# BOSTON UNIVERSITY

## Post-Bachelors PhD Program Planning Sheet

| Advisor Sig                | nature Date                                | Student Sig                                                     | gnature                | Date             |  |
|----------------------------|--------------------------------------------|-----------------------------------------------------------------|------------------------|------------------|--|
| Approved E                 | 3y:                                        |                                                                 |                        |                  |  |
|                            |                                            |                                                                 |                        |                  |  |
|                            |                                            |                                                                 | , <u>-</u>             |                  |  |
| <b>4) Enginee</b> Course # | ring, Math and Physical Scie               | ence Requirement - 8 cre<br><u>Credits</u>                      | edits<br>Semester/Year | <u>Grade</u>     |  |
|                            |                                            |                                                                 |                        |                  |  |
| 3) Mechan<br>Course #      | ical Engineering Requireme<br>Course Name  | <u>Credits</u>                                                  | Semester/Year          | <u>Grade</u>     |  |
|                            |                                            |                                                                 |                        |                  |  |
| 2) Breadth<br>Course #     | Requirement - 4 credits <u>Course Name</u> | <u>Credits</u>                                                  | <u>Semester/Year</u>   | <u>Grade</u>     |  |
|                            |                                            |                                                                 |                        |                  |  |
| <u>Course #</u>            | Course Name                                | <u>Credits</u><br>                                              | Semester/Year          | <u>Grade</u><br> |  |
| Focus Area:                |                                            |                                                                 |                        |                  |  |
| 1) Focus A                 | rea Requirement - 12 credi                 | ts                                                              |                        |                  |  |
|                            |                                            | n the courses you will use fulf<br>explanations can be found on |                        | ts.              |  |
| Expected G                 | raduation Date:                            |                                                                 |                        |                  |  |
| Email Address:             |                                            |                                                                 |                        |                  |  |
| Student Name:              |                                            | BU ID#                                                          | BU ID#                 |                  |  |

# The Master of Science in Mechanical Engineering (post-BS PhD) Curricular Requirements

The program requires 32 credit hours at the 500-level or above. At least 20 credits must be ME courses. At least 24 credits must be taken at Boston University. To graduate, a cumulative grade point average of at least 3.0 (B) must be attained.

If necessary, student can take more than 32 credits and drop the lowest grade. Grades of C+ or lower are not acceptable. Successful completion of a 3-credit course in either the College of Arts and Sciences or the Questrom School of Business does not obviate the need to complete 32 credits. Students are permitted to take a single course multiple times to achieve the GPA requirement, but will only receive 4 credits if used against the degree requirements.

#### 1. Focus Area Requirement (12 credits)

Each focus area has one course requirement that can be satisfied by the courses indicated on last page. The courses that can be used to satisfy the requirement for each focus area are listed with a ^ symbol. The ^ are provided as recommendations for courses to be taken in each focus area. At least one course with a ^ must be taken. In some focus areas, more than three courses have a ^ because some of the focus area requirements are not taught yearly.

These guidelines are intended to provide each student with core competency in a specific area of mechanical engineering. However, a student may instead elect to choose a more general course of study through an alternate selection of three graduate-level ME courses that constitute an individually designed program of study. This program of study must be approved by the student's advisor prior to initiation.

### 2. Breadth Requirement (4 credits)

Each student must take one course from a focus area different from that used to fulfill the Focus Area Requirement. A course in this category is not in this focus area, but it is helpful to support a focus area with additional information.

#### 3. Mechanical Engineering Elective Requirement (8 credits)

Each student must complete two additional 500-level or above courses in Mechanical Engineering to fulfill the ME Elective Requirement.

#### 4. Engineering, Math and Physical Science Requirement (8 credits)

Each student must complete two graduate-level courses in any engineering, math or physical science course, all of which need to be 500-level or above. These courses may be taken in any department or division of the College of Engineering or in the College of Arts and Sciences. The advisor must approve the two courses used to fulfill this requirement.

