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Data Abundancy

Challenges of data proliferation in the digital era:

❯ Power

❯ Storage

❯ Processing

❯ Communicating

Global IT industry's 2012 
electricity consumption 
compared to energy-
consuming countries

Google data center, Finland1021

Do we really need so much data?
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Data Redundancy
Smart cities, autonomous cars

Medical imaging

Deep neural networks
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Can we acquire only
what we need?
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Digital worldAnalog world

❯ Signal processing
❯ Image denoising
❯ Compression…

❯ Music
❯ Radar
❯ Communication
❯ Image…

Analog-to-Digital
Convertor

(ADC)

Sampling

(bit/sec)

“Analog Girl in a Digital World…” 
Judy Gorman 99
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Digital worldAnalog world

❯ Signal processing
❯ Image denoising
❯ Compression…

❯ Music
❯ Radar
❯ Communication
❯ Image…

Analog-to-Digital
Convertor

(ADC)

Sampling

“Analog Girl in a Digital World…” 
Judy Gorman 99

Sampling rate at least twice
the highest frequency 

H. Nyquist C. Shannon
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Standard Acquisition Systems

Design rule: 
Nyquist theorem

Sampler Quantizer

TaskOutput

𝒘 (𝒚)

Design rule:
“6dB per bit” rule of thumb

Design rule:
Task dependent

MSE, error rate, etc. 

Digital 
Processing

Each block optimized 
separately
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Large Bandwidth High rate samplers 
and quantizers

❯ High rate 
communications

❯ High resolution 
e.g. in radar and 
imaging

❯ Large and expensive 
hardware-intensive 
systems

❯ High-energy systems

❯ Large digital databases:
difficult to process,
store and transmit

In medical imaging, high rates often translate into 
long scanning times or high radiation dosages

Limitations of Standard Systems

ADCs, the front end of all digital devices, lead to 
hardware, data and power bottlenecks
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Task-Based Structured Acquisition

Sampler Quantizer

TaskOutput

𝒘 (𝒚)

Joint Design:
• Structure in 

input/system

• Output task

Digital 
Processing

Model based, efficient, and interpretable data driven methods!
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Advantages of Joint DesignAdvantages of Joint Design

Compact, portable 
devices with better 
imaging and 
detection quality

Joint radar and 
communication 
systems

Efficient 
wideband sensing

Compact, cheap 
and high 
resolution radar

Efficient massive 
MIMO systems

Super resolution 
microscopy and 
ultrasound

Interpretable, 
deep networks for 
communication, 
medical imaging, 
radar and more

High performance 
Low-bit 
quantization 
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Talk Outline
❯ Exploiting structure: From Sampling to Xampling

❯ Sub-Nyquist ultrasound and radar

❯ Wireless ultrasound

❯ Exploiting tasks: Task-based sampling 

❯ Power spectrum estimation

 Cognitive radio

 Super-resolution microscopy and US

❯ Task-based quantization

 Efficient massive MIMO systems

 Federated learning

 Metasurface multiantenna systems

 Joint radar-communication systems

❯ Exploiting models: Model-based deep learning
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Cognitive radioRadarUltrasound DOA EstimationMRI

Part 1:

From Sampling to 

Xampling



12

❯ Multiband Communication

❯ Multispectral imaging, multispectral CT

Multiple Frequency Bands

> Mishali and Eldar 09

 Can be viewed as            bandlimited

 But sampling at rate               is a waste of resources

 For wideband applications Nyquist sampling may be infeasible

Unknown carriers
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Streams of Pulses

Distance to target

Velocity

Radar: > Vetterli et. al, 02

A sampler that takes advantage of the pulses' structure can use 
fewer samples and lead to higher resolution

Ultrasound:
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Compressed Beamforming
❯ SNR and resolution are increased by using an antenna array

❯ Beamforming is performed by introducing appropriate time shifts to the 
received signals
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Focusing the received 
beam by applying 
nonlinear delays

Scan Plane

128-256 
elements

> Chernyakova and Eldar 13-15

Requires high sampling and processing rates (lots of data…)

One image trace needs 128 samplers @20M, beamforming to 150 points, total of 
6.3x106 sums/frame!
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Challenges

Can we…
❯ Reduce analog sampling rates of very noisy signals
❯ Perform nonlinear beamforming on sub-Nyquist samples, 

without interpolating to the high Nyquist-rate grid digitally
?

