ME 460 Electromechanical Systems Design

Instructor: Professor Andre Sharon

3-8776

sharon@bu.edu

Lecture hours/week: 3 Mon 4 -6, Wed 4 - 5

Discussion hours/week: 1 **Laboratory hours/week**: 0

Semester credits: 4

Textbooks:

Machine Design and Control – A Systems Level Approach, Custom Printing, J. Wiley

Reference Books:

Handbook of Modern Sensors: Physics, Designs, and Applications; Jacob Fraden, Springer-Verlag Machinery's Handbook, Industrial Press
The Mechatronics Handbook, Robert Bishop, Ed., CRC Press

Prerequisites: ME305, ME360

Course Description:

This inter-disciplinary course teaches the student how to design, instrument, and control high-precision, computer-controlled automation equipment, using concrete examples drawn from the photonics, biotech, and semi-conductor industries. Topics covered include design strategy, high-precision mechanical components, sensors and measurement, servo control, design for controllability, control software development, controller hardware, as well as automated error detection and recovery. Students will work in teams, both in-classroom and out-of-classroom, to integrate and apply the material covered in class to a multi-part design project in Pro-Engineer, Solid Works, or other comparable CAD system, culminating in a group presentation.

Syllabus:

In addition to the fundamental principles of operation, these topics will be brought to life though selected case studies in the development of automatin equipment.

1. Machine Design and Instrumentation Strategy

1.0 wks

- Examples of Precision Automation Equipment (slides & videos)
- Design: Science or Art?
- Design Strategies
- Project Phases
- Functional Requirements and Design Parameters
- 2. Design Team Formation and Projects Assignment

0.5 wks

3. Financial Justification and Project Planning

0.5 wks

 Presentation and Justification to Management 	
 ProForma Analysis 	
 Return on Investment 	
 Project Scheduling 	
4. Actuators	1.5 wks
 Rotary Motors 	
• Linear Motors	
• AC/DC	
• Stepper Motors	
Hydraulic/Pneumatic Actuators	
Solenoids and Voice Coils	
 Piezoelectric Actuators Transmission Elements 	1.5 wks
Gears	1.3 WKS
Lead/Ball Screws	
Rack & Pinion	
Belts/Chains	
Mechanical Linkages	
Backlash, Stiction, Friction	
6. Joints and Bearings	1.0 wks
Rotary Pin Joints	-77
Rotary Bearings	
Bushings	
Linear Bearings	
7. Preliminary Design Review Presentations	1.0 wks
8. Sensors	2.0 wks
 Incremental and Absolute Encoders 	
 Tachometers 	
 Accelerometers 	
Strain Guages	
 Force Sensors 	
 Flow Sensors 	
Temperature Sensors	
9. Servo Control and Design for Controllability	1.0 wks
System Modeling	
Closed Loop Control	
• PID	
• System Response	
Actuator/Sensor Location Computer Control Software and Hardware	2.0 wks
10. Computer Control Software and HardwareC++ / Visual Basic	2.0 WKS
 Graphical Programming Interface Field Bus	
Motion Controllers	
 Input/Output Devices	
11. Vision and Image Processing	0.5 wks
Cameras and Lenses	0.5 WK5
Image Processing Strategies	

12. User Interface, Error Detection and Recovery

- Operator/Administrator Mode
- Real-time Fault Monitoring
- Recovery

13. Critical Design Review Presentations

1.0 wks

0.5 wks

Grading:

Term Project: 50% Quizzes: 30% Homework: 20%

Course Goals:

- 1. Equip engineering students with the knowledge and experience to design instrumented, computer controlled machinery.
- 2. Teach students how to financially justify and successfully execute a machine development project.
- 3. Give students interdisciplinary hands-on experience in the design of electromechanical systems.

Course Outcomes:

As an outcome of completing this course, students will:

- A) Have the tools necessary to design and instrument computer-controlled machinery.
- B) Understand basic actuator technologies.
- C) Understand basic sensing technologies.
- D) Understand basic machine control strategies.
- E) Understand basic transmission elements.
- F) Be able to size and select proper actuators, sensors, and controller hardware.
- G) Have the knowledge to financially justify, plan and execute a machine development project.