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ME-SE-EC 710 SYLLABUS 

 Boston University College of Engineering 

 MΕ710 meeting with EC and SE710:  Dynamic Programming and Stochastic Control 

 Spring 2015, MW 10-12:00, PSY B35 

Prof. Michael Caramanis, 15 St. Mary's Street, Rm. 137, tel. (617) 353-3247; mcaraman@bu.edu  

 

TEXT: The required text for this course is Dynamic Programming and Optimal Control, 

Volumes I and II by D. Bertsekas. Volume II is formally required, but, if cost is an issue, you can 

get by with Volume I and class notes to be distributed regularly by email.  Optimization Over 

Time by P. Whittle is recommended for those students interested in a more extensive and 

rigorous coverage of certain topics.  A good presentation of the background material for the 

course, beyond the review that will be given in class, can be found in Luenberger's Introduction 

to Dynamic Systems and any good Probability text covering Derived Probability Distributions 

(or functions of random variables), Bayes' Theorem and Conditional Probability.  Class notes 

distributed to all class participants by email will duplicate or complement material in the above 

sources. 

HOMEWORK, EXAMS, PROJECT, AND GRADING: There will be homework assignments, a 

late midterm examination and a project (preferably but not necessarily involving computer 

programming) all of which will determine the final grade.  Projects can be selected either in the 

area of a computer implementation of the analysis tools developed in the course (to verify and 

elaborate theoretical results, investigate the efficiency, feasibility, convergence, and accuracy of 

alternative numerical solutions/approximations, etc.) or in the area of applying analysis tools to 

a real life problem.  For students exploring the possibility of taking up doctoral work in this 

area, the project may be viewed as an opportunity to test their interest in this field.  Judgment 

will be exercised in determining the final grade, since use of a formula is not appropriate in 

advanced courses such as this one. 

OBJECTIVES: The main objective of the course is to present a unified approach to Markovian 

Decision theory and Dynamic Programming.  Applications will cover Operations Research, 

Stochastic Control and Computational Methods.  New directions in using Neuro-Dynamic 

Programming (more simply known as Approximate Dynamic Programming) techniques to 

determine near-optimal policies for the control of otherwise intractable stochastic dynamic 

systems will be introduced in class and may be explored further by those interested in 

individual student projects.  Continuous time stochastic control with Generalized Stochastic 

Markovian Process jump disturbances will be introduced and uniformization solution 

techniques will be presented. Some notable application examples in communication systems 

and flow control of production/service systems will be discussed. 

Attention: Spring 2015 Special Dates!!! 

 Monday April 13, 2015,  Midterm Examination  

 Last Day of Reading Period, Projects due  
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MATERIAL COVERAGE 

Lectures   Coverage 

1    -Introduction 

2    -Sequential Decisions with Perfect Information, the D. P. 

algorithm, Computational Advantages. 

1     -Problems with lags, auto-correlation. Reduction to standard form. 

2     -Linear Systems with Quadratic Cost and the certainty 

equivalence principle. 

2     -Inventory Control and Optimal Stopping Problems. 

4     -Imperfect State Information Problems, Finite State Markov 

Chains, Separation of Estimation and Control in Linear Quadratic 

Gaussian problems (Kalman filter). 

1    -System identification, dual control and adaptive control, an 

introduction. 

2    -Discounted cost Infinite Horizon Problems and Steady State 

Markovian Decisions. Computational techniques (Value and 

Policy Iteration and Linear Programming). 

2    -Average cost Infinite horizon problems. Average cost per period, 

steady state probabilities and the differential cost based Bellman 

equation. Existence of Value Function and Computational 

Techniques (Value and Policy Iteration, and Linear 

Programming). 

2    -Uniformization and continuous time or fluid model 

approximations. Differences in the Value Iteration algorithms 

between the Embedded and Uniformized versions of the 

markovian decision making problem.   

2    Applications: 

a) Yield Management in Bandwidth connection pricing  

b) Flow Control Problems arising in Communication Networks 

and Flexible Manufacturing Systems,  

c) Routing and scheduling control in multi-class queueing 

networks. 

