MS/ME 503 Kinetic Processes in Materials Spring 2015

Prof. S. N. Basu Rm. 204, 730 Comm. Ave. Ph. 617-353-6728 Email: basu@bu.edu

Lectures: T, R: 10AM – 12Noon Location: EPC 204 Office hrs: 1-2 PM Friday, other times by appt.

Required Textbook:

Materials Kinetics Fundamentals: Principles, Processes, and Applications, Ryan O'Hare, John Wiley and Sons Inc., 2015

Other Suggested Readings:

Essentials of Materials Science and Engineering, D. R. Askeland, and P. Phule *Diffusion in Solids*, P. G. Shewmon *Chemical Kinetics*, K. J. Laidler *Phase Transformations in Metals and Alloys*, D. A. Porter and K. E. Easterling

Grading:

There will be 2 midterms and a final. The final is NOT cumulative. The grading will be as follows:

Midterm I (March 3)	-	35%
Midterm II (April 7)	-	30%
Final exam (TBD)	-	35%

Homeworks:

3 HW sets will be handed out, one for each exam. They will not be collected or graded. Solution sets will be handed out, and will be discussed in class before each exam.

Syllabus

I THERMODYNAMICS VERSUS KINETICS 1 Introduction to chemical thermodynamics 1 lecture

T	introduction to chemical thermodynamics	1 lecture
2	Phase diagrams, driving force, flux	1 lecture

II TRANSPORT KINETICS

3	Fick's first and second laws of diffusion, thin film solution	1 lecture
4	Error function solution, thick film solution	1 lecture
5	Solutions using Laplace transforms, diffusion into a sphere	1 lecture
6	Interdiffusion	1 lecture
7	Self, tracer, intrinsic and interdiffusion coefficients	1 lecture
8	Atomistic models of diffusion	1 lecture
9	Diffusion in ionic crystals	1 lecture
10	Gas phase diffusion, multipath diffusion	1 lecture

III KINETICS OF CHEMICAL REACTIONS

11	Chemical reactions, order of reactions, activation theory	1 lecture
10		1 1

12Gas/solid, gas/liquid kinetic processes1 lecture13Mixed rate control: etching, CVD1 lecture

IV ROLE OF KINETICS ON MICROSTRUCTURE

14	Capillarity forces on surfaces, grain growth	1 lecture
15	Surface energy anisotropy	1 lecture
	Particle coarsening, sintering	1 lecture

V KINETICS OF PHASE TRANSFORMATIONS

17	Homogeneous and heterogeneous nucleation, growth	1 lecture
18	Combined nucleation and growth	1 lecture
19	Solidification	1 lecture
20	Craine del decomposition	1 lo atura

20Spinodal decomposition1 lecture