and ϕ(y) = const. Thus,

p = −ρgz − ρax+ const (6.21)

Now we have to use the boundary condition on a surface z = h(x): p(h(x)) = p0. This gives:

h(x) = − p0

ρg
− a

g
x+ const (6.22)

The value of the constant is found from the mass conservation: the mass of an accelerating fluid layer is the

same as the mass of the layer of the hight h(x) = H with a = 0. Substituting a = 0 and h(x) = H = const

into (6.21) we derive the value of the integration constant and the final expression for the layer surface:
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h(x) = H − a

g
x (6.23)

Problem. Find the shape of a surface of an incompressible fluid in a gravitational field, rotating around

vertical axis (z-axis) with constant angular velocity Ω.

Solution. The velocity in this case is: u = Ω × r, so that u = −Ωy and v = Ωx. The flow is steady

incompressible. Substituting this into the Euler equation we have:

(u∂x + v∂y)(−iΩy + jΩx) = −∇p/ρ+ g

or

−Ω2yj− Ω2xi = −∇p/ρ+ g

and

−ρΩ2x = −∂xp; − ρΩ2y = −∂yp; − ρg = ∂zp

Solution to these equations is found exactly as in the previous example:

p

ρ
=

Ω2

2
(x2 + y2)− gz + const (6.24)

On a free surface zs = h(x, y) the pressure p = p0 and the equation for the surface is:

zs = h(x, y) =
Ω2

2g
(x2 + y2) (6.25)

where the integration constant const = −p0/(ρg) is chosen to place the coordinate origin at the lowest point

of the surface.

Problem∗. A sphere of a radius R and mass M is hanging (height H � R above surface of water filling a

swimming pool. Find shape of the water surface.

Problem. Consider a constant temperature perfect gas (the simplified model of atmo-

sphere). Find the density variation with height from the ground. Solution.
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Choosing the vertical z-axis in such a way that k · g < 0, where k is the unit vector in the z-direction, the

hydrostatic equation reads:

∇ p = RT∇ρ = −ρg

The equations for components are:

∂p

∂x
=
∂p

∂y
= 0; RT

∂ρ

∂z
= −ρg

The solution to this equation satisfying the boundary condition p(z = 0) = pat

ρ = ρate
− g
RT z

is called barometric formula.

Obtaining this result we used an approximation T = const. The accepted data on the temper-

ature variation in the atmosphere 0 ≤ z ≤ 11000m can be approximated by the relation

T ≈ T0 − αz; T0 ≈ 288K; α ≈ 0.006
K

m

meaning that at z = 11km, the temperature is T ≈ 233K. In this case, the equation for density

variation reads

∂ρ

∂z
= − ρg

T0 − αz

ρ(z) = ρ0(1− αz

T0
)
g
αR

The constant R = kB/m where kB ≈ 1.38×10−23m2 ·kg ·s−2 ·K−1. Thus, taking T0 ≈ 288K, g ≈ 9.8m/sec2

and the accepted value of mass of the air molecule m ≈ 5.6 × 10−26kg, we have mg
kBT0

≈ 1.38 × 10−4 and
mg
kB
α ≈ 6.6.
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The pressure distribution at a constant temperature T = T0 ≈ 288K can be written as p = patme
−0.000138z ≈

0.25patm at z = 11km. Accounting for the temperature variation with height yields p = patm(1 − 2 ×

10−5z)6.6 ≈ 0.18patm on the same height. As we see, even at the maximum height z ≈ 11km, the approxi-

mation T = T0 = const is accurate within some 20%. The two pressure distributions are compared on the

Fig. xx.

1 10 100 1000 10000
z

0.2

0.3

0.5

0.7

1
P

Figure 9: Left: Normalized pressure P = p/patm variation in normal atmosphere. The two curves corre-

sponding to T = T0 = const and accepted T = T (z) (see text) are almost indistinguishable differing by some

20% at the hight z ≈ 11km. Right: Temperature variation in atmosphere h ≤ 11km

Problem. A body of a volume V and density ρc is placed into a pool of fluid of density ρ. If the gravity

is g, find the force acting on a body in the hydrostatic conditions. The fraction of a volume submerged in a

fluid is λ ≤ 1, so that the underwater volume is Vi = λV .

Solution. The gravity force is Fg = −ρcV k. The buoyancy force acting on a body is:

Fb = −
∫
S

p(x, y, z)nds

where the integration is carried out over the underwater body surface. In accord with the Gauss theorem:

Fb = −
∫
S

p(x, y, z)nds = −
∫
Vi

∇pdV

The pressure distribution in a liquid is given by: p = p(z = 0)− ρgz and as a result ∇p = −ρgk.

Fb = ρgVik

Thus, the buoyancy force is equal to the weight of the fluid displaced by the body. The total force is:

F = (ρW − ρbVi)gk. The hydrostatic condition is F = 0. If the entire body is submerged, then Vi = V .
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7 Bernoulli Equation.

Consider the Euler equation (6.6). At this point, we are interested in an incompressible flow ρ = const, so

that w = p/ρ. Let us introduce a unit vector l = u
u , which is tangent to the streamline at each point in

space and time. It is easy to check that u×∇× u⊥u and thus, the scalar product l · (u×∇× u) = 0 . We

also have:

l · ∇ ≡ l · (i ∂
∂x

+ j
∂

∂y
+ k

∂

∂z
) =

∂

∂l

where ∂
∂l is a derivative along streamline. In a steady flow where the time-derivative is equal to zero, the

scalar product of the vector l with the Euler equation (6.6) gives:

∂

∂l
(
1
2
u2 + w) = 0 (7.1)

This equation means that on a streamline of a steady flow:

1
2
u2 + w = const (7.2)

The gravity field is accounted for in the Euler equation (6.6) in a following way: Choosing the z-axis with

coordinate z-increasing upward, the acceleration due to gravity is:

g = −gk = −g(∂xi + ∂yj + ∂zk) = −g∇z

and l · g = −gl · ∇z = −g ∂∂l . Adding this to (7.1), we find that

∂

∂l
(
1
2
u2 + w + gz) = 0 (7.3)

and on a streamline:

1
2
u2 + w + gz = const (7.4)

Problems. Applications. Pitot tube. Venturi. Pressure gauges.

Problem 1. Find velocity of a fluid at the outlet os a straw. The gravity g = −gk.

Solution. We put the open end of a straw at z = 0. Consider a streamline starting on a free surface z = h0,

entering a tube at z = h0 − d and ending at the outlet of a straw (z = 0). The Bernoulii equation for the

points z = 0 and z = h0 on this stream line is:

patm + ρgh0 = patm +
ρU2

2

U =
√

2gh0
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Figure 10: Glass of cranberry juice and a straw (siphon tube)

Figure 11: Pitot tube and Venturi meter

Pitot tube, Venturi meter.

On the above Figure you see Pitot tube for determination of the flow velocity and a Venturi meter. The

physics of the devices is based on the Bernoulli equation. Read about both and show that if the crossectional

areas of the Venturi meter at the points 1 and 2 are A1 and A2 , pressure readings are p1 and p2, show that

the massflux

ṁ = ρA2

√√√√2(p1 − p2)

ρ(1− A2
2

A2
1
)

8 Kelvin’s Theorem.

Consider a closed contour in a flow (Fig. 12). The integral

Γ =
∮

u · dl (8.5)

taken along this contour is called velocity circulation round that contour. This contour includes fluid particles,
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moving with a flow. Let us see what happens to the circulation moving with this evolving contour. Circulation

can be represented in a discrete form:

Γ =
∮

u · dl =
∑

u(i) · δri =
(u(i + 1) + u(i)) · (r(i + 1)− r(i)

2
(8.6)

where dl = δri = ri+1−ri is defined in terms of a position vector r on a chosen contour. The time-derivative:

Figure 12: Closed contour used to prove Kelvin’s theorem . Here r = x.

dΓ
dt

=
d

dt

∮
u · dl =

∑
(
du(i)
dt
· δri + u(i) · dδri

dt
) (8.7)

Since

dδri
dt

= δ
dri
dt

= δu(i),

u(i) · dδridt = u · δu = 1
2δu

2 = 1
2du

2. The integral of a total differential of any function is:

∫ b

a

du2 = u2(b)− u2(a)

and as a result the integral of a total differential over any closed contour (a = b) is equal to zero. This gives

the second term in the right side of (8.7) is equal to zero.

Substituting the Euler equation

du
dt

= −∇w = −[∇p
ρ

] (8.8)

into (8.7) gives by the virtue of the Stokes theorem
∮

f · dl =
∫
S

(∇× f) · ndS:

dΓ
dt

=
d

dt

∮
u · dl =

∮
du
dt
· dl = −

∮
∇w · dl = −

∫
S

∇×∇w · dS = 0 (8.9)

This result is clear since ∇× (∇w) = 0 . Finally, we have:
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Γ =
∮

u · dl = const (8.10)

meaning that in ideal flow governed by the Euler equation, the velocity circulation round any closed fluid

contour is constant in time.

9 Potential flow.

Consider a flow where at some point vorticity ω = ∇× u = 0. Take a streamline passing through this point

and encircle it with an infinitesimally small closed contour of the area dS. If the contour is small enough, the

variation of the vorticity vector within the contour can be neglected and, according to the Stokes theorem,

the velocity circulation round this contour Γ ≈ ωdS = 0. Since at each point velocity is tangent to the

streamline, this contour will move along the streamline staying small. In accord with Kelvin’s theorem, the

circulation must stay constant (equal to zero) and we conclude that if vorticity is zero at any point on a

streamline, it is zero at all points of this streamline. One may think that if vorticity is equal to zero in the

far field (inlet) flow, where all streamlines are generated , then it must be zero at each and every point in

the flow.

The flow with ω = 0 is called potential or irrotational, contrary to rotational flow with ω 6= 0 at least

somewhere in a flow. Based on the above consideration and vorticity equation derived in Section 6, we may

conclude that if the flow is potential (ω = 0) at some instant of time, it must stay potential forever.

This statement is correct only if the fluid does not flow along the boundaries of a solid body where the normal

component of velocity field is equal to zero and as a consequence, the velocity vector is tangent to the surface.

Thus, the boundary of a solid body is a surface of streamlines which we cannot encircle even by an infinites-

imally small closed contour. On this streamline the tangential velocity component, which in the direction

perpendicular to the body surface jumps from a finite value to zero, is a discontinous function of space coor-

dinates. For these streamlines the Kelvin theorem and the consideration presented above, are not applicable.

In reality, at a certain point on the surface the dividing streamline separates from the body and continues

into the fluid. This allows appearence of the non-zero vorticity regions in a flow. The line of tangential

velocity discontinuity separates moving from stationary regions of the fluid or irrotational from rotational

regions. An important consequence of these considerations is that the boundary of a solid body corresponds

to a closed streamline. In addition,it has been shown above, due to the no-slip conditions on a solid wall,

the vorticity at the solid boundary is never equal to zero.

Still, for the so called streamlined bodies, far enough from the surface the Reynolds number is large and

vorticity generation can be neglected. This makes the study of the potential flows where vorticity ω = 0 at

each and every point an interesting and important subject.
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First we notice that due to the Stokes theorem, the integral over any closed contour in a potential flow

Γ =
∮

u · dl =
∫
S

ω · dS = 0 (9.1)

where S is an arbitrary surface bounded by this contour. This means that in the absence of singularities,

potential flow cannot have closed streamlines. This can be proved as following: assume that there exist at

least one closed streamline. We can choose the integration contour along this line and, since on a streamline

u‖dl , the integral along the contour cannot be equal to zero. This contradicts the relation (9.1).

Any vector with zero curl can be represented as a gradient of a scalar potential φ , so that

u = ∇φ (9.2)

In this case the Euler equation (6.8) can be written as:

∇(
∂φ

∂t
+

1
2
u2 + w) = ∇(

∂φ

∂t
+

1
2
u2 +

p

ρ
) = 0 (9.3)

and

∂φ

∂t
+

1
2
u2 + w =

∂φ

∂t
+
ρ

2
u2 +

p

ρ
= f(t) = const (9.4)

The velocity field (9.2) is not modified if an arbitrary function of time F (t) is added to the potential.

Choosing this function as F (t) =
∫
f(t)dt removes f(t) from the solution (9.4) without any loss of generality.

In the steady flow ∂tφ = 0 and expression (9.4) becomes similar to Bernoulli’s equation (7.4):

1
2
u2 + w + gz =

1
2
u2 +

p

ρ
+ gz = const (9.5)

It is clear from the above derivation that in a potential flow the equation (9.5) is valid at any point, while

in general, the Bernoulli equation is satisfied on a streamline only.

9.1 Incompressible fluids.

The above expressions are simplified for potential flows of incompressible fluids where density ρ = const. It

follows from (9.2) that div(u) ≡ ∇ · u = ∇ · ∇φ = 0 which means that potential function φ is a solution to

the Laplace equation:

∇2φ ≡ 4φ = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)φ = 0 (9.6)

and, since for ρ = const, ∇w = ∇p
ρ , Bernoulli’s equation reads:

∂φ

∂t
+

1
2
u2 +

p

ρ
= f(t) (9.7)
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These equations must be solved subject to initial and boundary conditions, typically written in terms of

prescribed properties of the velocity field at infinity and at the boundary of a solid body where the normal

component of the velocity field:

un = n · ∇φ =
∂φ

∂n
= 0 (9.8)

As we see, if the potential flow approximation is valid, we have, instead of solving the system of four non-

linear differential Euler and continuity equations, to solve the Laplace equation with initial and boundary

conditions. This task is infinitely simpler since the most powerful methods to solve the Laplace equation

have been developed during last two hundred years. Then, given the potential function φ, the velocity field

is evaluated by a simple differentiation and after that the pressure distribution is found from the Bernoulli

equation. With known pressure field, the forces acting on a body are calculated readily. It is interesting that

the time variable does not explicitly enters the equation (9.6) but appears only through the time-dependent

boundary conditions.

Since the differential operations commute, i.e. ∇4φ = 4∇φ = 4v, the velocity field is a solution of three

Laplace equations:

4u = 0 (9.9)

The equation for potential is linear and sum of particular solutions to it is also a solution. This is extremely

useful for analysis of fluid flows.

10 Two-dimensional potential incompressible flows.

In two dimensions, the potential flow theory can be formulated in terms of the theory of analytic functions.

Consider a stream function ψ(x, y, t) defined in a following way:

ux =
∂ψ

∂y
; uy = −∂ψ

∂x
(10.1)

The velocity field defined this way automatically satisfies the incompressibility condition∇·u = ∂ux
∂x + ∂uy

∂y = 0

.

Since ux = ∂φ
∂x = ∂ψ

∂y and uy = ∂φ
∂y = −∂ψ∂x , the differential equation for the stremfunction is derived readily:

ω =
∂v

∂x
− ∂u

∂y
=

∂2φ

∂x∂y
− ∂2φ

∂x∂y
= −(

∂2ψ

∂x2
+
∂2ψ

∂y2
) ≡ −∇2ψ = 0

Thus, two-dimensional potential flow of incompressible fluids satisfies the following rela-

tions:
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ω = 0; ∇ · u = 0; ∇2φ = ∇2ψ = 0

The equation

ψ(x, y, t) = const (10.2)

defines streamlines. This follows from the relation:

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = −uydx+ uxdy = 0

which is a two-dimensional version of a general kinematic relation (2.14) obtained from the geometric con-

siderations. It is easy to show that in a two-dimensional flow

u = ∇×Ψ (10.3)

where Ψ = ψk is the vector perpendicular to the (x,y)-plane.