Focus Areas
NOTE: Courses with a \* are taught yearly
^Courses that are required for the focus area

| dourses that are required for the focus area |                                    |  |
|----------------------------------------------|------------------------------------|--|
| Solid Mechanics                              |                                    |  |
| ME515*                                       | Vibration of Complex Mech. Systems |  |
| ME521*^                                      | Continuum Mechanics                |  |
| ME524                                        | Skeletal Tissue Mechanics          |  |
| ME538*^                                      | Intro to Finite Element Analysis   |  |
| ME580*^                                      | Theory of Elasticity               |  |
| ME582                                        | Mechanical Behavior of Materials   |  |
| ME788                                        | Soft Tissue Biomechanics           |  |

|         | Materials                                    |
|---------|----------------------------------------------|
| ME503*^ | Kinetic Processes in Materials               |
| ME504*  | Polymers and Soft Materials                  |
| ME505*^ | Thermo & Statistical Mechanics               |
| ME508   | Computational Methods in Materials Science   |
| ME545   | Electrochem. Of Fuel Cells and Batteries     |
| EC577^  | Electronic, Optical & Magnetic Properties of |
|         | Materials                                    |
| ME576   | Nanomanufacturing and Hierarchical Materials |
| ME582^  | Mechanical Behavior of Materials             |
| ME781   | Electroceramics                              |

| Biomechanics/Biomaterials |                                        |
|---------------------------|----------------------------------------|
| ME504*                    | Polymers & Soft Materials              |
| ME521*^                   | Continuum Mechanics                    |
| ME524^                    | Skeletal Tissue Mechanics              |
| ME526*                    | Simulation of Physical Processes       |
| ME538*^                   | Intro to Finite Element Analysis       |
| ME726*                    | Fundamentals of Biomaterials           |
| ME727*                    | Principles and Applications of Tissues |
| ME788^                    | Soft Tissue Biomechanics               |

| Acoustics |                                  |
|-----------|----------------------------------|
| ME515*^   | Vibration of Comp. Mech. Systems |
| ME520*^   | Acoustics I                      |
| ME521*    | Continuum Mechanics              |
| ME526*    | Simulation of Physical Processes |
| ME538*    | Intro to Finite Element Analysis |
| ME720^    | Acoustics II                     |
| ME721^    | Acoustic Bubble Dynamics         |

| Thermofluid Science & Energy |                                               |
|------------------------------|-----------------------------------------------|
| EK546                        | Assessment of Sustainable Energy Technologies |
| ME505*^                      | Thermo. & Statistical Mechanics               |
| ME516*                       | Stat. Mech. Concepts in Engineering           |
| ME519^                       | Theory of Heat Transfer                       |
| ME521*^                      | Continuum Mechanics                           |
| ME527^                       | Transport Phenomena in Mat. Proc.             |
| ME533                        | Energy Conversion                             |
| ME541                        | Classical Thermodynamics                      |
| ME542*^                      | Advanced Fluid Mechanics                      |
| ME543*                       | Sustainable Power Systems                     |
| ME702                        | Computational Fluid Dynamics                  |

|         | MEMS/Nanotechnology                          |
|---------|----------------------------------------------|
| ME504*  | Polymers & Soft Materials                    |
| ME506   | Engineering Device Physics                   |
| ME508   | Computational Methods in Materials Science   |
| ME516*  | Statistical Mech. Concepts in Engineering    |
| ME521*  | Continuum Mechanics                          |
| ME546*^ | Micro/Nanofluidics                           |
| ME555*^ | MEMS: Fabrication & Materials                |
| ME560*  | Machine Design & Instrumentation             |
| ME576   | Nanomanufacturing and Hierarchical Materials |
| ME579*^ | Nano/Microelectronic Device Technology       |
| ME778   | Micromachined Transducers                    |

|         | Dynamics, Systems, and Controls        |
|---------|----------------------------------------|
| EK505   | Intro to Robotics & Autonomous Systems |
| ME501*^ | Dynamic System Theory                  |
| ME507*  | Process Modeling and Control           |
| ME510*  | Production Systems Analysis            |
| ME515*  | Vibration of Comp. Mech. Systems       |
| ME526*  | Simulation of Physical Processes       |
| ME544*  | Networking the Physical World          |
| ME568   | Soft Robotics                          |
| ME570*^ | Robot Motion Planning                  |
| ME571   | Medical Robotics                       |
| ME701   | Optimal & Robust Control               |
| ME710*  | Dyn. Program. & Stochastic Control     |
| ME714*  | Adv. Stochastic Modeling & Simul.      |
| ME724*  | Adv. Optim, Theory & Methods           |
| ME725   | Queuing Systems                        |
| ME733*  | Discrete Event & Hybrid Systems        |
| ME734   | Hybrid Systems                         |
| ME740*  | Vision, Robotics & Planning            |
| ME762*^ | Nonlinear Systems & Control            |
| ME766   | Adv. Scheduling Models & Methods       |