| <u>Date</u> | <u>Topic</u> | On-Line Learning
Content | In-Class Activity | Reading from
Text | <u>Assignments</u> | |-------------|---|--|---|-----------------------|--| | 1/20 | Overview of the Course
and Introduction to
Engineering Design | a) Class organization and requirementsb) Safety in EPICc) Overview of the engineering design process | a) Review of the course (20 min) b) Tour of the facility; review of safety (40 min) c) Team Projects (50 min) | Chapters 1
and 2 | Reverse
engineering
project handed
out | | 1/27 | Reverse Engineering
and Product Teardown | a) Basic principles of reverse engineering b) Introduction to supply chains | a) Review of on-line materials (10 min) b) Team assignments (5 min) c) Team projects (95 min) | Chapters 6
and 14 | | | 2/3 | Basic Project
Management and
Working in Teams | a) Project management
b) Working in teams
c) Design portfolios | a) Team reports (80 min) b) Review of on-line materials (10 min) c) New teams formed (20 min) | Chapters 15
and 16 | Reverse engineering reports (oral and written) are due Design projects are handed out | | 2/10 | Problem Definition and
Determining Customer
Needs | a) Review of the engineering design process b) Determining client objectives c) Doing market | a) Review of online
material (10 min)
b) Team projects (110
min) | Chapters 3, 4, and 5 | | | <u>Date</u> | <u>Topic</u> | On-Line Learning
Content | <u>In-Class Activity</u> | Reading from
Text | <u>Assignments</u> | |-------------|---|--|---|---------------------------|--| | | | research | | <u>ICAL</u> | | | 2/24 | Identifying Product Functions and Establishing Engineering Specifications | a) Establishing functional requirements b) Determining target specifications c) Creating design alternatives | a) Review of assignment (10 min) b) Team projects (40 min) c) Team reports (60 min) | Chapters 6
and 7 | Completion of Problem Definition Phase: Informal team presentation on objectives, metrics, functional requirements and constraints | | 3/3 | Generating and
Evaluating Alternatives | a) Creating design
alternatives (revisited)
b) Evaluating design
alternatives | a) Review of assignment (10 min) b) Team projects (100 min) | Chapter 8 | | | 3/17 | Prototypes, Models and
Proof-of-Concept | a) Distinguishing models from prototypes and proofsof-concept b) Issues to consider before building physical models and prototypes | a) Team reports (110 min) | Chapter 10,
Appendix A | Completion of Conceptual Design Phase: Design Review: Teams report on alternative designs and chosen design and BOM. | | 3/24 | Models and Proof-of-
Concept (cont.) | a) Fundamental concepts for | a) Review of assignment (10 min) | Chapter 12 | | | <u>Date</u> | <u>Topic</u> | On-Line Learning
Content | In-Class Activity | Reading from
Text | <u>Assignments</u> | |-------------|--|--|--|------------------------------------|--| | | | mathematical modeling b) Types of mathematical models and solutions c) Uses of mathematical models | b) Team projects (100 min) | | | | 3/31 | Engineering Drawings
and Communicating the
Outcome | a) Engineering sketching and drawing b) Oral communications c) Written communications | a) Review of assignment (10 min) b) Team reports (30 min) c) Team reports (60 min) | Chapter 9 and
11, Appendix
B | Completion of
Preliminary
Design Phase:
Teams report on
modeling work
and status of
prototypes | | 4/7 | Principles of Industrial
Design and Ethics in
Design | a) An overview of industrial design b) Ethics in design and the responsibility of the engineer | a) Review of assignment (10 min) b) Team projects (100 min) | Chapter 17 | | | 4/14 | Product Economics | a) Estimating productcostb) Profit, loss andmargin | a) Review of assignment (10 min) b) Team projects (100 min) | Chapter 13 | | | 4/21 | Design for
Manufacturing and
Design for Sustainability | a) DfX b) Principles of design for assembly and | a) Review of assignment (10 min) b) Team projects (100 | Chapter 14 | | | <u>Date</u> | <u>Topic</u> | On-Line Learning | In-Class Activity | Reading from | <u>Assignments</u> | |-------------|-----------------------|--------------------------------------|---------------------------------|--------------|--| | | | <u>Content</u> | | <u>Text</u> | | | | | manufacturing c) Design for assembly | min) | | | | 4/28 | Project Presentations | | a) Team reports (110 min total) | | Completion of Detailed Design: Final design reports/design competition |