Problem. The velocity field is u = (x − 4y)i − (y + 4x)j. Show that: a. This flow is incompressible and

potential. b. Find potential and stream function; c. Plot a few streamlines.

Solution: u = ∂yψ = x − 4y so that ψ = xy − 2y2 + f(x). We also know that v = −∂xψ = −(y + 4x) =

−(y+∂xf). The equation for an unknown function ∂xf = 4x and f = 2x2 +C and ψ = xy+ 2(x2− y2) +C.

c. The equation for streamlines ψ = const which gives:

y2 − xy

2
− x2 + C = 0

and

y1,2 =
x

4
±
√

17
16
x2 + C

The dividing streamline (C=0) corresponds to a wedge bounded by two strait lines corresponding tp ± in

the above relation..

11 Fundamental solutions to the Laplace equation in two dimen-

sions

. Since the Laplace equation (LE) is a linear equation, the sum of various fundamental solutions is also a

solution. This fact will be used below for quantitative description of various potential flows. We begin with
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two-dimensional flows. In rectangular coordinates:

∇2φ ≡ 4φ = (
∂2

∂x2
+

∂2

∂y2
)φ = 0 (11.1)

and a general solution can be written as r =
√
x2 + y2:

φ = A+Bx+ Cy +Dxy +Gln(
√
x2 + y2) (11.2)

In cylindrical coordinates x = r cos θ, y = r sin θ; z; θ = tan−1 y
x :

4φ ≡ ∇2φ =
1
r

∂

∂r
r
∂φ

∂r
+

1
r2

∂2φ

∂θ2
+
∂2φ

∂z2
= 0 (11.3)

and

φ = A+Bln(r) + Cθ +Dθln(r) (11.4)

The velocity field is defined as:

ur =
∂φ

∂r
; uθ =

1
r

∂φ

∂θ
(11.5)

The integration constants A;B;C;D and G are determined from the boundary conditions for velocity field.

Without loss of generality we can set A = 0. Below we analyze a few simple cases and broaden the class of

fundamental solutions to the laplace equation..

11.1 Uniform Flow

. First we consider the simplest case A = C = D = 0, so that

φ = Ux (11.6)

The velocity field is found readily from relation ((9.2):

ux = ∂xφ = B; uy = ∂yφ = 0 (11.7)

If at any point (x0, y0) in a flow, the velocity field u(x0, y0) = U i and U = const, then we determine the

constant B = U and the solution for the velocity field is:

u(x, y) = U i (11.8)

The velocity field is independent upon coordinates, therefore this solution describes the so called uniform

flow. The steramfunction for this flow is found easily:
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ux = U = ∂yψ; uy = −∂xψ = 0 (11.9)

Solutions to these two equations is:

ψ = Uy + p(x); ψ = q(y) (11.10)

where the integration functions p(x) and q(y) are found from the following consideration: the solution (11.10)

is valid for all values of coordinates x and y. Fixing x = x0 = const and varying y, gives

q(y) = Uy + p(x0) (11.11)

Thus:

ψ = Uy + const (11.12)

The equation ψ(x, y) = const for the streamlines give ψ
U = y = const. The streamlines of a homogeneous

flow are the strait lines parallel to the x-axis.

Figure 13: Uniform flow. Streamlines and equipotential lines

11.2 Potential vortex

.

Set A = B = D = 0 in (1.4) and, as a result, the potential φ is:

φ = Cθ (11.13)

The components of the velocity vector are:

ur =
∂φ

∂r
= 0; uθ =

1
r

∂φ

∂θ
=
C

r
(11.14)
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The solution (11.14), describes the so called potential vortex. The streamfunction, found from the relations:

ur =
1
r

∂ψ

∂θ
; uθ = −∂ψ

∂r
(11.15)

ψ = −Cln(r) (11.16)

The constant C can be found in a following way. Using the fact that the velocity field is independent on the

angle θ , we choose a circular contour of an arbitrary radius r and evaluate the circulation

Γ =
∮

u · dl =
∮

(uθdl + urdr) =
∫ 2π

0

uθrdθ =
∫ 2π

0

C

r
rdθ = 2πC (11.17)

Calculating the integral, we used a simple geometrical fact that on a chosen circular contour the radial

coordinate r = const and the length of infinitesimal arc dl = rdθ. Thus,

φ =
Γ
2π
θ; ψ = − Γ

2π
ln(r) (11.18)

and

ur = 0; uθ =
Γ

2πr
; (11.19)

so that:

u =
Γ

2πr
eθ =

Γ
2πr

(−i sin θ + j cosθ)

The streamfunction is independent on the angle θ therefore, the equation for the streamlines ψ = −ln(r) =

const is reduced to a simple relation r =
√
x2 + y2 = cost, which represents circles on the (x, y) plane.

Figure 14: Potential vortex. Streamlines and equipotential lines. The radii of the circular streamlines are

ri = e−2πΨi/Γ

Let us calculate the mass flux through the surface r = const and 0 ≤ z ≤ H:
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ṁ =
∫

u · dS =
∫

u · ndS =
∫

u · ndldz =
∫ 2π

0

urrdθ

∫ H

0

dz = 0 (11.20)

where the unit vector n = r
r . The mass flux through cylindrical surface is zero. Indeed,

One feature of the solution (11.19) deserves discussion. While in potential flows the vorticity ω = 0, the

circulation Γ generated by potential vortex is not. On the first glance, this contradics the Stokes theorem.

The angle-independent vorticity vector in cylindrical coordinates is:

ω =
1
r

∂

∂r
(ruθ)k (11.21)

With uθ from (11.18), this expression gives ω = 0 everywhere, except at the origin r = 0 where the

velocity field is divergent. As a result, the Gauss theorem with ω = 0 is applied to any closed countour

not containing the singularity at the origin. This singularity will be of crucial importance in aerodynamic

applicationsof potential flow theory.

11.3 Source and Sink

Now we discuss the case C=D=0 in (11.14). The potential φ is (again A=0):

φ = Bln(r) (11.22)

and the velocity field is:

ur =
∂φ

∂r
=
B

r
; uθ =

1
r

∂φ

∂θ
= 0 (11.23)

and

u = urer = ur(i cos θ + j sin θ

Evaluation of a massflux through a surface of constant radius r per unit height H = 1 gives:

Q =
∫

u · dS =
∫

u · ndS =
∫
urer · erdldz =

∫
u · ndldz =

∫ 2π

0

urrdθ = B

∫ 2π

0

1
r
rdθ = 2πB (11.24)

and

ur =
Q

2πr
; uθ = 0 (11.25)

Using this velocity field, the two equations for the streamfunction

ur =
1
r

∂ψ

∂θ
; uθ = −∂ψ

∂r
(11.26)

yield:

ψ(r, θ) = Bθ + f(r); ψ(r, θ) = g(θ) (11.27)
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, where the integration functions f and g are to be determined from the physics of the problem. It follows

from these solution that Bθ + f(r) = g(θ) thus, these two solutions can coexist at any point (r, θ ) only if

g(θ) = f(r) = const. This gives:

ψ =
Q

2π
θ + const (11.28)

with θ = tan−1 y
x . Streamlines following the equation 2πψ

Q = θ = const are the set of radial rays with the

origin at r = 0. The flow direction is defined by the sign of the amplitude Q. We will call Q > 0 and Q < 0

sourse and sink, respectively.

Figure 15: Source and sink. Streamline and equipotential lines

This result can be obtained directly from the mass conservation law. Indeed, consider a z-independent line

source at (r = 0, z). Since mass is not created or annihilated outside this line, the mass flux QH through

the surface of a cylinder of a radius r = const and hight H →∞ is independent upon cylinder radiusr. The

mass flux QH =
∫ 2π

0
urrdθ

∫H
0
dz = 2πH leading to the expression (11.23) for the velocity field.

11.4 Doublets. Multipole expansion

Potential φ is a solution to the Laplace equation 4φ = 0. Since the differential operators commute and if

Φ(x, y, z, t) is a solution to the Laplace equation, for example considered above, , then

Φi,j,k,..(r, t) = ∇i∇j∇k · · · Φ

is also a solution to the Laplace equation : 4Φi,j,k... = 0. Let us consider the θ-independent potential

Φ = Φ(r). Then,
∂Φ(r)
∂x

=
∂Φ(r)
∂r

∂r

∂x
=
∂Φ(r)
∂r

x

r
(11.29)

and in general:

∇Φ(r) =
∂Φ
∂r

r
r

=
∂Φ
∂r

xi + yj + zk
r

≡ ∂Φ
∂r

nr
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.

Then,

∂2Φ(r)
∂x∂y

=
xy

r2
(
∂2

∂r2
− 1
r

∂

∂r
)Φ

and

∂2Φ(r)
∂x2

=
1
r2

(x2 ∂
2φ(r)
∂r2

+ (r − x2/r))
∂φ

∂r

and

∇i∇jΦ(r) =
xixj
r2

Φ′′ +
1
r

(δij −
xixj
r2

)Φ′(r)

All these expressions are potentials for some realizable flows. For example, the physical meaning of

solution (11.29) can be understood as follows. Consider a flow generated by a source at a point (−a, y) and

a sink at a point (+a, y).

Figure 16: Source and sink separated by a distance 2a.

The distances from a source and sink to an arbitrary point r are: r− =
√

(x+ a)2 + y2 and r+ =√
(x− a)2 + y2, respectively. Based on the solutions derived for a previous problem, the potential for

this flow is:

φ =
Q

2π
(ln(r−)− ln(r+)) =

Q

2π
(ln
√

(x+ a)2 + y2 − ln
√

(x− a)2 + y2) (11.30)

In the limit of a very small displacement a→ 0 the Taylor expansion leads to:
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φ =
Q

2π
lima→0(ln

√
(x+ a)2 + y2 − ln

√
(x− a)2 + y2) ≈ Q

2π
∂

∂x
ln(r)2a ≡ D

2π
∂

∂x
ln(r) (11.31)

The derivative ∂
∂x ln(

√
x2 + y2) = x

r2 = cos(θ)
r ≡ ∇xln(r) and we say that the flow having potential:

φ =
D

2πr
cos(θ) (11.32)

is generated by a doublet. Recalling that x = rcos θ, we see that (11.32) is equivalent to (11.29) obtained

by a simple differentiation of a source-sink logarithmic potential (11.22).

The same result is obtained far from the sourse and sink when a = O(1) but a/r → 0. Indeed, r± =√
(x± a)2 + y2 ≈ r(1± ax

r2 ). Substituting this into the expression for potential and recalling that ln(r(1±
ax
r2 )) ≈ lr(r) ∓ ax

r2 gives (11.31)-(11.32). This means that the expression (11.32)) (dipole approximation)

accurately describes the velocity field far from system sources and sinks, provided the combined strength of

the system Q1 +Q2 = Q = 0.

The streamfunction is derived in a similar manner. It is clear that

ψ =
Q

2π
(θ− − θ+) =

Q

2π
(tan−1(

y

x+ a
)− tan−1(

y

x− a
)) (11.33)

In the limit a→ 0 this is simply:

ψ =
Q

2π
(θ− − θ+) =

Q

2π
∂

∂x
tan−1(

y

x
)2a = −D

2π
y

x2 + y2
= −D

2π
sin(θ)
r

(11.34)

Since sin(θ) = y/r, the streamlines are found from equation:

2πψ
D

= const = − y

x2 + y2
(11.35)

and

x2 + y2 +
D

2πψ
y = (y +

D

4πψ
)2 + x2 − (

D

4πψ
)2 = 0 (11.36)

The streamlines are the circles of radius | D4πψ | with the center at yc = D
4πψ . Thus, all these circles touch

the point (x = 0, y = 0).

The considerations which led to the above results can be readily generalized to the case of the so called

quadruplet or quadrupole used for various important applications:

Φij = q
∂2ln(r)
∂xi∂xj

= q
(r2δij − 2xixj)

r4
(11.37)

It can be shown that flow having this potential is generated in the far field by the two sources and two sinks

having combined strength equal to zero.
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Figure 17: Streamlines in a flow past doublet.

Problem. Consider two sources of the same intensity Q at points (−a,+a); (+a,−a) and two sinks (−Q)

at the points (+a,+a); (−a,−a). In the limit a
r →∞, find potential, stream function, velocity field etc.

Wedge.

It is easy to see that the streamfunction

ψ = ψ0r
n sinnθ

with ψ0 = const and n = const is a solution to Laplace equation and, thus, can describe a fluid flow past a

body. To see this, we notice that:

1
r

∂

∂r
r
∂ψ

∂r
=
n2ψ

r2

1
r2

∂2ψ

∂θ2
= −n

2ψ

r2

The Laplacian which is a sum of these two terms is indeed equal to zero. From this we find:

ur = nψ0r
n−1 sinnθ; uθ = −nψ0 sinnθ

Body shape. The dividing streamline ψ(r, θ) = 0, gives the following solutions:

θ =
mπ

n

where m is an arbitrary integer. This solution describes strait lines with the slopes θ = mπ. Consider m = 0

and m = 1 so that θ = 0 and θ = π/n. If n = 2, then the flow is confined to the interval 0 ≤ θ ≤ π/2. Since,

uθ = 0, the lines θ = 0 and θ = π/4 form a wall, the fluid cannot penetrate. See Fig.[xx]. If n = 4, the flow

is in the domain 0 ≤ θ ≤ π/4.
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11.5 Flow past doublet.

Let us consider a homogeneous at the inlet x → −∞ flow over a doublet placed at the origin r = 0. The

inlet velocity field is: u = U i with U = const. In this case the potential and streamfunction are readily

constructed from the basic solutions (11.32) and (11.6):

φ = Urcos(θ) +
D

2π
cos(θ)
r

(11.38)

and

ψ = Ursin(θ)− D

2π
sin(θ)
r

(11.39)

The velocity field corresponding to this potential is:

ur = Ucos(θ)− D

2π
cos(θ)
r2

; uθ = −Usin(θ)− D

2π
sin(θ)
r2

(11.40)

This expression describes a flow over doublet of a given strength D.

12 Flow past a cylinder.

The most interesting application of the above result is the case of imposed boundary condition ur(R, θ) = 0.

This happens when D
2π = UR2 , so that

ur = Ucos(θ)(1− R2

r2
); uθ = −Usin(θ)(1 +

R2

r2
) (12.1)

and potential

φ = Urcos(θ)(1 +
R2

r2
) (12.2)

The streamfunction is then:

ψ = Ursin(θ)(1− R2

r2
) (12.3)

The equation ψ = 0 has a solution r = R and sin(θ) = 0, so that both halves of the x-axis (x ≤ −R and

x ≥ R) are on this streamline. Since a closed streamline r2 = x2 + y2 = R2 defines a boundary of a body, we

conclude that the flow (12.1) is a flow past two-dimensional cylinder of the radius R with the center at the

origin r = 0. The flow has two stagnation points (r = R; θ = π) and (r = R; θ = 0) where the velocity vector

u = uθ = ur = 0. It is clear that in this case the normal velocity at the solid boundary un(R) = ur(R) = 0.

