ME 302 A1: Engineering Mechanics II

Instructor: Prof. Kamil L. Ekinci (ekinci@bu.edu) Graduate TA: Kevin Leahy (kjleahy@bu.edu) Office: ENG 401 Office Hours: F 4-5 pm **Discussion/Drop-in Hrs: Tue. TBA, ENG 410**

Recommended Textbook:

Williams JH, Fundamentals of Applied Dynamics, John Wiley and Sons, Inc., 1996.

Supplemental Resources:

Handouts will be given during class.

Course Topics:

Kinematics of particles and rigid bodies

- Inertial reference frames; coordinate systems; orbital elements & trajectories
- Intermediate noninertial reference frames

Direct/Algebraic approach to kinetic analysis (Newtonian)

- linear and angular momenta, moments of inertia
- Work/energy relationship

Indirect approach to kinetic analysis (Lagrangian)

- Hamilton's principle, Lagrange's equation

Grading:

Quizzes + Projects:	10% (quizzes given weekly)	
Exam 1:	25% (on 10/14/2015 during class)	
Exam 2:	30% (on 11/18/2015 during class)	
Final Exam:	35% (comprehensive; will be given on the date determined	
	by registrar.)	

Make-up Policy:

No make-ups will be given. If you miss an exam without a valid excuse, you will get a zero. If you have to miss an exam with an excuse, you will be graded based upon the rest of your portfolio. **NO MAKE-UPS, NO EXTENSIONS, NO EXCEPTIONS.**

Attendance Policy:

You are required to attend every class. Attendance will be taken. You must arrive to class on time.

Electronics Policy:

You are encouraged to use a scientific calculator. You are not allowed to use any other electronics, including cell phones, lap top computers and so on, during class.

Assignments:

- (1) Homework problems will be assigned and solutions made available on Blackboard usually on Thursdays. **Please check promptly.** The homework problems and lectures will serve as the basis for quizzes to be given the week after homework is assigned.
- (2) The project will serve as a platform for students to apply principles learned in class to real-world scenarios. Further information will be given during the semester.

ME 302 A1 Syllabus Fall 2015

WK	DATES	READING	TOPIC	
1	9/2		Review of Particle Kinematics	
2	9/9	CH 3	Rigid Body Kinematics	
3	9/14 9/16	CH 3	Rigid Body Kinematics	
4	9/21 9/23	CH 4	Rigid Body Kinematics	
5	9/28 9/30	CH 4	Particle Dynamics	
6	10/5 10/7	CH 6	Moment of Inertia	
7	10/13 10/14	СН 6	Tuesday is Monday schedule. Exam on 10/14	
8	10/19 10/21	СН 5	Rigid Body Dynamics	
9	10/26 10/28	СН 5	Generalized Coordinates	
10	11/2 11/4	СН 5	Work and State Functions Hamilton's Principle	
11	11/9 11/11	CH 6	Lagrangian Dynamics	
12	11/16 11/18	CH 6	Exam on 11/18	
13	11/23		Lagrangian For Rigid Bodies	
FALL RECESS				
13	11/30 12/2	CH 8	Small Oscillations	
14	12/7 12/9	CH 8	Small Oscillations	

Note: Syllabus will be updated as the semester goes by.