1    -Examination 

1    -Neurodynamic Programming. The use of Features for value 

function approximation. The conventional numerical solution 

techniques (value/policy iteration and LP) and Simulation or Real-

time system observation based  policy/value iteration techniques 

in a Q learning  environment where system dynamic details 

(system equation and probability laws) are not known. 

  

PROJECT TOPIC EXAMPLES/SUGGESTIONS: 

@Asset Selling Problem: Implement for various probability distributions including a user 
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specified histogram. Compute optimal transient and steady state policies. Study impact of 

discount rate, distribution and distribution parameters on policies. 

@Fault Testing Problem: Generalize the recursion relationships for the piece-wise-linear 

representation of the cost to go function and the calculation of the critical probability values ak. 

Implement on software and calculate the transient policy critical probabilities as well as the 

steady state policy critical probability for various parameter values. 

@Linear System With Quadratic Costs: Generalize the optimal controller design and cost to go 

function formulae we derived in class by removing all the convenience assumptions. In 

particular derive the recursion relationships and implement them in computer software for: 

Ew 0; and gk=x k
Qkxk+u k

Rkuk+x k
Dkuk+x k

ek+u k
pk+rk where Dk, ek, pk, rk  are 

appropriate dimension constants. Do convexity conditions continue to hold? If so under 

what conditions? 

@Imperfect State Information Problem with Finite/Discrete State and Control Spaces, Transient 

Behavior. Read related literature including Smallwood-Sondik paper and generalize the two 

dimensional examples worked out in class for a general  state transition probability scheme 

pij(u). Then implement  a three dimensional problem ala Smallwood and Sondik. 

@Imperfect State Information Problem with Finite/Discrete State and Control Spaces, Steady 

State Behavior. Implement steady state solution techniques for the n-dimensional problem 

(policy iteration, value iteration, Linear Programming solution). 

@Linear Quadratic Gaussian Problem. Review literature and report your findings with detailed 

derivations of estimation formulae. Implement the discrete time Kalman filter on computer 

software. 

@Functional approximations of the value function: quadratic function, polynomial function, and 

neural network functional approximations. Literature review and one selected application, 

coded and tested, will be the minimum expected effort.  

@Flow Control Problem. Various applications and extensions of the problem discussed in class. 

Estimation of optimal policy parameters or optimal setup time determination are examples of 

possible projects in this area. Policies featuring a hedging curve rather than a hedging point are of 

particular interest here.  They arise when the average capacity set includes the average demand 

vector, but individual capacity sets include only a subset of the coordinates of the demand 

vector. 

@Review of the computational techniques applicable to infinite horizon problems as presented 

in Bertsekas' Dynamic Programming textbook, Chapters 1 and 4 of volume II with emphasis on 

sections 1.3 (Value iteration -or successive approximation- and policy iteration with Adaptive 

Aggregation), 4.2 and 4.3. (Optimality Conditions and Value Iteration). Think about the use of 

adaptive aggregation in the context of average cost per period value iteration (successive 

approximation) and describe how it can be adapted to the average cost per period problem. 

@Review work on formulating the set-up and flow control problem (one production stage, 

many machines, many part types) with exponential machine failure -repair times and 

exponential set-up change times (Junjie Hu's Ph.D. Thesis research material will be a good 

start). In particular: 

1. Review state discretization techniques and how the continuous state HJB equation is 
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converted to a discretized state equation. Note how some state transitions are 

disregarded (relative to the discrete time formulation) by being associated with second 

order terms. 

2. Show how, in the average cost per period formulation, the left or right side derivative 

approximation can result in a discretized HJB equation which indicates that the average 

cost per period estimate affects the optimal control selected in the intermediate steps of 

the value iteration method. Resolve this by using the discussion in class and class notes 

on infinite horizon problems.  