The force on the cylinder must not be generated since the dividing streamline does not break the symmetry

of the problem between right and left, up and down etc.
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Figure 18: Left: Streamlines for potential flow past cylinder. The stagnation points are at θ = 0; π. Right:

Pressure coefficient for Cp = 1− 4 sin2 θ

Now, let us calculate the force acting on a cylinder. From the Bernoulli equation (9.5) we derive the surface

pressure distribution in a steady flow (∂tφ = 0):

p− p∞ =
ρU2

2
− ρu(R)2

2
=
ρ

2
(U2 − u2

r(R)− uθ(R)2) = U2 ρ

2
(1− 4sin2(θ)) (12.4)

The force acting on a cylinder is found from the surface integral:

F ≡ Di + Lj = −
∮
S

(p− p∞)ndS = −
∮
S

(p− p∞)(icos(θ) + jsin(θ))dS (12.5)

where the drag (parallel to the incoming velocity vector U) and lift (perpendicular to it) forces D and L,

respectively are defined by (12.5). If the length of the cylinder is very large (H → ∞), the integrand is

independent upon coordinate z and:

F ≡ Di + Lj = −1
2
ρU2HR

∫ 2π

0

dθ(1− 4sin2(θ))(icos(θ) + jsin(θ)) = 0 (12.6)

The integrls are calculated easily.

∫ 2π

0

cos θdθ =
∫ 2π

0

sin θdθ = 0 (12.7)

∫ 2π

0

sin2θcos θdθ =
∫ 2π

0

d sin3θ = 0 (12.8)

∫ 2π

0

sin3θdθ = 0 (12.9)

Thus, the force is indeed is equal to zero.

The pressure coefficient

Cp =
p− p∞

1
2ρU

2
= 1− 4sin2(θ) (12.10)
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often used in engineering, shown on Fig.

This example illustrates the method of using combinations of basic solutions to the Laplace equation to

describe potential flows over various solid bodies. To establish the geometry of a body, all one has to do

is to find a closed streamline from the equation ψ(x, y) = 0. On this streamline (body surface) the normal

velocity boundary condition un = 0 is automatically satisfied. To illustrate this point we discuss the next

example.

Three-dimensional potential flow past sphere.
This problem is mathematically more involved. The results are presented here without derivation.

0.5 1 1.5 2 2.5 3 theta

-1

-0.5

0.5

1
Cp

Figure 19: Left: Equipressure surfaces for 3D-flow past sphere. Right: Pressure coefficient Cp = 1− 9
4 sin2 θ.

As we saw above, the total force acting on a cylinder in a potential flow U = const is equal to zero. Now, we

will study a few important cased of potential flows with the non-zero lift and drag, defined asa force parallel

and perpendicular to the velocity vector U, respectively.

12.1 Accelerating cylinder.

We consider again an accelerating cylinder moving along the x-axis. In the frame of reference moving with

a body, this problem is equivalent to the one of a uniform flow of the time-dependent velocity U(t) = U(t)i.

The potential is exactly the one discussed above :

φ = U(t)(r +
R2

r
)cos θ (12.11)

The velocity components are:

ur = U(t)(1− R2

r2
)cos θ; uθ = −U(t)(1 +

R2

r2
)sin θ (12.12)

In this case, however, one has to apply the time-dependent Bernoulli equation
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∂φ

∂t
+
p

ρ
+

1
2
u2 = f(t) (12.13)

Since
∂φ

∂t
=
∂U

∂t
(r +

R2

r
)cos θ (12.14)

we see that at y → ∞ and finite x, where cosθ = x
r → 0, the time-derivative of potential is zero. Thus, it

follows from (12.20)

f(t) =
p∞
ρ

+
1
2
U2 (12.15)

and

p = p∞ +
ρ

2
(U2(t)− u2

R−2
θ)− ρ

∂φ

∂t
(12.16)

Combining this with (12.19) gives:

p = p∞ +
ρU2(t)

2
(1− 4sin2θ)− ρ∂φ

∂t
(12.17)

On a surface of the cylinder we have then:

p = p∞ +
ρU2(t)

2
(1− 4sin2θ)− 2ρR

∂U

∂t
cos θ (12.18)

The force on a cylinder of unit height H = 1 is evaluated as before: we see that the contribution from the

term proportioanl to 1− 4sin2θ is equal to zero and

F = −
∫ 2π

0

(−2ρR
∂U

∂t
cos θ)(icos θ + jsin θ)Rdθ = 2πρR2 ∂U

∂t
i (12.19)

In this example we in fact, discussed a flow past a doublet with intensity chosen to mimic a flow over a

cylinder of the same density as that of the incoming flow. In this case, the result (12.26) is interesting this

it gives

F = 2M
dU

dt
(12.20)

with the mass 2M instead of the cylinder mass equal to M . On the first glance this expression contradicts

the Newton law . It is not so since the accelerating body has to push the fluid of mass mv = M around it ,

which requires an additional force. The mass mv is called added or virtual mass. In a general case of a flow

past a cylinder of density ρb, drag force is evaluated from the relation (12.26) with M = π(ρ+ ρb)R2.
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12.2 Cylinder problem revisited.

The problem considered above has been solved by constructing a solution with subsequent demonstration

that it corresponded to the flow past cylinder. It is clear that in flow past a body of general geometry, this

procedure is not practical. Indeed, the initial guess we used above was a ”lucky strike, and, in general, one

cannot rely upon such luck. So, we have to solve the following problem: Find the velocity field v, generated

by a cylinder moving with, in general time-dependent, velocity u(t). The boundary condition at the wall,

not allowing fluid penetration through the cylinder surface at r = R is: the normal to the cylinder surface

component of the relative flow velocity (v − u)n = (v − u) · n = 0, where we defined the unit vector n = r
r .

By the Newton law, the force needed to drive the cylinder in the vacuum is Fc = mc
du
dt . Below we would

like to calculate the force in the presence of the generated flow.

Since ln r is a solution to the Laplace equation ∇2φ = 0, the gradient ∇ ln r is also a solution. However,

potential is a scalar and that is why it is easy to see that φ = A · ∇ ln r, with the unknown vector A = const

is also solution. Thus: ∇r = r
r = n and:

φ = A · n/r

The velocity field

v = ∇φ = −2(A · n)n−A
r2

The boundary condition on a surface r = R gives:

un = u · n = −A · n/R2

So that A = −R2u. Therefore, the solution is:

v =
R2

r2
[2n(u · n)− u]

This expression solves the problem. For example, we have:

vr = v · n = v · r/r ≡ v · er =
R2

r2
ur

and

vθ = v · eθ = −R
2

r2
uθ

and

v2 =
R2

r2
u2
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so that on the cylinder surface: v2 = u2.

These relations give the velocity field v generated by a cylinder moving with velocity u. To find a flow field

V generated by a homogeneous flow ui past a steady cylinder we have to make a transformation to a frame

of reference moving with speed −u, i. e. V = v − u. The result

Vr = ur(
R2

r2
− 1); Vθ = −uθ(

R2

r2
+ 1)

which is the case u = −U i coincides with the solution, we guessed at the begining of this chapter.

The pressure distribution on the cylinder surface is found from the Bernoulli equation:

∂φ

∂t
+
ρv2

2
+ p = f(t) = p∞ = const

Since far from the cylinder v = 0 and p = p0 ≡ p∞. Now we have to calculate ∂φ
∂t . In the frame moving with

the cylinder (velocity u), we are conducting our calculation

dφ

dt
=
dφ

du
· du
dt

=
∂φ

∂t
+ u · ∇φ =

∂φ

∂t
+ u · v

These relations give:

∂φ

∂t
= −Rn · ∂u

∂t
− 2u2 cos2 θ + u2

and taking into account that −4 cos2 θ + 3 = −1 + 4 sin2 θ, we obtain finally:

p = p∞ −
1
2
ρu2(1− 4 sin2 θ) + ρRn · du

dt

For a cylinder moving along x-axis, u = U(t)i. The fluid- force acting on a cylinder per unit hight, is:

Ff = −
∫ 2π

0

pnRdθ = −ρR2 dU

dt

∫ 2π

0

n(n · i)dθ = −πρR2 dU

dt

We have calculated the force acting on a fluid by a moving cylinder. The force needed to move both the

cylinder and surrounding fluid is: Fc = mdu
dt = ρπR2 du

dt , so that the total force acting on a cylinder is:

F = πR2(ρ+ ρc)
du
dt
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12.3 Rankine oval.

Consider a flow past a body defined by a source and sink considered above, but separated by a finite

displacement a.

In this case the streamfunction is given by a combination of (11.12) and (11.28) for both ±Q

ψ(x, y) = Uy +
Q

2π
(θ− − θ+) = Uy +

Q

2π
(tan−1(

y

x+ a
)− tan−1(

y

x− a
)) (12.21)

The geometry y = y(x) of the body is found from the equation:

ψ(x, y) = Uy +
Q

2π
(θ− − θ+) = Uy +

Q

2π
(tan−1(

y

x+ a
)− tan−1(

y

x− a
)) = 0 (12.22)

The expression y = y(x), defining the shape of the body can readily be found numerically. The equation

(12.12) can be simplified. We have:

tan(θ− − θ+) =
sin(θ− − θ+)
cos(θ− − θ+)

=
sin(θ−)sin(θ+)− cos(θ−)cos(θ+)
cos(θ−)cos(θ+) + sin(θ−)sin(θ+)

(12.23)

Thus, multiplying and dividing this expression by cos(θ−)cos(θ+) gives:

tan(θ− − θ+) =
tan(θ−)− tan(θ+)
1 + tan(θ−)tan(θ+)

(12.24)

Since θ± = tan−1( y
x−±a ) substituting this into (12.13) we obtain:

θ− − θ+ = tan−1(
2ay

x2 + y2 − a2
) (12.25)

and the equation for the body shape is :
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ψ = Uy − Q

2π
tan−1(

2ay
x2 + y2 − a2

) = 0 (12.26)

This relation is further simplified by introducing a constant γ = 2πU
Q , so that

x = ±
√

1 + 2ycot(
y

γ
)− y2 (12.27)

Depending on the magnitude of γ, we find (see Fig.(..)) that the flow (...) is a flow past a family of ovals.

Potential flow: Oscillating cylinder. Here we consider application of potential flow theory to a problem of

an oscillator in fluid. A point (zero radius) mass m (in our case cylinder) is connected to a support of an

infinite mass M by a spring of stiffness κ. The spring is assumed to be very long, so that the influence of

support on the motion of a mass m is negligibly weak. (See Fig.xx).

The equilibrium length of a spring is L and if the spring is deformed, so that its length becomes L+ x,

the attraction (x > 0) or repulsion (x < 0) forces are given by the Hooke’s law:

f = −κx

The Newton law in this case is:

m
d2x

dt2
= −κx

or

d2x

dt2
+ ω2

0x = 0

where ω2
0 = κ/m. Solution to this equation is:

x = A cos(ω0t) +B sin(ω0t)

The constants A and B are found from initial conditions for x and ∂tx at t = 0.

In a fluid the force acting on an accelerating body (cylinder), calculated from potential flow theory includes

added mass mad and the Newton equation is:

(m+mad)
d2x

dt2
= −κx

and

50



d2x

dt2
+

κ

m+mad
x = 0

and the solution:

x = A cos(ω1t) +B sin(ω1t)

with

ω2
1 =

κ

m+mad

We see that the added mass leads to the frequency shift of an oscillator. If a body of mass µ is adsorbed on

a surface of an oscillating body, then the total mass becomes equal to mtot = m+mad+µ and the resonance

frequency shifts to the value ω2 ≈ κ
m+mad+µ and if µ� m, the final result is:

ω ≈ ω1(1− µ

2(m+mad)
)

Often, the frequency shift can be measured with high accuracy, thus enabling precise determination of the

adsorbed mass µ. This fact has found various applications in nanotechnology and biosensing. This will be

discussed on detail later in this course.
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13 Flow past cylinder and potential vortex

From the viewpoint of aerodynamic applications, this is one of the most important cases. Consider, for

example a curved ball moving with velocity U and spinning with angular velocity Ω. In real life, due to the

action of the friction force, air (or any other fluid) in a close proximity to the ball starts spinning with the

same angular velocity Ω, thus generating circular motion of the fluid. In the potential flow approximation,

viscosity is equal to zero and this effect is absent. We, however, can study the basic physics of this system

by considering a familiar flow past a cylinder with superimposed potential vortex discussed in a previous

Section. This way we, using a mathematically simple potential flow approximation, can mimic

the viscous effects described by a much more complex Navier-Stokes equations. Until recently,

this remarkably elegant approach, generalized for the bodies of an arbitrary shape, has been

at the foundation of modern aerodynamics.

Potential and streamfunctions are written readily:

φ = Ucos(θ)(r +
R2

r
) +

Γ
2π
θ (13.28)

and

ψ = Usin(θ)(r − R2

r
)− Γ

2π
ln(r)⇒ U sin(θ)(r − R2

r
)− Γ

2π
ln(

r

R
) (13.29)

Adding a constant term Γ
2π ln(R) to the expression for the streamfunctions ensures r = R = const as a

solution to the equation ψ = 0. This means that again we are dealing with the flow over circular cylinder.

In this case, however, the velocity field is:

ur =
1
r

∂ψ

∂θ
= Ucos(θ)(1− R2

r2
); uθ = −∂ψ

∂r
= −Usin(θ)(1 +

R2

r2
) +

Γ
2πr

(13.30)

The force calculation is performed as before:

F = −
∫
S

(p− p∞)ndS = −
∫
S

(p− p∞)(icos(θ) + jsin(θ))dS (13.31)

where the integral is evaluated over a surface r = R. The pressure, found from Bernoulli’s equation is:

p− p∞ =
1
2
ρ(U2 − u2) = ρ

U2

2
(1− (2sin(θ)− Γ

2πRU
)2) (13.32)

The integral (12.41)-(12.42) can be evaluated very simply, especially using the above results, obtained

for Γ = 0. Sum of all contributions to (12.41)-(12.42) which are not proportional to Γ or Γ2, describing the

flow past cylinder without potential vortex, computed above, is equal to zero. The term proportional to Γ2

is also equal to zero since
∫ 2π

0
sin(θ)dθ =

∫ 2π

0
cos(θ)dθ = 0. Thus:
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F = −1
2
U2

∫ 2π

0

2Γ
πRU

sin(θ)(icos(θ) + jsin(θ))Rdθ (13.33)

and

F = −ρUΓj (13.34)

This force is called Magnus fource.

As we see, in this case the non-zero generated force is directed perpendicular to both the incoming flow and

vorticity vector parallel to the cylinder axis. That is why we can write

F = ρΓ×U (13.35)

This statement, valid for a body of an arbitrary shape, is called Kutta-Joukowskii theorem.

To understand the origin of the force, let us consider the stagnation points. First, we will be looking for the

stagnation points at the cylinder surface r = R where ur = 0. The circumferential velocity

uθ = −2Usin(θ) +
Γ

2πR
= 0 (13.36)

and θ = sin−1( Γ
4πUR ). This solution is possible only if Γ ≤ 4πUR. We see that in this ”subcritical” case,

two stagnation points are above or below the x=axis, thus generating the net force in the y-direction. In

the supercritical case Γπ > UR, the stagnation point is outside the cylinder surface. To show this, let us

consider the zero of the velocity field corresponding to θ = ±π/2 and r 6= R. The radial component ur = 0

on the entire vertical axis while the solution to the equation uθ(r, π2 ) = 0 is

r =
Γ

4πU
[1 +

√
1− (

4πRU
Γ

)2] (13.37)

First consider θ = π/2 and Γ > 0. In this case the stagnation point r = Γ
4πU +

√
( Γ

4πU )2 −R2 > R is outside

the cylinder surface on the y > 0 half-plane. If Γ < 0, then the stagnation point is on the y < 0 half-plane.