Yes, use Compressed Beamforming!

Reduce US machine size 
at same resolution

Increase frame rate

Enable 3D imaging

Enable remote 
wireless ultrasound
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Union of Subspaces

❯ Allows to keep low dimension in the problem model

❯ Low dimension translates to low sampling rate

> Lu and Do 08, Mishali and Eldar 09

Theorem
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Xampling Hardware
❯ Alias the data onto low dimensional space by mixing with periodic functions

x(t) Acquisition
Compressed 
sensing and 
processing

recovery

Analog preprocessing Low rate (bandwidth)

> Mishali and Eldar, 10-14

Reduce bandwidth
Time

Frequency

❯ Functions designed so that in digital we have a CS problem
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Xampling Hardware

❯ Low rate, low bandwidth, simple hardware and low computational cost

❯ Achieves the Cramer-Rao bound given a sub-Nyquist sampling rate 
(Ben-Haim, Michaeli, and Eldar 12)

❯ Minimizes the worst-case capacity loss for a wide class of signal models 
(Chen, Eldar and Goldsmith 13)

h(t )

][ny

( )n t

)(tx

EncoderMessage

signal structure, 
captured by channel

capacity-achieving 
sub-Nyquist sampler

binary entropy function

❯ α:  undersampling factor
❯ β:  sparsity ratio

Sample at low rate using standard ADCs such that in digital we get a CS problem
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Compressed Sensing

Main ideas:

❯ Sparse input vector with unknown support

❯ Sensing by sufficiently incoherent matrix (semi-random)

❯ Polynomial-time recovery algorithms from K log n measurements

> Candes, Romberg, Tau 06, Donoho 06
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Compressed Sensing Extensions
❯ Nonlinear sparse recovery (optics):

 Phase retrieval
(Shechtman et. al 11, 14, 15, Eldar and Mendelson 12,
Ohlsson et. al 12)

 Nonlinear compressed sensing
(Beck and Eldar 12, Bahman et. al 11, Ohlsson et. al 13, 
Yang et. al 15)

❯ Reference based sparse recovery (MRI)
(Weizman, Eldar and Ben Bashat 16)

❯ Sparsity with tracking (ultrasound) (Solomon et. al 18)

❯ Statistical sparsity
(Pal and Vaidyanathan 14, Solomon et. al 18, Cohen and Eldar 18, 
Romero et. al 16)

❯ Deep learning (Gregor and LeCun 10, Mousavi and Baraniuk 17, 
Borgerding et. al 17, Aggarwal et. al 18, Bora et. al 17, Wu et. al 19)
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Xampling: Practical Compression + Sampling

❯ Xampling: practical sub-Nyquist sampling and processing 

❯ Many examples in which we reduce sampling rate by 

exploiting structure

❯ Low rate translates to lower radiation dosage, faster 

scanning, processing wideband signals, smaller devices 

and improved resolution

Cognitive RadioRadarUltrasoundPulsesDOA Estimation
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Applications

“In theory, theory and practice are the same.
In practice, they are not.”

Albert Einstein
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Standard Imaging
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~1/32 of the Nyquist rate

Sub-Nyquist Ultrasound Imaging

Low rate sampling enables:

❯ 3D imaging 

❯ High frame rate for cardiac imaging

❯ Handheld wireless device: rural medicine, 
emergency imaging in the field/ambulance

> Chernyakova and Eldar 13-15
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Bring the Digital Revolution to Ultrasound, Anywhere

Xampling technology samples and processes ultrasound signals without loss 
of information at very low rates!

❯ Allows to integrate electronics into probe: wireless ultrasound

❯ Enabling an “open imager” – advanced signal processing and AI methods on 
channel data that can run on any platform 

❯ Enabling remote health flexibility

❯ Super resolution methods

Low rate 
sampling HW

Low rate 
processing

Advanced cloud based 
Signal processingLow bandwidth

CHANNEL data
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Demo Movie
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Deep Adaptive Beamforming

Backpropagation

Model based: Weights determined by deep learning!