3. Describe how the state space can be bounded more effectively by extrapolating the 

value function estimates at the boundary. Apply different extrapolation techniques and 

test their behavior in the context of a specific numerical example. 

4. Describe and speculate about parallel computation applied on numerical solution 

techniques in the context of value iteration approaches (serial Gauss-Seidel versus 

simultaneous update of the value function) and policy iteration approaches (serial 

versus simultaneous estimation of tentative control for each state).  

5. Can neural network based approaches be used effectively? 

@Review Paul Schweitzer's work on Markovian decision making system state aggregation 

techniques, Sethi's state aggregation paper, and Willsky's structural  

decomposition of multiple time scale Markov processes (papers to be supplied). Try to extract 

the results and solution techniques that are relevant to the policy/value iteration numerical 

solution techniques. 

@Q learning:  

1. For a discrete state and control space problem estimate the discounted cost value 

function J   by observing the dynamics of the system 

under policy  . (simulate the observations). Verify that the solution you get this way (is 

this a version of a probabilistic Gauss Seidel method?) is the same as the one you would 

get through the usual value or policy iteration method where the value function is 

evaluated at each state once in each iteration, i.e. all states are examined an equal 

number of times each. 

2. Estimate the Q function, Q(x,u), i.e. a function that depends on state as well as control 

variables. Observe the dynamics of the system under each state (loop over states) and 

under each policy (loop over policies) allowed at time t, assuming that the system will 

follow the tentatively best policy from time t+1 on. The iteration which must be repeated 

for each i=1,2,3,...,n and j=1,2,3,...m, and which you hope will reach a fixed point (i.e. will 

converge) is: 
ν+1Q (xi,uj)=  [Ew { g(xi,uj,w) + 

1{ ,.., }|min
k mu u u w (1-r) νQ (f(xi,uj,w),uk)}] +  

(1- ) νQ (xi,uj) 

where 0< <1 is the learning rate and r the discount rate.  Repeat for  =0.1,  =0.5, and 

 =0.99 and draw conclusions on impact of the learning rate on the rate of convergence. 

3. Repeat 1 and 2 using a functional approximation (for example a quadratic function of 

the state vector) for the J  and Q functions. The update now is on the parameters of the 
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functional approximation. These parameters can be updated using the gradient of the 

mismatch with respect to the parameters and a step size  . The mismatch in 1 is: 

{ g(xi,uj,w) +(1-r) J(xnext)} – J (xi,uj) 

where w and xnext are observed (i.e. simulated) and the superscript  indicates the 

functional approximation parameter values after the  th observation. Note that the 

estimator of J does not know anything about the dynamics of x or the probability 

distribution of w. In other words there is a separation of the simulator of the system and 

the estimator of J . Can you think of situations where the dynamics of a system are 

unknown? Does this appear to be an implicit system identification procedure? 

The mismatch in 2 is: 

Ew { g(xi,uj,w) + 
1{ ,.., }|min

k mu u u w (1-r) νQ (f(xi,uj,w),uk)} – νQ (xi,uj) 

where the superscript  th iteration. 

Note that the functional approximation used in 1 will have a smaller domain (the state 

space as opposed to the statecontrol space in 2) and hence fewer parameters to be 

estimated than 2. 

4. Repeat the estimation of the parameters of the functional approximation of the Q  

function above by simply simulating the dynamics of the system and updating the 

parameter values after each simulation step. Do you observe that the step size 

is crucial? How is this related to the learning rate in neural network literature? How is 

back propagation in the neural network literature related to the gradient that you used 

in 3 and 4? 

@Maintenance scheduling of interconnected failure prone components of a machine. Explore 

numerically the optimal joint maintenance policy for 2 or more components of the same 

machine with independent but Erlang distributed times to failure (i.e. NOT exponential!). 

Assume a cost structure which has the following form: 

#replacement cost is highest if a component is replaced after it fails (say RF=100 units) 

#replacement cost is lower if a component is replaced before it fails and the replacement is 

responsible for stopping the machine (say R=10 units) 

#replacement cost is lowest if a component is replaced before it fails and while some other 

component is being replaced (say RS=5 units).  