The stagnation points r < R, which are inside the solid cylinder are non-physical and must be neglected.

In all these cases the stagnation point(s) break original symmetry of the problem, thus allowing the

non-zero magnitude of the lifting force. This result is the basis for application of potential flow theory to

aerodynamic calculations. A few dividing streamlines corresponding to subcritical, critical and supercritical

regimes, which are the solutions to equation

ψ = Usin(θ)(r − R2

r
)− Γ

2π
ln(r) = 0 (13.38)

are plotted on Fig..
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Figure 20: Dividing streamlines for flow past rotating cylinder. Critical Γc = 4πRU .

13.1 Flettner rotor ships.

The main idea of Flettner who was a Professor of the famous Göttingen University, patented in 1922, was

that due to the Magnus effect, small motors powering a ship via rotating cylinders could propel it more

efficiently than if they were driven by a conventional propeller. Assisted among others by Albert Benz and

Ludvig Prandtl, Flettner constructed an experimental rotor vessel in 1924. It had two cylinders of hight

h = 15m and diameter D = 3m driven by electric propulsion system of 50hp (30kW) power. In May 1926,

made a cross Atlantic trip from Germany to New York. The system, though promising, was not efficient

and the project was abandoned. At the present time new ships are being developed in Germany.

-

Figure 21: Flettner rotor ship.

Problem. Consider The Flettner-rotor ship. The height of the cylinders is H, their diameter D and angular

velocity Ω. The ship sails with velocity Us = Usi and the wind velocity is Uw = −V (i cosα+ j sinα.

a. Using potential flow theory, stimate the force on the ship as a function of all parameter and density

ρ. b Find trust if the side force vanishes. Evaluate thrust if Ω = 750rpm, H = 15m and D = 3m and
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Us = 3knots and V = 12knots. (ρ ≈ 1.2kg/m3).

Solution. According to Kutta-Joukovskii theorem the force acting on each cylinder is:F = ρu× ΓH. The

theorem was derived for the flow past a body. Thus, it is convenient to operate in the frame of reference

moving with the ship velocity:

u = −Us + Uw = (−Us + V cosα)i− V sinαj

F = −2ρH[(−Us + V cosα)i− V sinαj]× Γ

Γ = (Ω
D

2
)(πD)(−k) = −π

2
ΩD2k

F = πρΩD2H[V sinαi− (U + V cosα)j]

The side Fy force vanishes when U = −V cosα. The thrust is equal to

Fx = πρΩD2HV sinα = πρΩD2HV

√
1− U2

V 2

Problem. A rotating cylinder of mass M , length H and radius R is pitched at t = 0 with velocity U = U i.

Find angular velocity Ω needed to sustain horizontal flight. No viscous effects.

Problem. A rotating cylinder of mass M , length H, radius R and angular velocity Ω is pitched in the ver-

tical direction with initial velocity U = U j. The density of air is ρf . Find maximum height if gravity g = −gj.

Problem. A rotating cylinder of mass M , length H and radius R and angular velocity Ω is pitched with

initial velocity U = U(i cosα + j sinα). Density of the air is ρf . Find trajectory of this cylinder if gravity

effects are neglected. a. Consider α = π/4. b. Solve for an arbitrary α.

a.

M +madd = m∗

du

dt
= −2πρΩR2

m∗
v ≡ −ω0v

dv

dt
= −2πρΩR2

m∗
u ≡ ω0u

The conservation of kinetic energy: multiply first equation by v and second by u. This gives

du2

dt
= −4πρΩR2

m∗
uv
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dv2

dt
= −4πρΩR2

m∗
uv

and summing up these equations gives d
dt (u

2 + v2) = 0 and u2 + v2 = U2 = const . Differentiating these

equations over time gives after simple manipulations:

d2u

dt2
= −ω2

0u;
d2v

dt2
= −ω2

0v

u =
U√

2
cosω0t+Bx sinω0t; v =

U√
2

cosω0t+By sinω0t

The energy conservation is satisfied if B2
x +B2

y = U2 and Bx = −By, thus:

Bx,y = ± U√
2

ux,y =
U√

2
(cosω0t± sinω0t)

(x, y) =
U√
2ω0

(sinω0t∓ cosω0t) + Cx,y

(x− Cx)2 + (y − Cy)2 =
U2

2ω2
0

The trajectory is a circle. Solve for an arbitrary α.
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14 Airfoils.

The physics of the flow over cylinder with potential vortex, considered above, is a basis for applications

of potential flow concepts to aerodynamics. The expression (13.35) derived for this case is general: if the

circulation Γ evaluated along a closed contour along the body boundary is not equal to zero, then the lift

force is:

L = −ρΓ× U (14.1)

This statement is called Kutta-Joukowsky theorem. The expression ( 14.1) can be derived as follows. Let

us represent the velocity field as a sum of analytic and singular components, vreg + vsing, respectively. In

general, on a two-dimensional plane, the singular term can be written as:

vsing = e
f(z)

2π(z − a)
(14.2)

where a is a position of singularity (simple pole) and e is a unit vector in the direction of the singular

component to the velocity field. Then, the circulation evaluated as an integral over a contour containing this

singularity is:

Γ =
∮

v · dl = f(a)e (14.3)

Figure 22: Left: NACA0012 turbine blade. Left: NACA0012 wingsection.
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14.1 Nomenclature

A typical NACA airfoil is shown on the Figure.

Figure 23: Illustration to nomenclature of NACA airfoils.

Introducing wo function Yu(x) and Yl(x) representing the shapes of the foils at y > 0 and y < 0, respectively,

we define the mean camber line

C(x) =
1
2

(Yu(x) + Yl(x))

We can see that for symmetric airfoils C(x) = 0. The airfoil thickness is given by

T (x) =
1
2

(Yu(x)− Yl(x))

The 4-digit foils, for example, NACA 2412, are defined as follows: The first digit gives maximum camber in

percentage of the cord length, i.e. in this case 2 means that cmax = 0.02c. Next one shows position of cmax

in tenths of cord: 4 stands for x(cmax = 0.4c and the last to give maximum thickness or Tmax = 0.12c. The

5-digit NACA airfoil ...................................

In this section we are interested in applications of potential flow theory to flows past airfoils. The problem

is formulated as follows: consider a wing of a mass M and span length (perpendicular to the page) W . For

this wing to cruise with a speed U and angle of attack α, the lift L = M . It is clear that if the circulation Γ

evaluated over the contour coinciding with a dividing streamline is equal to zero, no lift can be generated.

The main idea behind application of potential flow theory to aerodynamics is construction of a potential flow

past a body (airfoil, plane etc) superimposed with a set of vortices distributed over the body surface. This

way the nonzero lift force acting on a body can be generated, making the potential flow theory so useful. We

have stated above that due to the no-slip condition on a solid boundary in a viscous flow, the vorticity is
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generated on a solid surface. Thus, the vortices placed on a body surface mimic the viscous effects absent in

a potential flow.

The number of possible combinations of potential vortices leading to a correct magnitude of the lifting force

is infinite. The main question is how to choose the vortex distribution representing the physically plausible

situation corresponding to a given lift and geometric characteristics of a body. Discussing the flow past a

cylinder and a vortex, we saw that positions of stagnation points crucially depended upon magnitude of the

circulation Γ and for Γ 6= Γcr the singular ”kinky” streamlines, ending on a body surface, were formed.

Figure 24: The streamline in a flow (from right to left) past airfoil. The rear stagnation point is exactly at

the trailing edge.

Experimental data disagree with this effect: the observed streamlines always smoothly leave the trailing edge

of a streamlined body. This fact can easily be understood. Consider a ”kink” on a stream function Ψ(x, y) at

a point x0, y0. In the vicinity of this point Ψ(x, y) is a continous function. However, the derivative u = ∂Ψ(x0)
∂x

has a finite discontinuity δΨ(x0) = δu = O(1). Then , the second derivative ∂2Ψ(x0,y0)
∂x2 = lim∆→0

δu
∆ → ∞.

This means that in the vicinity of the kink, the viscous dissipation tends to infinity thus effectively eliminating

the kink and smoothing both the streamfunction and velocity field. This has indeed been observed in all

flows. This empirical fact can serve as a condition (Kutta condition) for the physically allowed circulation

distribution on a body surface required for the forcing generation. (For additional illustration, see next page)

14.2 Vortex sheets.

We illustrate the concept on a very important and simple example. Consider a flat plate with a cross-section

presented on the Fig. We call the interval 0 ≤ x ≤ c a cord line with x = c standing for cord length. We

cover this plate with potential vortices with the circulation density γ(x) = dΓ
dx = uu(x) − ul(x), so that

circulation corresponding to the vortex on an infinitesimal element dx given by the differential circulation

dΓ = γ(x)dx.

From the above figure, we see that
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Figure 25: .

Γ =
∮
u(x)dx =

∑
i

(uu(li)− ul(li))∆ =
∫ c

0

γ(x)dx =
∫ c

0

(u+ − u−)dx (14.4)

This result becomes clear if we notice that dlilu = −dlid and the vertical components of the velocity field

from the neibouring vortices, canceling each other, do not contribute to the integral. Thus, the vortex placed

on a point l of a contour is responsible for velocity discontinuity on this contour and for violation of the

Kelvin theorem. This effect enables generation of the net force. The potential induced by the vortex sheet

at a point P = (x, y) (see Fig) is:

φ(x, y) = −
∫ c

0

γ(ξ)
2π

θ(x− ξ, y)dξ = − 1
2π

∫ c

0

γ(ξ)tan−1 y

x− ξ
dξ (14.5)

with the induced velocity field:

u(x, y) = − 1
2π

∫ c

0

γ(ξ)
∂θ

∂x
dξ =

1
2π

∫ c

0

γ(ξ)y
(x− ξ)2 + y2

dξ (14.6)

and

v(x, y) = − 1
2π

∫ c

0

γ(ξ)
∂θ

∂y
dξ = − 1

2π

∫ c

0

γ(ξ)(x− ξ)
(x− ξ)2 + y2

dξ (14.7)
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Figure 26: .

Now we prove a relation which will be useful below:

lim
y→0

y

(x− ξ)2 + y2
= πδ(x− ξ)

Indeed, when x 6= ξ, the limit is equal to zero and when x = ξ, to infinity. In addition,

∫ ∞
−∞

dy
y

(x− ξ)2 + y2
= π

independently upon magnitude of difference x−ξ. Thus, we have proved that the expression is indeed one of

the representations of δ-function. Let us calculate the circulation on a contour around the plate in the limit

y → 0. It follows from this expressions that the vertical component v is symmetric under transformation

y → −y, vu = vl and as a result v is a continuous function across the plate. On the other hand, we see that

∆u = uu(x)− ul(x) = 2u = γ(x). Now we take an arbitrary point (0 ≤ x ≤ c, y → 0) and conclude that the

velocity component normal to the plane induced on the plate by the entire circulation distribution is

v = −
∫

γ(ξ)dl
2π(x− ξ)

; u(x, 0±) = ±γ(x)/2 (14.8)

where in the limit y → 0, we call uu,l(x, 0) = u(, x0±), respectively.
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Now we consider a homogeneous flow past the plate at 0 ≤ x ≤ c subject to boundary condition: as r → −∞,

U → U(i cosα + j sinα). Since a surface of a solid body is a streamline corresponding the streamfunction

Ψ(x, y) = 0, the normal component vn of the total (freestream and induced by the vortex sheet) of velocity

field must be equal to zero, we derive:

v(x,y = 0) =
∫

γ(ξ)dl
2π(x− ξ)

= U sinα (14.9)

This is an integral equation for the function of interest γ(x). The solution to this equation is:

γ(ξ) = 2U

√
c− ξ
ξ

sinα (14.10)

This remarkable expression automatically satisfies the Kutta condition γ(c) = 0 giving the smooth velocity

distribution at the trailing edge.

Thus, the circulation

Γ =
∫ c

0

γ(ξ)dξ = 2U sinα
∫ c

0

√
c− ξ
ξ

dξ

and, in accord with the Kutta -Joukovsky theorem, lift lift per unit span is:

L = 2ρU2 sinα
∫ c

0

√
c− ξ
ξ

dξ = 2ρU2 sinαπc/2 ≈ πρU2cα (14.11)

With the lift coefficient

cl =
L

ρ
2U

2c
= 2π sinα ≈ 2πα (14.12)

This is an exact analytic solution of the problem of a potential flow over flat plate.

Evaluation of the integral (14.11). Introduce a new variable z = ξ/c and q = z2. This gives:

∫ c

0

√
c− ξ
ξ

dξ = c

∫ 1

0

√
1− z
z

dz = 2c
∫ 1

0

√
1− q2dq (14.13)

With q = cos θ, this integral is:

2c
∫ π

2

0

sin2 θdθ = cπ/2

leading to (14.12).

Alternative derivation of the integral. Take (14.13) and introduce new variables:

z =
1
2

(1− cos θ); dz =
1
2

sin θ

so that
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c

∫ 1

0

√
1− z
z

dz =
c

2

∫ π

0

√
1 + cos θ
1− cos θ

sin θdθ =
c

2

∫ π

0

√
(1 + cos θ)2

1− cos2 θ
sin θdθ =

c

2

∫ π

0

(1 + cos θ)dθ =
cπ

2

In these variables, the solution (14.10) is written as:

γ(θ) = 2Uα
1 + cos θ

sin θ

Figure 27: Evaluation of the moment about leading edge. Schematic.

These representation will be useful for evaluation of the moment about leading edge per unit span:

M ′LE = −
∫ c

0

ξdL = −ρU
∫ c

0

ξγ(ξ)dξ = −2αU2 c
2

4

∫ π

0

1− cos θ)(1 + cos θ)
sin θ

sin θdθ (14.14)

and

M ′LE = −πρU2c2α/4 (14.15)

with the leading edge moment coefficient

cm,LE =
M ′LE
ρ
2U

2c2
=
π

2
α = −cl

4
(14.16)

It is useful to calculate the moment about a point ξ = c/4. It is clear that the procedure is identical to the

one outlined above but with

dM ′c/4 = (ξ − c

4
)dL

with the result:
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M ′c/4 = 0; cm, c4 = 0 (14.17)

Therefore, the point (line) x = c/4 is an aerodynamic center” of a flat plate. The results derived above

are valid only for the small angle of attacks. In this limit the flow is attached over the entire plate and

the vortex-producing flow-separation phenomenon does not happen. In this limit in all expressions derived

above we can set sinα ≈ α.

The expression (14.12) derived here for a simple case of a potential flow past flat plate can be applied a flow

past ”thin airfoil”, i.e. body of the type shown on Fig.22, provided its maximum thickness T ( dimension

perpendicular to the cord line) is small, i.e. T/c� 1. This is demonstrated on a figure below.

Figure 28: NACA0012. Left: Lift coefficient as a function of angle of attack α. Dots: expression (4.12).

Line:experimental data. In the range −15o ≤ α ≤ 15o, the agreement is very good. Right: Large angle of

attack. Stall.

As we see, the data on an airfoil agree well with a simple relation (14.12) obtained for a flow past a plate. At

the large angles of attack the streamlines are separated forming strong vortices. In this regime the potential

flow approximation breaks down and a flow can be described only using full Navier-Stokes equations of

viscous fluid.

Problem. Consider an airfoil of mass M = 20000kg and wing span W = 50m. Find an angle of attack α if

the low- altitude (ρ ≈ 1.2kg/m3) cruising velocity U = 150m/sec. Is the thin airfoil theory applicable?