High-quality
target (EBMV)

> Luijten et. al 19

Delay-and-sum
(standard) 

Deep learning

Improved contrast 
and resolution
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Channel Data Clinical Forum 

❯ Ovarian cancer detection with MGH
and MIT

❯ Tumor classification with NYU medical 
and Siemens

❯ Breast cancer detection with Beilinson

❯ Children cardiology with Shiba

❯ US for developing countries with 
Children’s hospital  and Brigham Women

❯ Detection of pleural diseases with 
Haemek

❯ Fetal anemia detection with Hillel Yaffe

Low rate 
sampling HW

Channel 
data!

New clinical applications enabled by new acquisition strategy

Improve diagnostics from channel data!
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> Bar-Ilan and Eldar 14, Rossi et. al 14, Cohen and Eldar 18,  Cohen et. al 18

Radar/Time of Flight Imaging

❯ Small, cheap radars with excellent resolution

❯ We can also reduce physical parameters:

 Create a radar map in less time

 Use fewer antenna elements

❯ Spectrum sharing between radar and 
communication over the same channel

❯ Free congested spectrum

❯ Fast frequency detection
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Sub-Nyquist and Cognitive Radar
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Cognitive Automotive Radar
❯ In autonomous systems the number of vehicles 

(radars) vary over time

❯ Radars require to share bandwidth without interference

❯ Our cognitive system divides the bandwidth into 
multiple narrow subbands adaptively 

❯ Based on desired no. of radars the subbands are 
assigned to each radar

> Mulleti et. al 18-20

Sub-Nyquist sampling with robust reconstruction is achieved!
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Radar With Unknown Pulse Shape

❯ In practice the pulse shape can be 
distorted and unknown

❯ We propose the use of multiple receivers 
(at least 2) to recover the targets and pulse

❯ Each Rx operates at a sub-Nyquist rate

> Mulleti et. al 20

Signal recovery from samples at 10 times lower than Nyquist
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Blind SIMO Sub-Nyquist Radar 

Target 
simulator

Tx Pulse gen./ 
Rx processing 

Lowpass filters for Rx

Allows for low power, low BW radar 
detection in complicated settings like 

automotive radar
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Deep-Sparse Antenna Array
❯ High-res DOA       Large array        High-cost, power

❯ We propose NN-based sparse subarray selection 

❯ The method is cognitive and adapts according to the 
current target scene

❯ The method is scalable and performs better than a 
non-adaptive random selection method

> Mulleti et. al 19-20

Sparse arrays are crucial in automotive radar to save battery!
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Deep-Sparse Antenna Selection

2.4 GHz system

5 GHz system



35

Task-Based Sampling
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Part 2:
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Task-Based Sub-Nyquist Sampling

❯ Signal statistics: Power spectrum estimation > with Geert Leus and Deborah Cohen

❯ Quantized version of the signal > with Alon Kipnis, Andrea Goldsmith, and Tsachy Weissman

❯ Task-based quantization in communication > with Nir Shlezinger and Miguel Rodrigues

❯ Compressed beamforming > with Tanya Chernyakova and Regev Cohen 

Can we reduce sampling rates for signals without structure?

Consider the case where we don’t actually need the signal, but rather some function of it

f(       )
Easier than                ?



37

Power Spectrum Reconstruction

❯ Often the required information can be extracted from the covariance rather 
than the signal itself:

 Support detection

 Statistical analysis

 Array processing (e.g. DOA)

 Brightness image

❯ Previous work studied specific samplers in the asymptotic regime: 

 Vaidyanathan 11: coprime sparse samplers with arbitrarily low rate

 Tarczynski 07, Davies 11, Leus 12: multicoset samples with arbitrarily low rate

Cognitive Radios Financial time
series analysis

What is the minimal sampling rate to estimate the signal 
covariance of a wide-sense stationary ergodic signal?