To illustrate consider a two component machine's maintenance costs for each of the possible 

events/control actions: 

Event            Cost 

1. Comp. 1 replaced upon failure       100=RF 

2. Comp. 2 replaced upon failure       100=RF 

3.Comp. 1 replaced upon failure, Comp. 2 replaced preventively      105=RF+RS 

4.Comp. 2 replaced upon failure, Comp. 1 replaced preventively      105=RF+RS 

5.Comp. 1 replaced preventively       10=R 

6.Comp. 2 replaced preventively       10=R 

7.Comp. 1 and Comp. 2 replaced preventively     15=R+RS 
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Formulate the problem for each of the following two alternative assumptions: 

Assumption 1: the Erlang states are observable 

Assumption 2: the Erlang states are not observable, and the only information about the hazard 

rate of a component is its age, i.e. the time elapsed since the last replacement. 

@Use of iteratively determined features assigned to subsets of states for piece-wise functional 

approximation of the value function in infinite horizon problems with finite optimal control 

choices. 

•Consider features that are constant on all states associated with the same control.  

•Determine a tentative policy and use it to assign features, in effect to aggregate states to 

same control action subsets.  

•Reevaluate functional approximations of the value function by using piece-wise 

functional approximations for each constant feature state subset aggregation. 

@Use an appropriate function to approximate the control policy function, or the cost to go, or 

the Q learning function. 

•When approximating the control policy function in problems with a continuous n 

dimensional state space and a finite control space, the problem reduces to the 

approximation of a partition of the n dimensional state space with multiple levels of 

linear inequalities (or neurons) to a mutually exclusive and exhaustive regions, each of 

which corresponds to a single control choice.  

•When approximating the cost to go or the Q function, or when the control space is not 

finite, more conventional function selection may be preferable. 

@Model and investigate the optimal routing and production scheduling of the multiple part 

type manufacturing queueing network problem introduced in class notes. 

@Model and investigate numerically the bandwidth yield management problem introduced in 

class for controlling access to a finite capacity communication network. Investigate extending it 

to 2 classes of customers where only one class is responding to prices while the other has free 

access with constant and known exponential arrival and departure rates. 

@Model the multiple class bandwidth yield management problem above with users requiring 

the same capacity across classes and keeping it for an exponentially distributed amount of time 

with the same class independent mean. Note that the system state is now the overall capacity in 

use at time k regardless of the class composition of users. Develop a policy iteration algorithm 

to solve numerically for the optimal dynamic state-feedback policy. Analyze the results and see 

whether they can be closely approximated by a class specific threshold type admission policy. 

@Consider a modified bandwidth yield management problem where the arrival AND departure 

rate are functions  of the price u(t) and the revenue rate over Δt equals  

(the usage price charged at time t) x (the number of customers connected at time t) while both 

the arrival AND the departure rates, λ(t) and μ(t) are a linear – not the same but a linear -- 

function of the price charged u(t).  

@Investigate the performance of the multiple part type manufacturing queueing network 

problem introduced in class under a family of control rules known as “attractor policies”. 

Obtain the range of possible attractor values by solving the exact LP formulation of a “small 
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enough”. 

@Consider implementing a code for the infinite-horizon scheduling problems introduced in 

class. Use it to evaluate the various policy iteration algorithms described in class notes. 

@Model and compute the optimal policy in a tandem production system with 2 machines and a 

demand process. Compare the optimal policy that you obtain numerically to an echelon policy, 

namely a policy in which Machine i produces only when the total downstream inventory is 

smaller than a threshold.  

@Solve numerically the optimal Plug in Electric Vehicle Battery Charging policy in the context 

of a multi-period Power market under a) an ideal battery model, b) a battery model that 

captures the salient aspects of battery electrochemistry.  

@Solve numerically and investigate Multi-class Electricity Demand Management in response to 

Control Center requests for Regulation Service. See problem Definition in Class notes.  