Solution:

Mg = 2παW
ρU2

2
c
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This gives α ≈ 0.027rad ≈ 1.54o < 15o. For these parameters, expression (14.12) is accurate.

14.3 Thin airfoil theory

.

Now we generalize the approach developed above to the case of a two-dimensional airfoil which is basically a

curved closed surface (see Fig on page 42.). As in the case of flat plate we will call the segment of the x-axis

o ≤ x ≤ c passing from the leading edge to the trailing edge the cord line and the upper and lower surfaces

given by two curves Yu(x) and Yl(x) respectively. The half thickness T (x) and camber line C(x) are defined

as;

C(x) =
1
2

(Yu(x) + Yl(x)); T (x) =
1
2

(Yu(x)− Yl(x)) (14.18)

We see that for symmetric airfoil C(x) = const and ∂xC(x) = 0.

Figure 29: Airfoil surface as a vortex sheet.

The potential at a point P is evaluated according to the general rules of potential theory:

φ(x, y) = φ(P ) = − 1
2π

∫ b

a

θ(l)γ(l)dl (14.19)

In this section we are interested in a thin airfoil T/c � 1. In this case, the vortices on the upper and lowe

surfaces act in opposite directions and with a good accuracy we can substitute the foil with a vortex sheet

placed on a mean camber line.
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Figure 30: Simplified representation of entire airfoil of Fig. XX. as a vortex sheet covering camber line

As in the case of flat plate we consider a homogeneous flow with velocity U = U(cos αi + sin αj) where

U = const and α is the angle with the x-axis. The velocity field is a sum of two components

u = U + u′ (14.20)

where u′ is the velocity field induced by the vortex sheet. The main difference between this case and the one

considered above (flat plate) is modification of the local value of the angle of attack due to the curvature of

the mean camber line C(x), so that α→ α+ θ. The it is clear from the Figure (xxx) that tan θ = −dCdx and

if the airfoil is this, the angle is small and θ ≈ −dCdx . In another approximation, valid in case of this airfoil,

we place the vortices not on a camber but the cord line and repeat all considerations which led us to the

theory of flat plate. The result is: instead of (14.9) we have now:

Again, the surface of the airfoils is a streamline and the normal component of total velocity on a surface

velocity must be equal to zero. This leads to:

U(α− dC

dx
)−

∫ c

0

γ(ξ)dξ
2π(x− ξ)

= 0 (14.21)

This is an integral equation for the circulation distribution γ(ξ) along the airfoil. It is to be solved subject

to boundary condition γ(c) = 0. (Kutta condition.)
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Figure 31: Modification of a local magnitude of the angle of attack due to curvature of the mean camber

line.

14.4 Symmetric Airfoil.

We are interested in calculating the lift force on a thin airfoil. Before we proceed further, let us pause and

try to figure out what the expected solution should be. First of all, due to the total symmetry of a problem

when the angle of attack is equal to zero, we expect the lift on the airfoil to be equal to zero. It is clear

that the lift is not zero when α 6= 0 and it changes sign when the angle α changes sign, i.e. as α→ −α, the

lift L → −L. Thus, the lift must be proportional to the odd powers of α: L ∝ α + a3α
3 + .... In the limit

of small angle of attack , the high powers of α can be neglected and the first non-vanishing contribution to

the expansion gives: L ∝ α. The proportionality coefficient is also estimated readily from the dimensional

considerations. We have learned in the previous sections (Bernoulli’s equation) that the pressure on a body

is proportional to ρU2 and therefore, the force acting on the airfoil of the area S must be proportional to

pS = ρU2cW where W is the width of the airfoil (perpendicular to the page). As a result we expect the lift

on the unit width of the airfoil:

L ∝ ρU2cα

.

The proportionality coefficient will be evaluated below. It is clear that this is exactly the result obtained

above for the flat plate.

For symmetric airfoil the cumber is zero, so that dC
dx = 0 and the problem becomes identical to the one for

67



flat plate.:

Uα =
1

2π

∫ c

o

γ(ξ)dξ
x− ξ

(14.22)

Let us introduce a set of coordinates

ξ =
c

2
(1− cos θ); x =

c

2
(1− cos θ0); dξ =

c

2
sin θdθ (14.23)

The integral (14.22) is:

Uα =
1

2π

∫ π

0

γ(θ)sin θdθ
cos θ − cos θ0

(14.24)

Since, in general

∫ π

0

cosnθ
cos θ − cos θ0

dθ =
π sinnθ0

sin θ0

∫ π

0

1 + cos θ

cos θ − cos θ0
= π

,

the solution to the integral equation (14.24) is:

γ(θ) = 2
1 + cos θ

sin θ
Uα (14.25)

As a result:

Γ =
∫ c

0

γ(ξ)dξ =
c

2

∫ π

0

γ(θ)sin θdθ = αcU

∫ π

0

(1 + cos θ)dθ = παcU (14.26)

and the lift force acting on an airfoil of a unit width is: fluid is:

F = L = −ρUΓ = παcρU2 (14.27)

This result is of course in accord with the qualitative considerations presented in the beginning of this section.

The lift coefficient is:

cl =
L

ρU
2

2 c
= 2πα (14.28)

This simple conclusion is in a remarkable agreement with experimental data on the real life airfoils in the

range of the angle of attack |α| ≤ 12− 15 degrees. (see Fig.)
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Knowing the force F, the moment about leading edge is computed readily. The differential lift originating

from an element in the vicinity of the point ξ is: dL = ρUdΓ = ρUγ(ξ)dξ. Since the distance to the

leading edge is ξ, the differential moment coming from this element is dMLE = −ξdL = −ρUξγ(ξ)dξ and

the moment is given by an integral:

MLE =
∫ c

0

ξdL = ξγ(ξ)dξ (14.29)

Using the coordinate transformations leading to (14.24) and the solution (164.25) for γ(ξ) gives:

M = −ραU
2c2

2

∫ π

0

(1− cos θ)(1 + cos θ)dθ = −ραU
2c2

2

∫ π

0

(1− cos2 θ)dθ = −ρc
2πU2

4
α (14.30)

and the leading edge moment coefficient is:

cm,LE = −πα/2 = −cl/4 (14.31)

Let us calculate the moment about a point x = c/4:

Mc/4 =
∫ c

0

(x− c

4
)γ(ξ)dξ = MLE + cL/4 = 0 (14.32)

Thus, x = c/4 is the center of momentum point.

14.5 Cambered Airfoils.

In this case the term ∂C
∂x in (14.21) cannot be neglected. Still, qualitative considerations developed for the

constant -camber case C = 0 can easily be generalized. According to the Figure, the relevant , symmetry-

breaking angle is: α+ ∂C
∂x . If this angle is small, we expect the lift L be a sum of two independent contributions

L = L1 + L2, where L1 = παcU2, evaluated above and L2 ∝ ∂C
∂x where ∂C

∂x is a weighted value of ∂C
∂x , i.e.

L2 ∝
∫ π

0

∂C(θ)
∂x

φ(θ)dθ

To evaluate L2, we have to determine the weighting function φ(θ). In the coordinates (14.23), the equation

(14.21) reads:

1
2π

∫ π

0

γ(θ)sin θdθ
cos θ − cos θ0

= U(α− ∂C

∂x
) (14.33)

Our goal is to express γ(θ) in terms of given dynamic (U) and geometric (α, ∂C
∂x ) parameters of the problem.

Since we are dealing with linear equations, It is natural to seek solution of a problem as a superposition of

the solution (14.25) and a correction due to the non-zero camber:
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γ(θ) = 2U [A0
1 + cos θ

sin θ
+
∞∑
n=1

An sinnθ] (14.34)

Now, we have to express all constant coefficient An in terms of parameters of the problem. Substituting

(14.34) into (14.33) gives:

U(α− dC

dx
) =

2U
2π

∫ π

0

sin θdθ
cos θ − cos θ0

[A0
1 + cos θ

sin θ
+
∞∑
n=1

An sinnθ] (14.35)

and :

α− ∂C

∂x
= A0 +

1
π

∞∑
n=1

∫ π

0

An
sinnθ sin θ

cos θ − cos θ0
dθ (14.36)

This expression is simplified using the integral:

− 1
π

∫ π

0

sinnθd cos θ
cos θ − cos θ0

= − cosnθ0 (14.37)

leading to:

∂C

∂x
= α−A0 +

∞∑
n=1

Ancos nθ0 (14.38)

The coefficient A0 is found by integrating (14.38) in the interval 0 ≤ θ0 ≤ π and taking into account that on

this interval all integrals involving cosnθ0 are equal to zero:

α− 1
π

∫ π

0

∂C

∂x
dθ = A0 (14.39)

To determine the Fourier coefficientsAn, let us multiply (14.38) by cos θ0 and since all integrals
∫ π

0
cos θ0 cosnθ0dθ0 =

0 for n 6= 1, we derive readily:

πA1/2 =
∫ π

0

∂C

∂x
cos θdθ (14.40)

Substituting this into (14.34) gives the expression for γ(θ):

γ(θ) = 2U [A0
1 + cos θ

sin θ
+
∫ π

0

∂C

∂x
cos θdθ] (14.41)

and finally:

Γ =
∫ π

0

γ(θ)sin θdθ = πcU(α+
1
π

∫ π

0

∂C

∂x
(cos θ − 1)dθ) (14.42)

Indeed, this expression is in agreement with Γ = Γ1+Γ2 obtained above for the case of a thin airfoil and small

camber on a qualitative grounds. The lift, evaluated readily from the familiar Kutta-Joukovskii formula is:
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L = ρUΓ = πcρU2(α+
1
π

∫ π

0

∂C

∂x
(cos θ − 1)dθ) (14.43)

Sometimes one is interested in the angle of attack αL=0, so that L(αL=0) which is evaluated from the relation:

αL=0 = − 1
π

∫ π

0

∂C

∂x
(cos θ − 1)dθ (14.44)

The lift coefficient is thus:

cl = 2π[α+
1
π

∫ π

0

∂C(x)
∂x

(cos θ − 1)dθ] = 2π(α− αL=0) =
dcl
dα

(α− αL=0) (14.45)

The moment per span about the leading edge is:

M ′LE =
∫ c

0

ξdL(ξ) = −ρU
∫ c

0

ξγ(ξ)dξ = −π c
2ρU2

4
[A0 +A1 −A2/2] (14.46)

The integral is evaluated as follows:

MLE =
∫ c

0

ξdL(ξ) = ρU

∫ c

0

ξγ(ξ)dξ =

−ρU
2c2

2

∫ π

0

[(1− cos θ) sin θdθ(A0
1 + cos θ

sin θ
+
∑

An sinnθ)] (14.47)

The ntegrals are:

I0 = A0

∫ π

0

(1− cos2 θ)dθ = A0π/2

The second integral is calculated readily

I1 = A1

∫ π

0

(1− cos θ) sin2 θdθ = A1π/2

and the third one is calculated using the relation sin 2θ = 2 sin θ cos θ and substitution κ = 2θ:

I2 = A2

∫ π

0

(1− cos θ) sin θ sin 2θ = −A2

4

∫ 2π

0

sin2 κdκ = −A2π/4

Combining I0, I1 and I2 gives (14.46).

The moment coefficients are:

cm,LE = −π
2

(A0 +A1 −A2/2) = −π
2

(cl/4 + π(A1 −A2)/4) (14.48)

and

cm,c/4 =
π

4
(A2 −A1) (14.49)
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14.6 Panel Method for Lifting Bodies.

The described in previous sections thin airfoil theory is an approximation giving quite good results when

the effects of finite thickness are negligibly small. Panel method, introduced below, is an approximate

construction for a rapid and accurate numerical solution of a problem of potential flow past a body of

arbitrary geometry. The beauty of thin airfoil theory is that it enables one to find an analytic solution to

the general equation (14.33) and accurately describe the foil, provided T/c� 1. This feat is impossible for

a body of an arbitrary shape.

Panel method for lifting bodies is an approximate numerical method leading to fast and accurate results.

Instead of covering an airfoil with infinite number of infinitesimal vortices, we first represent a body surface

as a set of strait panel 1 ≤ n ≤ N and attach to control points at centers of each panel a vortex of circulation

γi. As N → ∞, the representation becomes exact. As before, our goal is to find such a set γi, so that the

total generated velocity field be tangential to the airfoil surface. In addition, this field is to satisfy Kutta

condition of smoothness of the flow leaving trailing edge: γ(TE) = 0. The setup is shown on a Figure (xx).

In accord with potential theory, the potential generated by a jth vortex at an arbitrary point P = (x, y) is:

∆φj = − 1
2π

∫
j

θp,jγjdsj (14.50)

where the integration is carried over jth panel only. We can see from Fig. (xx,b) that:

θpj = tan−1 y − yj
x− xj

(14.51)

Figure 32: a. Choice of panels b. Geometric parameters.

Thus, the potential from all panels is:
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φ(P ) =
N∑
j=1

∆φj = −
N∑
j=1

γj
2π

∫
j

θPjdsj (14.52)

This expression is valid for each point P , including those on a surface of each panel so that

φ(xiyi) = −
N∑
j=1

γj
2π

∫
j

θijdsj (14.53)

θij = tan−1 yi − yj
xi − xj

(14.54)

Since geometry of the body is given, all coordinates xiyi are known and, in principle, the system (14.53),

(14.54) can be solved subject to condition on the normal velocity on each panel:

un,i + U cosβi = 0 (14.55)

where the local angle of attack on each panel is βi and the induced velocity is expressed in terms of potential:

un,i =
∂

∂ni
(φ(xi, yi)) = −

N∑
j=1

γj
2π

∫
j

∂θij
∂ni

dsj (14.56)

The set (14.54)-(14.56) is the basis of a panel method. We are dealing with N equations for N un knowns

γi with well-known geometric parameters. In principle it can be solved using modern computers and, if N

is large enough, accurately describe the airfoil. There is a caveat, though. The Kutta condition γ(TE) = 0

is a must and this make the system overdefined: we are to solve N + 1 for N unknowns, there is an infinite

number of solutions and it is not a trivial task to choose a single correct one. A popular prescription is the

following: just drop one of the equations, say for a panel adjacent to the trailing edge (see Fig.(xx) solve for

the remaining ones and impose γ(e) = −γ(e − 1). This way we automatically obtain on the trailing edge

γ(e) + γ(e− 1) = 0.
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The thin airfoil approximation enables one to apply potential flow theory to calculate the two-dimensional

airfoil performance parameters in terms of the foil geometry, angle of attack and speed. The success of the

method is based on the theoretically unjustified but experimentally observed Kutta condition on the trailing

edge:

γ(TE) ≡ γ(c) = 0

ensuring smoothness of velocity field at the trailing edge. The potential flow theory is easily implemented

in the numerical panel method for calculation of the airfoil features beyond the limits of applicability of the

thin airfoil theory. The panel method is described in the class notes or Anderson’s book). Here are the tasks
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for the numerical X-FOIL project.

Problem 1. Consider the airfoil NACA2412 (Figure. (xxx)). If U = 15m/sec, c = 60cm,

1. determine the magnitude of integral
∫ π

0
dG
dx (cos θ − 1)dθ;

2. find lift per unit spane for angle of attack α = 4o;

3. Find moment about leading edge: M ′LE .

Problem 2. For the same airfoil, find angle of attack if cruising speed is U = 50m/sec, c = 2m, L′ = 1353N

(per span) and ρair = 1kg/m3.

Problem 3.. Consider a vortex sheet with strength:
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γ(ξ) = γ0

√
ξ

c
(1− ξ

c
)

If this is a solution in the thin airfoil approximation, find the shape of a mean camber line C(x).

