MS/ME 508: Computational Methods in Materials Science, Spring 2015

Instructor:

Professor Xi Lin

Department of Mechanical Engineering and Phone: (617) 358-3417

Division of Materials Science and Engineering

Rm. 207, 15 Saint Mary's Street Email: linx@bu.edu

Brookline, MA 02446 Course page: http://oned.bu.edu/MS508

Lectures: MW 2-4 pm at 15 Saint Mary's Street, Rm. 205

Office hours: M 4-5 & W 1-2. Email linx@bu.edu for additional appointments

Lecture notes: http://oned.bu.edu/MS508/lecture.html

Recommended Textbooks:

1) A Guide to Feynman Diagrams in the Many-Body Problem, by Richard D. Mattuck (1976) ISBN 0-486-67047-3

- 2) Electronic Structure: Basic Theory and Practical Methods, by Richard M. Martin (2003) ISBN: 0-521-78285-6
- 3) Computer Simulation of Liquids, by M. P. Allen and D. J. Tildesley (1989) ISBN: 0-19-855645-4
- 4) Simulating the Physical World, by Herman J. C. Berendsen (2007) ISBN: 0-521-83527-5

References:

- 1) Handbook of Materials Modeling, edited by Sidney Yip (2005) ISBN 1402032870
- 2) Numerical Recipes: The Art of Scientific Computing, by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery (2007) ISBN: 978-0-521-88068-8

Pre-requisites by Topic: Quantum mechanics, statistical mechanics, and solid state theory; or consent of instructor.

Goals: To apprehend core knowledge of materials theory and to gain hand-on experience of performing predictive materials modeling and simulation

Grading:

Five assignments (30%): Best three count

Quizzes (40%): Every lecture Individual final project (30%)

Assignments: Homework announcements will be communicated through the course page at http://oned.bu.edu/MS508. Homework assignments are due a week after they are handed out.

Lecture Schedule:

Lecture (week)	Topic	Textbook
1	Introduction	T1 and R1
	- Materials theory	
	- Computational materials science	
	Many-body problem	
	- Quasi-particle	
	Electronic structure	T1, T2, and
	- Green's function propagator	T4
2	- Second quantization	R1 and R2
	- Feynman diagram	Papers
	- Dyson's equation	<u>F</u>
3	- Adiabatic approximation	
	- First-order processes	
	Forward scattering: Hartree	
	Forward and exchange scatterings: Hartree-Fock	
4	- Dynamical screening	
	Random phase approximation	
	Configurational interaction	
	Perturbation	
	Coupled cluster	
	* Computational lab I	
5	- Quantum Monte Carlo	
	Green's function Monte Carlo	
	Short-time approximation	
6	- Density functional theory	
	Universal functional	
	Density matrix	
	Exchange-correlation functional	
7	Pseudopotential	
	- Tight-binding	
	* Computational lab II	
8	Ensemble	T3 and T4
	Fluctuation-dissipation theorem	R1 and R2
	Partition function	Papers
	Time-correlation function	
9	Molecular dynamics	
	Stochastic processes	
	* Computational lab III	
10	Coarse graining	T4
	Fluid dynamics	R1 and R2
	Mesoscopic continuum dynamics	Papers
	Percolation theory	
11	Materials defect theory	Papers
	- Topological defects	

12	- Self-assembly	
	- Complex fluids	
	Polymers and bio-polymers	
	Protein: ion channel	
	DNA: small polaron	
	Scaling theory	
	- Renormalization group theory	
	- Anderson localization	
	Dimensionality	
	- 1D, 2D, 3D, and fractal dimensions	
13	Final project presentation	