Solution. The equation for α = 0 is:

dC

dx
= − 1

2πU

∫ c

0

γ(ξ)
x− ξ

)dξ

Using the variables (14.23), this equation is:

dC

dx
= − γ0c

4πU

∫ π

0

√
(1− cos2 θ)

cos θ − cos θ0
sin θdθ

dC

dx
= − γ0c

8πU

∫ π

0

1− cos 2θ
cos θ − cos θ0

dθ =
γ0c

8πU
π

sin 2θ0

sin θ0
=
γ0c cos θ0

8U
= − γ0

8U
(1− 2x/c)

and

C(x) =
γ0c

8U
(x− x2/c)

C(0)− C(c) = 0.
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15 Finite Wings.

Airfoils considered in previous sections are in fact wing sections of a mathematically convenient infinite wing,

which does not exist in real life. This construction enabled us, using potential flow theory, calculate lift on

airfoils for small angle of attack. This model, however, misses a few important effects resulting from three-

dimensionality of a real thing. The first one is a tip vortex. It is clear that the mean pressure at the bottom

of a lifting airfoil is larger than the one at the top. This leads to a flow around the wing tips, schematically

shown on Fig. A new geometric characteristic of a finite wing, reflecting variation of cord lines along the

wing, is a taper ratio ct/cr. It is clear that for a rectangular wing this ratio is equal to 1.

Since the wing on the Fig. xx moves into the page, the generated flow, called ”tip vortex”, looks like a vortex

tube. The effect is quite dramatic and, smaller planes, caught in the field of tip vortices generated by the

large ones, can can lead loose control. This is the main reason the airports impose strict regulation of the

intervals between plane take-offs.

The formation of tip vortices can be visualized by seeding the air flux in the wind tunnel by the dust particles

and shining the laser light on it. In this case, tip vortices are seen as smoke l filaments In (See Fig.)
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In important effect caused by tip vortex is generation of the downward velocity field w = −wk, so that the

total angle of attack, ”felt” by an arbitrary crossection of the wing decreases by a magnitude:

−w
U

= tanαi ≈ α (15.1)

, The phenomenon, called ”downwash” is schematically shown on the Figure xx, where the effective angle of

attack is denoted as: αeff ≡ αR = α− αi.

Figure 33: Left panel: velocity field of the tip vortex. Right panel: mechanism of generation of induced angle

of attack

The effect can be summarized as follows: Consider a plane cruising with velocity U i and the angle of attack

(between U and the cord line) α. The downwash tends to modify the relative velocity so that U becomes

somewhat ”more parallel” to the cord line. This leads to the effective decrease of the angle of attack

and that of lift.

Another important effect of the downwash is formation of induced drag. The mechanism is schematically

shown on the Fig. xxx. As we see, according to Joukovsky theorem the lift is L = ρ(U + w) × Γ. Since

vector Γ points into the page, in this case lift is perpendicular to the relative velocity U + w. This leads to

generation of the velocity component parallel to the wing cruising velocity U which, by definition is called
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Figure 34: Induced drag.

drag. It is clear that this effect, absent in the 2D potential flow theory, is caused by a three-dimensionality

of the wing.

The theory of the finite wings was developed by Prandtl (of course). Considering 2D potential vortex with

the center at the origin, we derived for the velocity field vθ = Γ
2πreθ. Here, r is the distance to the origin.

Prandtl introduced a concept of vortex filament which is to be percieved as a vortex tube depicted on the

Fig. 14

Figure 35: Vortex filament of strength Γ. Biot-Savart law

He considered a vortex filament surrounding a streamline. Since, in accord with Kelvin theorem, in the

inviscid flow the circulation is constant on an evolving streamline, the strength of the filament Γ = const.
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(In aerodynamics, Kelvin’s theorem is often called Helmholtz theorem.) We also know that in potential

flows, streamlines cannot form closed loops and thus, they must start and end at infinity. According to

Bio-Savart law, the velocity generated at each point P by an element dl of the filament is:

dV =
Γ
4π

dl× r
r3

(15.2)

The velocity field V induced by the filament is

V =
∫

Γ
4π

dl× r
r3

(15.3)

In the simplest case of a strait vortex filament a detailed calculation gives:

V =
Γ

2πh
(15.4)

where h is the shortest distance distance to the filament. (See Fig.15).

Figure 36: Strait vortex filament of strength Γ. Biot-Savart law

The integral (2.3), leading to ( 2.4) can be easily calculated. However, the result can be understood without

detailed mathematics. All points on the strait filament shown on Fig. 15 right and left from h are equivalent

and their contributions to the velocity V cancel each other. The only one, which is not cancelled is point h

contributing to the finial answer which is exactly the one we derived in potential flow approximation.

The velocity generated at point P by a semi-infinite filament (see Fig. 15) between point A and infinity, is

given by:
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V =
Γ

4πr
(15.5)

Horse-shoe vortex is a ubiquitous flow feature observed in flows past three-dimensional bodies.

Figure 37: Left panel: velocity field of the tip vortex. Right panel: mechanism of generation of induced angle

of attack

A typical example is shown on Fig. 16 where the flows past cylinder on a floor of a wind tunnel is visualized.

We can see stagnation point and a flow separating as two trailing vortices on both sides of a cylinder.

Prandtl considered a finite wing with its stagnation point and tips and substituted it by a horseshoe vortex

filament (see Fig. 17). This construction does not contradict theorems of potential flow theory: the filament

starts and ends at infinity and is characterized by a constant strength (circulation) Γ = const. We are

interested in the velocity field generated by the this vortex in the interval − b
2 ≤ y ≤

b
2 where dl× r = 0. It

is clear that the only non-zero contributions come from the trailing vortices, which are to be considered as

semi-infinite filaments. The result for downwash w is given by (2.5):

w = − Γ
4π

[
1

b
2 + y

+
1

b
2 − y

] = − Γ
4π

1
( b2 )2 − y2

(15.6)

As wee, this construction breaks down at the tips y = ±b/2. The reason for this failure is the constant value

of the vortex strength Γ = const along the filament. This simplified theory lacked something important. It

took many years of hard work to develop these ideas to fruition.

Consider a set of horseshoe vortices shown on Figure 18.

Again, this set does not contradict basic feature of potential flow theory: in each vortex number i, starting

and ending at infinity, the corresponding strength Γi = const etc. It can also be seen from the Fig. 18 that

this way one can assemble a system with an arbitrary distribution Γ = Γ(y) of a bound vortex. Introducing
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Figure 38: Left panel: velocity field of the tip vortex. Right panel: mechanism of generation of induced angle

of attack

Figure 39: Set of horseshoe vortices expliang Prandtl construction.

the density of vortex strength ∂Γ
∂y , we can write a general expression for the downwash velocity at any point

of a bound vortex y0:
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w(y0) = − 1
4π

∫ b/2

−b/2

∂Γ(y)
∂y dy

y0 − y
(15.7)

and induced angle αi(y0) at each section (airfoil ) at y = y0:

αi(y0) ≈ −w(y0)
U

=
1

4πU

∫ b/2

−b/2

∂Γ(y)
∂y dy

y0 − y
(15.8)

With the effective angle of attack (per section) αeff = α−αi, the lift coefficient per section can be expressed

in terms of this airfoil theory: cl = 2π(αeff − αL=0), the lift coefficient for the section of the cord c(y0) is

given by Joukovsky theorem:

L′ =
1
2
ρU2c(y0)cl = ρU2Γ(y0) (15.9)

so that:

cl =
2Γ(y0)
Uc(y0)

= 2π(α− αL=0) (15.10)

and

αeff = α− αi =
Γ(y0)
πUc(y0)

+ αL=0 = α(y0)− 1
4πU

∫ b/2

−b/2

∂Γ(y)
∂y dy

y0 − y
(15.11)

and

α(y0) =
Γ(y0)
πUc(y0)

+ αL=0(y0) +
1

4πU

∫ b/2

−b/2

∂Γ(y)
∂y dy

y0 − y
(15.12)

This is fundamental Prandtl’s lifting wing theory. It states that geometric angle of attack is equal to the

effective angle (see (2.11)) plus induced one, This is the integro-differential equation for Γ(y). Given this

parameter, we can readily have:

1. L′(y0) = ρUΓ(y0);

2. L =
∫ b/2
−b/2 L

′(y)dy = ρU
∫ b/2
−b/2 Γ(y)dy;

3. CL = L
1
2ρU

2S
= 2

US

∫ b/2
−b/2 Γ(y)dy

4. D′i = L′i sinαi ≈ L′iαi
5. D =

∫ b/2
−b/2 L

′(y)αidy = ρU
∫ b/2
−b/2 Γ(y)αi(y)dy

6. CD,i = D
1
2ρU

2S
= 2

US

∫ b/2
−b/2 Γ(y)αi(y)dy

Elliptic lift.

Consider a given distribution:

Γ(y) = Γ0

√
1− 4y2

b2
(15.13)
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satisfying the Kutta condition Γ(±b/2) = 0. Lift per section y = y0 is:

L′(y0) = ρUΓ

√
1− 4y2

b2
(15.14)

Let us calculate down wash:

dΓ
dy

= −4Γ0

b2
y√

1− 4y2

b2

(15.15)

and

w(y0) = − 1
4π

∫ b/2

−b/2

dΓ
dy

y0 − y
dy =

Γ0

πb2

∫ b/2

−b/2

ydy√
1− 4y2

b2 (y0 − y)
(15.16)

Using variables: y = b
2 cos θ, y0 = b

2 cos θ0 gives:

w(θ0) = − Γ0

2πb

∫ 0

π

cos θ
cos θ0 − cos θ

dθ = −Γ0

2b
(15.17)

Figure 40: Elliptical wing. Constant downwash..

We see that for this distribution, downwash is independent upon y. Then, for the induced angle of attack:

αi = −w
U

=
Γ0

2bU
(15.18)

or

L = ρUΓ = ρU

∫ b/2

−b/2
Γ(y)dy = ρUΓ0

∫ b/2

−b/2

√
1− 4y2

b2
dy (15.19)

The integral is evaluated using the same transformation of integration variables y = b
2 cos θ, with the result:

L = ρUΓ0
b

4
π (15.20)

so that

Γ0 =
4L
ρUbπ

=
4× 1

2ρU
2SCL

ρUbπ
=

2USCL
bπ

(15.21)
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We can rewrite (2.18):

αi =
2USCL
bπ

1
2bU

=
SCL
πb2

(15.22)

Finally, introducing the aspect ratio AR = b2/S gives:

αi =
CL
πAR

(15.23)

The induced drag:

CD,i =
2αi
US

∫ b/2

−b/2
Γ(y)dy =

παiΓ0b

2US
(15.24)

or

CD,i = (
πb

2US
)× (

CL
πAR

)× (
2USCL
πb

) =
C2
L

πAR
(15.25)

We see that induced drag is not small but reaches some 25% of the total drag. The elliptic wings were widely

used.

wing.jpg
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15.1 General Lift Distribution.

The results of a previous section were obtained by postulating distribution Γ(y) given by (2.13). This was

Prandtl’s stroke of genius which enables qualitative understanding of main features of finite wings. However,

since (2.13) was not obtained from the basic equation (2.13), we cannot be sure that the parabolic lift theory

is correct. Thus, to obtain a general relations for lift and induced drag, we have to solve integro-differential

equations (2.13).

Let us introduce a new variable:

y = − b
2

cos θ (15.26)

In the elliptic case:

Γ(y) = Γ0

√
1− 4y2

b2
= Γ0 sin θ = Γ(θ)

Thus, we conclude that parabolic distribution may be a first term of the Taylor series. Based on (2.18), we

seek solution as:

Γ(θ) = 2bU
N∑
1

An sinnθ (15.27)

where the coefficients An are to be found from the equation (2.13). Using

dΓ
dy

=
dΓ
dθ

dθ

dy
= 2bU

N∑
1

Ann cosnθθ
dθ

dy

the equation (2.13) reads:

α(θ0) =
2b

πc(θ0)

N∑
1

An sinnθ0 + αL=0(θ0) +
1
π

∫ π

0

∑N
1 nAn cosnθ

cos θ − cos θ0
(15.28)

This integral was evaluated in (1.24). Using the result, we rewrite (2.28) as:

α(θ0) =
2b

πc(θ0)

N∑
1

An sinnθ0 + αL=0(θ0) +
N∑
1

nAn
sinnθ0

sin θ0
(15.29)

This equation is defined on each and every spanwise location θ0. From the known geometry and this airfoil

theory, we know the cord length c(θ0) and the span b and αL=0(θ0). The only unknown are the An’s which

can be obtained readily (numerically) from N equations written for N locations θ0. Thus, in principle, the

distribution Γ(θ) is known as a solution to a set of algebraic relations (2.29).

By Joukovsky’s theorem, the lift coefficient is:

CL =
ρUΓ

1
2ρU

2S
=

2
US

∫ b/2

−b/2
Γ(y)dy =

2b2

S

N∑
1

An

∫ π

0

sinnθ sin θdθ (15.30)
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The only integral contributing to the sum in the one with n = 1. This gives:

CL = A1π
b2

S
= A1πAR (15.31)

As follows from relation (6) on page 28, the indiced drag coefficient

CD,i =
2
US

∫ b/2

−b/2
Γ(y)αi(y)dy (15.32)

Skipping mathematical details, one derives:

CD,i =
C2
L

πAR
(1 + δ) ≡ C2

L

πeAR
(15.33)

where

δ =
N∑
2

n(
An
A1

)2 > 0

The parameter e = (1 + δ)−1 is called a span efficiency factor. It was shown above, that Prandtl’s parabolic

distribution is equivalent to (2.27) when only the first terms with n = 1 is accounted for. We see that the

correction δ > 0 comes from An’s with n > 2 not appearing in the simplified, parabolic, version of the theory.

Moreover, it follows from (2.33) that parabolic lifting wing (δ = 0) corresponds to the minimum of induced

drag.

For a general aspect and taper ratios, evaluation of δ is not a simple task. We can use Prandtl’s curves

presented on the Figure.

First, one chooses a curve corresponding to a given magnitude of AR. Then, the parameter δ for a given

magnitude of the taper ratio ct/cr is found from the curve. For example, if taper ratio ct/cr = 0.8 and

aspect ration AR = 6, the parameter δ ≈ 0.5.

Thus, the total drag of a finite wing is:

CD = cd +
C2
L

πeAR
(15.34)

where cd can be obtained from the airfoil calculations. The second term is this equation accounts for induced

drag which can reach 25% of total.

Considering airfoil we found that cL = a0(α − αL=0), where in the simplest case of athin airfoil a0 = 2π.

In this expresion, α is the angle between cord line and relative velocity. In case of finite wing this relative

velocity is corrected for the downwash, so that

dCL
dαeff

=
dCL

d(α− αi)
= a0 (15.35)

and

87



CL = a0(α− αi) + const = a0(α− αL=0 −
CL
πAR

(1 + τ)) (15.36)

where, as follows from (2.33) τ ≈ δ. From this one derives:

CL =
a0(α− αL=0)

1 + a0
πAR (1 + τ)

which leads to

dCL
dα

= a (15.37)

where

a =
a0

1 + a0
πAR (1 + τ)

(15.38)

Problem. Consider a finite wing AR = 8 and taper ratio ct
cr

= 0.8. The airfoil section is thin and symmetric.

The angle of attack is 5o. Calculate the lift and induced drag coefficients. Assume τ = δ.

Solution. From the Figure: δ = 0.055. The airfoil is thin, so that a0 = 2π. Thus,

a =
a0

1 + a0
πAR (1 + τ)

= 4.97rad−1 = 0.0867degree−1
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The foil is symmetric, so that αL=0 = 0. Thus,

CL = aα = 0.0867 degree−1 × 5 degrees = 0.4335

CD,i =
C2
L

πAR
(1 + δ) = 0.00789

Problem. Consider a rectangular wing (ct/cr = 1) of AR = 6, induced drag factor (from the Figure)

δ = 0.55 and αL=0 = −2o. At the angle of attack α = 3.4o, the induced drag coefficient for this wing is

CD,i = 0.01. Calculate the induced drag coefficient for a similar wing (rectangular wing with the sa

CD,i =
C2
L

πAR
(1 + δ) = 0.00789

Problem. Consider a rectangular wing (ct/cr = 1) of AR = 6, induced drag factor (from the Figure)

δ = 0.55 and αL=0 = −2o. At the angle of attack α = 3.4o, the induced drag coefficient for this wing is

CD,i = 0.01. Calculate the induced drag coefficient for a similar wing (rectangular wing with the same airfoil

section but with AR1 = 10..

Solution. In order to solve this problem, first we have to find the coefficient a0 which is the same for similar

wings, i.e. is independent upon AR. From the Figure, in this case δ = τ ≈ 0.105. First, calculate the lift

coefficient for AR = 6.:

C2
L =

πARCD,i
1 + δ

=
π × 6 × 0.01

1 + 0.055
= 0.1787. CL = 0.423.

Therefore

dCL
dα

=
0.423

3.4o − (−2o)
= 0.078 degree−1 = 4.485 rad−1

dCL
dα

= a =
a0

1 + a0
πAR (1 + τ)

= 4.485 rad−1 =
a0

1 + 0.056a0
(15.39)

This gives a0 = 5.989 rad−1.

NOW WE CAN SOLVE THE CASE OF AR1 = 10. The lift slop of this wing is:

a =
a0

1 + a0
πAR (1 + τ)

=
5.989

1 + 5.989×1.105
(π×10)

= 4.95 rad−1 = 0.086 degree−1

and

CL = a(α− αL=0) = 0.086(3.4o − (−2o) = 0.464
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CD,i =
C2
L

πAR
(1 + δ) = 0.0076

Problem. Consider a rectangular wing of a span b = 20m and cord line c = 2m. The section of this wing

are NACA0012. The speed U = 100m/sec, angle of attack α = 2o. Find:

1. Lift.

2. Total drag.

3. Repeat the calculation for NACA2412.

4. Compare with experimental data.

Assume: the foil is thin, τ− = δ and evaluating friction drag neglect thickness of the wing.

Solution.

Reb = 100× 2/(0.15× 10−4) = 1.33× 107

CD = cd + CD,i = cd +
C2
L

πAR
(1 + δ)

CL =
2π(α− αL=0)

1 + 2π
πAR (1 + τ)

= 0.18

Ff = 2b
ρU2

2

∫ c

0

0.0576Re−0.02
x dx = 0.219ρU2/2 =

ρU2

2
S ≡ cd

ρU2

2
S

cd = 0.0027

CD = 0.0027 + 0.0011 = 0.0038
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16 Potential Flows: Sound and Gravity Waves.

Waves in fluids is a huge field of fluid mechanics covering sound propagation, surface and internal waves,

gravity-induced waves etc. Often, waves control environmental flows, mixing and many other important

phenomena. The thorough study of waves in fluids in much beyond the scope of these notes. In this Section,

we would like to present an elementary demonstration how the equations of ideal flows (Euler equation), even

in the simplest possible potential flow approximation introduced above, can lead to the equations describing

various types of waves.

Sound. Now, we analyze a compressible flow of density ρ 6= const. For simplicity, consider a gas filling the

entire space. The density of nonperturbed gas is ρ = ρ0 = const (p = p0 = const). If at initial instant t = 0

a compression (ρ > ρ0 ) is created in a small volume ≈ ∆3 positioned in the interval r0 −∆ ≤ r ≤ r0 + ∆,

then, due to the mass conservation, the volumes of lower density ρ < ρ0 must be formed in the adjacent

fluid/gas patches r > r0 + ∆ and r < r0 < ∆. This compression leads to the net, noncompensated, surface

forces acting on the surrounding fluid elements. This surface force leads to compression of the neighboring

fluid elements accompanied by a pressure loss in the original volume. This way, compression and rarefaction

are propagated across fluid. We would like to stress that no transfer of substantial amount of material is

generated by this mechanism. The pressure p is a scalar and, as a result, the compressed fluid volume equally

“pushes” the adjacent fluid element in all directions. Only normal forces are involved and no vorticity is

created. As a result, the potential flow theory is valid. This picture of compressed and rarified regions in

gas, solid or liquid) will propagate forming the sound wave.

Figure 41: Propagation of the density perturbation.

We assume that the density and pressure perturbations are very small and write
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p = p0 + p′ ρ = ρ0 + ρ′ (16.1)

and ρ′ � ρ0 and p′ � p0. The Euler equation can be written as:

∂u
∂t

+ (u · ∇)u = −∇(p0 + p′)
ρ0 + ρ′

(16.2)

∂u
∂t

+ (u · ∇)u = −∇p
′

ρ0
(1− ρ′

ρ0
) (16.3)

The velocity of an unperturbed gas u(ρ0) = 0 and we conclude that the non-zero velocity, caused by the

density variation, is O(ρ′). Since the pressure/density fluctuations are very small, the non-linear v · ∇v =

O(∇(ρ′)2) - contribution to the Euler equation is very small, compared with 1
ρ0
p′ and can be neglected

together with the O(p′ρ′)-contributions. This gives:

∂u
∂t

= −∇p
′

ρ0
(16.4)

In the same approximation, the continuity equation:

∂(ρ0 + ρ′)
∂t

+∇ · (ρ0 + ρ′)u ≈ ∂ρ′∂t+ ρ0∇ · u = 0 (16.5)

In deriving this equation the contributions ρ′∇ · u was neglected because both ρ′ and u are small.

According to the equation of state pressure p = p(ρ(x)) is a function of density and depends upon spatial

coordinates only due the density variation: p = p(ρ0 + ρ′(x)) = p0 + p′(x) = p(ρ0) + (∂p(ρ0)
∂ρ )sρ′ and

p′ = (
∂p(ρ0)
∂ρ

)sρ′ (16.6)

Differentiating this over t and using (15.5) gives:

∂p′

∂t
+ ρ0(

∂p(ρ0)
∂ρ

)s∇ · u = 0 (16.7)

That is where potential flow approximation u = ∇φ, becomes handy: substituting this into equation (15.4)

we derive readily:

p′ = −ρ0
∂φ

∂t
(16.8)

and finally the expression (15.7) reads

∂2φ

∂t2
− c2∇2φ = 0 (16.9)
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where the speed of sound c2 = ∂p
∂ρ s

. This equation describing propagation of the density waves in fluids, is one

of canonical equations of mathematical and theoretical physics. The derivation, presented here, demonstrates

the broad range of applications described by the Euler equations in a potential flow approximation.

If all properties of a flow depend only on one coordinate x (plane wave), then (15.9) is:

∂2φ

∂x2
− 1
c2
∂2φ

∂t2
= 0 (16.10)

To solve this equation, we introduce new variables ξ = x− ct and η = x+ ct. It these variables, the equation

(15.9) becomes:

∂2φ

∂ξ∂η
= 0 (16.11)

and gives ∂ηφ = F (η) where F is an arbitrary function. Second integration gives φ =
∫
F (η)dη + F1(ξ) ≡

f1(ξ) + f2(η) where f1 and f2 are arbitrary functions. Thus,

φ(x, t) = f1(x− ct) + f2(x+ ct) (16.12)

describing two propagating or traveling plane waves.

The equation (15.10) can be solved using the Fourier transform. We seek solution is a form φ = Reiωt−ikx.

Substituting this into (15.10) gives:

ω = ±ck (16.13)

and

φ = A cos(ckt+ kx) +B sin(ckt− kx) (16.14)

The velocty field is then ux = ∂xφ:

ux = −Ak sin(ckt+ kx) +Bk cos(ckt− kx) ≡ a sin(ckt) + b cos(ckt− kx) (16.15)

and the constant a and b are found from initial conditions. We see that if at any instant of time and at any

point in space u = u0, then after time t the same value will be found at a distance ct from this point. Thus

any pattern in a fluid propagates with the sound velocity c. Since only one velocity component ux = ∂xφ in

a plane wave is not equal to zero , we conclude that the sound waves in fluids are longitudinal.

Consider a travelling way propagating in the x direction. The x-component of velocity can also is written

as ux = ∂xφ(x− ct) = φ′ The Bernoulli equation, neglecting the O(u2) contributions as small is:

∂φ

∂t
+ p′/ρ =

φ(x− ct)
∂t

+ p′/ρ = cφ′ + p′/ρ = 0 (16.16)

93



Combining two expression gives:

ux =
p′

ρc
(16.17)

Since p′ = c2ρ′, we have

ux = cρ′/ρ ≈ cρ′/ρ0 (16.18)

The root -mean-square of the wave velocity averaged over one cycle is

ux,rms = a/
√

2 = cρ′rms/ρ0 > 0 (16.19)

Introducing the Mach number Ma = ux/c we see that the approximations used for derivation of the above

expressions are valid if :

Ma = ux,rms/c = ρ′rms/ρ� 1 (16.20)

Based on these relations, we can calculate the energy of a unit volume of a plane travelling wave:

E = ρ0u
2
x,rms = ρ0c

2Ma2 (16.21)

and the total energy is simply equal to EV .

Accoding to thermodynamics (∂p∂ρ )s = ( cpcv )(∂p∂ρ )T ≡ γ(∂p∂ρ )T and if pV = p/ρ = RT/m, where m is the

molecular weght, we have:

c =
√
γRT/m (16.22)

For air at room temperature and normal (atmospheric ) pressure, γ = 1.4. For other substances, see the

books on thermodynamics.

In general, the expression describing a sound wave propagating forward in the x-direction, can be written

as:

φ = a cos(
ωx

c
− ωt+ α) (16.23)

where a is called an amplitude and, in general, the wave -vector is defined as k = ω
c n , where n is a

unite vector in direction of propagation. The wave characterized by a single frequency and a single wave-

vector , described above, is called monochromatic wave. Any more complex wave, can be represented as a

superposition of these waves, which is basically an expansion in Fourier series.

Sound in a moving medium. Sound from moving sources. The dispersion relation

ω = ck derived above for a monochromatic (single frequency) wave propagating in an non-moving infinite

94



homogeneous medium. Now, imagine gas moving as a whole with velocity V, relative to an observer (us)

staying in a fixed frame of reference K, where the coordinates of each point are defined by three numbers

(x,y,z). We are interested in properties of sound detected by a non-moving observer (us).

Figure 42: The coordinate frame K ′ moves with velocity V relative to the non-moving frame K. At time t

x = x′ + V t. At t = 0, x = x′.

In the frame of reference K’ moving with velocity V, the fluid is at rest and the solution to the wave

equation φ = aRei(k·x′−ikct)) is valid. It is clear from the Figure 28, x′ = x−Vt and the solution for a wave

propagating in a moving medium (frame K ′) detected by a steady observer in a frame K is:

φ = aRei(k·(x−Vt)−ckt = aRei(k·x−(ck+V·kt)) ≡ aRei(k·x−ωt)

with a frequency:

ω = ck + k ·V (16.24)

Thus, depending on the sign of velocity V, the frequency detected by a non-moving observer depends upon

the angle between the wave-vector k and V. The effect is illustrated on Fig.29. We see that the left observer

facing the ”wind” detects the high frequency wave (ω > ω0 = ck (”blue shift”) while the right one feels

ω < ω0 (”red shift”).

Based on the above results, we can investigate the Doppler effect: the frequency of sound, as received by an

observer moving relative to the source at rest with velocity V is not equal to the one generated by the source.

In the frame K, where observer is steady, the velocity of the medium is −V. The frequency generated by a

source relative to the steady medium (now this is frame K ′ ) is ω0 = ck . Thus, the frequency received by a

moving observer is

ω = ω0 − k ·V = ω0(1− V

c
cos θ) (16.25)
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Figure 43: Doppler effect. Two ”observers” talking with each other. The arrow indicates the velocity of the

medium (wind) V. Both receive distorted sound waves of the frequencies not equal to the frequencies of

their voices in a closed room

Now, consider a medium at rest with a sound wave emitted from source moving with velocity V. The

frequency, generated in the moving frame where source is at rest is equal to ω = ω0 = ck. The frequency in

the frame K is thus: ω0 = ω(1− V
c cos θ) and the frequency received by a non-moving observer is

ω =
ω0

1− V
c cos θ

(16.26)

Figure 44: Doppler effect. Propagation of sound generated by a moving car.

This effect is illustrated on Fig. 30. If an observer is behind the car moving away so that V · k < 0, the

received frequency ω < ω0. In the opposite case k ·V > 0 and the frequency ω > ω0. The case Ma = V/c > 1

is singular corresponding to hypersonic flow regime.

Red shift in astronomy.
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Gravity waves.

Another important example of potential flow is gravity waves generated by perturbation of a free fluid

surface. In previous sections we saw how external forces or imposed pressure gradients, lead to the flow gener-

ation and, as a result, fluid mass transfer over large distances. The wave is a response to external perturbation

which propagates, sometimes over huge distances, without any substantial mass transfer. Moreover, often,

its speed is not related to the wave -generating flow velocity. It was Leonardo da Vinchi, who in the fifteenth

century noticed that the wave on the water surface can move much faster than the water mass itself. A

remarkable and widely observed example of the waves , not related to substantial ”particle” transfer, are the

wind-generated waves on a surface of the grain field. Waves which occur in electrodynamics, acoustics, solid

state physics, are one of the most important effects in nature. Below, we briefly discuss examples of waves

resulting from potential flow theory.

Consider a fluid layer −H ≤ z ≤ 0 and −∞ < x, y < ∞. It follows from equations of hydrostatics, the

unperturbed free surface at z = 0 is plane.

Figure 45: Perturbation of the surface of a fluid layer.

The Euler equations in a gravitational field are:

∂v
∂t

+ v∇v = −∇p
ρ

+ ν∇2v + gk (16.27)

If the surface is perturbed from its equilibrium position z = 0, the access of pressure ∆p ≈ ρga, where

a is the amplitude of perturbation, is created which tends to restore the fluid layer to its unperturbed

shape. However, the pressure, being a scalar tends to push the surrounding perturbation fluid elements will

propagate along the surface as a wave with the wave-length λ and amplitude a.

Let characteristic time of the oscillation be τ , so that the typical velocity can be estimated as v ≈ a/τ and
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∂v

∂t
≈ a

τ2

The spatial derivative in the x-direction is then ∂v
∂x ≈ v/λ and v∇v ≈ v2/λ ≈ 1

λ
a2

τ2 . Interested in the

long-wave propagation a� λ, we see that :

v∇v ≈ v2

λ
≈ a2

τ2λ
<<

∂v

∂t
≈ a

τ2

meaning that, if a/λ � 1, the non-linear term can be neglected. Since the viscous contribution can be

estimated as: ν∇2v ≈ ν v
λ2 ≈ ν a

τλ2 , we see that it is small in comparison with time-derivative if: νv
λ2 � v/τ1,

so that ντ
λ2 � 1.

The remaining equation is:

∂v
∂t

= −∇p
ρ
− gk (16.28)

It follows from this equation that

∂ω

∂t
= const = 0 (16.29)

Thus, under these assumptions, the considered flow is potential. Taking into account that v = ∇φ and

gk = ∇gz, the Bernoulli equation, corresponding to (15.28) (see (9.4) ) can be written readily

ρ
∂φ

∂t
+ p+ ρgz = f(t) (16.30)

Let us introduce the vertical displacement of the surface ζ and denoting the atmospheric pressure p = p0 =

const on a surface, gives:

p0 = −ρgζ − ρ∂φ
∂t

+ f(t) (16.31)

Since v = ∇φ = ∇(φ+ f(t)), we can add an arbitrary function f(t) to the potential φ, including f(t) = p0
ρ t.

Sustituting this into (15.31) gives on a surface z = ζ:

gζ +
∂φ

∂t
|z=ζ = 0 (16.32)

Since ζ is a surface displacement in the z-direction, by definition:

vz =
∂φ

∂z
=
∂ζ

∂t
(16.33)

and, differentiating (15.32) over time t leads to:

gvz +
∂2φ

∂t2
|z=ζ = (g

∂φ

∂z
+
∂2φ

∂t2
)z=ζ = 0 (16.34)
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or, taking into account that ζ � λ, this equation can be simplified:

(g
∂φ

∂z
+
∂2φ

∂t2
)z=0 = 0 (16.35)

and, as always in potential flows,:

∇2φ =
∂2φ

∂x2
+
∂2φ

∂z2
= 0 (16.36)

The equations (15.35)-(15.36) describe the so called gravity waves.

Deep water waves.

Figure 46: Deep water waves. The depth of the layer is much larger than the wave amplitude.

Considering first the ”deep water waves propagating in the x-direction”, we seek solution to this equation

as:

φ = A(z) cos(ωt− kx) (16.37)

where ω is called ”circular frequency” related to the period of oscillations as T = 2π/ω and the wave number

k = 2π/λ. Substituting this solution into the equation (15.36) gives:

d2A

dz2
− k2A = 0 (16.38)

This equation has two solutions: Bekz and B1e
−kz. Since at the bottom z → −∞ (”deep water”), the

velocity v = 0, we have:

φ = Bekz cos(kx− ωt) (16.39)
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From the boundary condition at z = 0, given by (15.35), we derive relation between ω and k which is called

the ”dispersion relation”. Indeed, substituting the solution (15.39) into(15.35) gives:

ω2 = kg (16.40)

The velocity field is found from the definition vx = ∂φ
∂x and vy = ∂φ

∂y . The result is:

vx = −Bkekz sin(kx− ωt); vz = Bkekz cos(kx− ωt) (16.41)

We see that velocity exponentially decreases outside the surface layer. This kind of waves is called ”surface

waves”. The path of particles in the wave is found by the rules introduced above: v = dr
dt . Integrating the

velocity field over time gives:

x− x0 = −B k

ω
ekz0 cos(kx0 − ωt); y − y0 = −B k

ω
ekz0 cos(kx0 − ωt); (16.42)

These expressions give:

(x− x0)2 + (y − y0)2 = B2(
k

ω
)2e2kz0 (16.43)

meaning that the fluid particle trajectories are circles with the radii B k
ω e

kz0 , decreasing away from the

surface into the ”water” (see Fig.29). The speed of propagation is given by a general theory of waves:

U =
∂ω(k)
∂k

=
1
2

√
g

k
=

1
2

√
gλ

2π
(16.44)

Problem. Consider the same problem but in a layer of a finite depth H.

Shallow water waves. (Long gravity waves.)

Now we consider the case of shallow water waves, i.e. λ >> H dominating the coastal area of oceans, seas,

rivers etc. (see Fig. 30). Again, we neglect the nonlinear term v · ∇v and assume that the wave propagates

in the x-direction. In this case vx >> vy, vz. The Euler equation reads (vx ≡ v):

ρ
∂v

∂t
+
∂p

∂x
= 0 (16.45)

and

∂p

∂z
= ρg (16.46)

Integrating this equation and taking into account that on the surface z = ζ, pressure p = p0, gives:

p = p0 + ρg(ζ − z) (16.47)

Combining this with (15.45), we have:
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Figure 47: Deep and shallow water waves. Shallow (λ� H) waves appear near the coast.

∂v

∂t
= −g ∂ζ

∂x
(16.48)

Another important relation is derived directly from the continuity equation (mass conservation law). In this

case the density ρ = const but, due to the surface variation, the crossection of the flow varies in both time

and space. Consider two crossections at points x + dx and x. If width of the layer is W = const, the mass

of the fluid contained in the volume M(x, t) = ρWS(x, t)dx. The change of mass in this volume is then:
∂M(,t)
∂t = ρW ∂S(x,t)

∂t . By the mass conservfation law, the variation of the fluid mass in the chosen volume is

equal to total mass flux through two crossections S(x+ dx, t) and S(x, t):

ρW [(Sv)x+dx − (Sv)dx] = ρW
∂Sv

∂x
dx

The balance is:

∂S

∂t
+
∂Sv

∂x
= 0 (16.49)

If the width of the channel is W , the area of a crossection is S = (H + ζ)W = S0 + ζW , where S0 = const

is a width of a plane surface in the absence of perturbation, i.e. ζ = 0. Since, ζ and v are small, we neglect
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Figure 48: Deep water waves. The depth of the layer is much larger than the wave amplitude.

the O(vζ) contribution, i.e. approximate Sv = W (H + ζ)v ≈ S0v, and obtain:

W
∂ζ

∂t
+
∂S0v

∂x
= 0 (16.50)

Differentiating this equation over t and taking into account

∂v

∂t
= −g ∂ζ

∂x

we derive:

∂2ζ

∂t2
− gS0

W

∂2ζ

∂x2
= 0 (16.51)

which is a familiar ”wave equation”-one of the canonical equations of mathematical physics. Since H =

S0/W , we, looking for solution in the form ζ ∝ cos(ωt− kx), derive dispersion relation for the shallow water

waves:

ω =
√
gHk (16.52)

and the wave velocity:

c =
√
gH (16.53)

If initial perturbation ζ(x, 0) = ζ0, the general solution to the equations is:

ζ(x, t) = ζ0(x− ct) (16.54)
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meaning that this perturbation propagated along the surface of the layer without major distortions. This

effect is very important in many enviromental flows. It is clear that if initial perturbation is plane, then it

propagates as a whole with velocity c. In this case it not called a wave but a bore. If it is a point (stone

dropped into a pond), then resulting wave will be a propagating circular pattern with the right edge moving

with velocity c and the left (rear) one with velocity −c.

Figure 49: Shallow water waves. The waves originating from many different sources form a diffraction

pattern.

A simple derivation of expression (15.53).

The above results were derived from the first principles, i.e. using the basic equations of hydrodynamics

in a well-defined limit λ >> H and ζ � λ. The structure of the flow was not assumed but appeared as a

solution to the wave equation (15.45)-(15.46).

Figure 50: Flow structure in steady (left) and moving (right) frames.

Here we demonstrate how the expression (15.53) can be obtained by assuming the relation (15.54) stating
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that the initial perturbation of the surface propagates without substantial deformation. We consider the

initial perturbation (see Fig.33) ζ(x) = ζ0(x) = const defined on a moving domain x < ct , propagating from

left to right with an unknown velocity c. The velocity of the fluid at x > ct is equal to V = 0, meaning that

the fluid, which is on the right from a moving wave front is immobile. However, behind perturbation’s front,

the bulk of the flow moves with velocity V 6= 0. Since the amplitude of the wave is small, V � c.

As we saw above, in the case of a steady flow, Bernoulli’s equation is very simple. Considering a problem of

propagating perturbation (see Fig.33) in a frame of reference moving with velocity c, the time-independent

Bernoulli’s equation for a moving front can be used. In this frame, the flow behind and before ”wave” front

has velocities c − V and and c, respectively. On a surface, where pressure p = p0 = const, Bernoulli’s and

continuity equations are:

(c− V )(H + ζ) = cH (16.55)

and

1
2

(c− V )2 + g(H + ζ) = gH +
1
2
c2 (16.56)

Since c� V , we neglect the O(V 2) contributions to obtain:

V H = ζc; gζ = cV (16.57)

giving the expression (15.53) and justifying the assumption V
c = ζ

H � 1 used in the derivation. We would

like to stress that this ”derivation” is based strong assumptions of a stable surface perturbation of a par-

ticular shape moving without any appreciable distortions. In the previous, much more superior, derivation

these assumptions were not needed.

Shallow water waves: Tsunamis.

Perturbations of water surface can be generated by wind, impact of falling bodies like meteorites, tiny earth

tremors etc. Generated far from the coastal areas, typically, these perturbations give rise to the deep water

waves (λ << H) propagating with speed given by the relation (15.44). Approaching the shores where λ� H,

these waves turns into shallow water waves which safely decay due to the bottom friction.

Tsunami is a different story. Tsunamis can be generated when the sea floor abruptly deforms and

vertically displaces the overlying water. Tectonic earthquakes are a particular kind of earthquake that are

associated with the earth’s crustal deformation; when these earthquakes occur beneath the sea, the water

above the deformed area is displaced from its equilibrium position. Waves are formed as the displaced water

mass, which acts under the influence of gravity, attempts to regain its equilibrium. When large areas of the

sea floor elevate or subside, a tsunami can be created. Tsunamis are unlike wind-generated waves, which
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Figure 51: Hydraulic jump. The surface perturbations generated by a paddle in the left side of a channel

reach the shallow water leading to the ” jump”.

many of us may have observed on a local lake or at a coastal beach, in that they are characterized as shallow-

water waves, with long periods and wave lengths. The wind-generated swell one sees at a California beach,

for example, spawned by a storm out in the Pacific and rhythmically rolling in, one wave after another,

might have a period of about 10 seconds and a wave length of 150 m. A tsunami, on the other hand, can

have a wavelength in excess of 100 km and period on the order of one hour.

As a result of their long wave lengths, tsunamis behave as shallow-water waves. A wave becomes a shallow-

water wave when the ratio between the water depth and its wave length gets very small. As was derived in

this Section, shallow-water waves move at a speed c =
√
gH. In the Pacific Ocean, where the typical water

depth is about H ≈ 4000m, a tsunami travels at about c =
√
gH ≈ 200m/s ≈ 700km/hr. Because the rate

at which a wave loses its energy is inversely related to its wave length, tsunamis not only propagate at high

speeds, they can also travel great, transoceanic distances with limited energy losses.

Large vertical movements of the earth’s crust can occur at plate boundaries. Plates interact along these

boundaries called faults. Around the margins of the Pacific Ocean, for example, denser oceanic plates slip

under continental plates in a process known as subduction. Subduction earthquakes are particularly effective

in generating tsunamis.

As a tsunami leaves the deep water of the open ocean and travels into the shallower water near the coast,

it transforms. As the water depth decreases, since c =
√
gH, the tsunami slows. The tsunami’s energy flux,

which is dependent on both its wave speed and wave height, remains nearly constant. Consequently, as the

105



tsunami’s speed diminishes as it travels into shallower water, its height grows. Because of this shoaling effect,

a tsunami, imperceptible at sea, may grow to be several meters or more in height near the coast. When it

finally reaches the coast, a tsunami may appear as a rapidly rising or falling tide, a series of breaking waves,

or even a bore. Capable of inundating, or flooding, hundreds of meters inland past the typical high-water

level, the fast-moving water associated with the inundating tsunami can crush homes and other coastal

structures. Tsunamis may reach a maximum vertical height onshore above sea level, often called a runup

height, of 10, 20, and even 30 meters.

Froude number. All above considerations have been developed for the waves propagating in a

non-moving, steady, fluid layer. Now, let us consider a layer (”river”, brook ) moving in the x-direction with

velocity U together with source of the surface perturbation (”paddle”). In a frame of reference moving with

velocity U , the wave pattern will be exactly the same as in the case of non-moving fluid. We are interested

in the wave-shape, formed in a moving layer, ”seen” by a stationary observer. Relative to this observer, the

upstream (rear) part of the pattern will propagate with velocity c−U , while the downstream part will move

with the speed c+ U .

Figure 52: The surface perturbations propagating in a fluid layer moving with velocity U . The wave speed

is c =
√
gH.

To characterize various situations, let us define the so called Froude number:

F =
U

c
=

U√
gH

(16.58)

When F = 0 the wave has a circular shape. If F < 1, since upstream and downstream parts move with

different velocities, it is somewhat deformed. At the critical F = Fc = 1, the rear part of the wave will not

propagate, i.e. will stay frozen relative to the stationary observer. If F > 1 the entire pattern will be swept

downstream with velocity U > c and a wedge-shape form will be developed. If a boat moored upstream of
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the wave origin. If F < 1 or U < c eventually, the wave will reach and rock the boat. However, if F ≥ 1,

the fisherman will never know about the wave existence.

To elucidate the pattern formed in the case F ≥ 1, consider Fig.39.

Figure 53:

Generated at time t = 0 at the origin x = 0, the local perturbation propagates in a moving water layer. After

time-interval ∆t, the center of the generated circular pattern will reach a point x = U∆t and the radius of

the circle measured from this center, determined by the wave propagation speed, is c∆t. We can see that

the angle of the cone available to the wave is given by a relation:

sinα =
cδt

U∆t
=

c

U
=

1
F

(16.59)

Similar patterns occur when the source of the sound wave moves with velocity which larger than the sound

speed. In compressible fluids small density fluctuations are propagated by the sound waves moving with

velocity c ≈
√
kBT/m . If the source moves with a very large velocity U ≥ c, the pile up of the density

fronts ”downstream” leads to a very large density and pressure jump, which is called shock wave. In this

case the cone pattern can be readily detected using optical methods.

Hydraulic jump. Hydraulic jump is formed when a water from a faucet falls on a surface of a

plate plate: first the water propagates away as a thin layer and then, suddenly, a substantial rise in the water

level occurs. In an open channel the effect can be observed when membrane a separating two compartments

filled with water of different height is suddenly lifted. To understand the physics governing this phenomenon,

consider the jump shown on Fig. 40.

Figure 54: Hydraulic jump.

By continuity:
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U1H1 = U2H2 (16.60)

The equation for the x-component of momentum balancing the forces acting on crossections a control volume

between crosssections 1 and 2 is:

−i
∫
pndA = i

∫
ρ(n ·U)UdA

or

∫ H1

0

ρg(H1 − y)Wdy −
∫ H2

0

ρg(H2 − y)Wdy = −ρU2
1WH1 + ρU2

2WH2 (16.61)

which gives

g

2
(H2

1 −H2
2 = U2

2H2 − U2
1H1 (16.62)

Combining this with (15.60) and defining upstream Froude number F1 = U1/
√
gH1 we have:

(
H2

H1
)2 +

H2

H1
− 2F 2

1 = 0 (16.63)

Since H2 ≥ H1 this gives

H2

H1
=

1
2

(
√

1 + 8F 2
1 − 1) (16.64)

This formula is called hydraulic jump relationship. This relation can be easily understood if we recall that

for F1 > 1, the speed of the flow is larger that of the surface perturbation propagation. Thus, if rise of a

surface level occurs at a a point due to an obstacle, for example, the water upstream cannot react to it and

readjust its motion. This leads to a formation of a steady hydraulic jump in the immediate vicinity of the

obstacle. (Think about multiple car crash.)

(FIGURES.)
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