For covariance estimation substantial rate reduction is possible!
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Covariance Estimation
❯ Let 𝑥 𝑡 be a wide-sense stationary ergodic signal
❯ We sample 𝑥 𝑡 with a stable sampling set at times ෨𝑅 = {𝑡𝑖}𝑖∈ℤ
❯ We want to estimate 𝑟𝑥 𝜏 = 𝔼[𝑥(𝑡)x(𝑡 − 𝜏)]

Sub-Nyquist sampling is possible even for finite rates!
Intuition: 
❯ The covariance 𝑟𝑥 𝜏 is a function of the time lags 𝜏 = 𝑡𝑖 − 𝑡𝑗
❯ To recover 𝑟𝑥 𝜏 , we only need the difference set which can grow 

quadratically in the set size

Sampling set
෨𝑅 = {𝑡𝑖}𝑖∈ℤ

Difference set
𝑅 = {𝑡𝑖 − 𝑡𝑗}𝑖,𝑗∈ℤ

𝑡1
𝑡2

𝑡3
𝑡4

𝑡5

𝑡2 − 𝑡1

𝑡4 − 𝑡1
𝑡4 − 𝑡2𝑡3 − 𝑡2

𝑡5 − 𝑡4

𝑡4 − 𝑡3
𝑡5 − 𝑡2

𝑡3 − 𝑡1

𝑡5 − 𝑡3

> Cohen, Eldar and Leus 15

What is the minimal sampling rate to recover 𝒓𝒙 𝝉 ?
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Difference Set Density

It is possible to create sampling sets with Beurling density 0  for which the

difference set has Beurling density ∞!

❯ The density of the set should go to 0 slower than the square root

❯ There should be enough distinct differences so that the size of the difference set 
grows like the square of the size of the sampling set

The density of the square (difference set) goes to ∞

Theorem
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Cognitive Radio

❯ Cognitive radio mobiles utilize unused spectrum “holes”

❯ Need to identify the signal support at low rates

Federal Communications Commission (FCC)
frequency allocation

Licensed spectrum highly underused: E.g. TV white space,  guard bands and more

Shared Spectrum Company (SSC) – 16-18 Nov 2005
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Sub-Nyquist Cognitive Radio
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❯ Abbe’s diffraction limit in optical imaging:

𝐷𝐿 =
𝜆

2𝑁𝐴

❯ Noble prize 2014: super resolution using optical fluorescence

microscopy (Betzig, Hell, Moerner) 

❯ New measurement process – control fluorescence of individual molecules

❯ Image the same area multiple times – only a few point-emitters each time

❯ Spatial resolution of ~20nm

❯ Limited temporal resolution! > 10000 frames to collect all molecules

Super Resolution Microscopy

Can we get both high temporal resolution and high spatial resolution? 

Diffraction Limit
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SPARCOM: Super Resolution Correlation Microscopy

Ground truthDiffraction limited STORM 12000 F SPARCOM 361 F

Data from: http://bigwww.epfl.ch/smlm/
Super-resolution microscopy web site developed by Prof. Michael Unser’s group at EPFL

STORM 500 FDiffraction limited SPARCOM 500 F SPARCOM 50 F

> Solomon et. al 18

Similar resolution to STORM – two orders of 
magnitude faster

http://bigwww.epfl.ch/smlm/
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LSPARCOM: Learned SPARCOM

Ground truthDiffraction limited SPARCOM LSPACROM

> Dardikman-Yoffe and Eldar, 20

(a) (b) (c) (d)

(e) (f) (g) (h)

❯ Performance equivalent to SPARCOM, but with no prior 
knowledge regarding PSF or parameter selection

❯ 10 × improved convergence rate

(a) (b) (c) (d)
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❯ Immune response of T-cells involves T-cell 
receptor (TCR) molecules

❯ TCRs are clustered inside the microvilli

❯ STORM experiment with 30000 exposures

❯ SPARCOM performs reliable recovery with 

100 times shorter 
acquisition period

1𝜇𝑚 1𝜇𝑚

SPARCOM (green) STORM (red) Membrane topology [nm]

Super-resolution of T-cell Receptors
> Collaboration with the group of Prof. Haran from Weizmann

Super-resolution of T-cell Receptors

May lead to live cell 
inspection of TCR 

arrangement
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Super Resolution Contrast Enhanced Ultrasound

Temporal Mean

> Bar Zion et. al 18

Bolus injection of 
micro-bubbles into 
the blood stream

Acquisition of 
consecutive 

frames

Sub-wavelength 
image

Micro-bubbles act as point emitters in the bloodstream
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SUSHI: Sparsity-Based Ultrasound Super-
resolution Hemodynamic Imaging 
❯ Super-resolution imaging using CEUS in real-time
❯ Applications:  Relapse detection & treatment monitoring in Crohn’s disease, breast-cancer screening
❯ Clinical evaluation: Drs. Anat Ilivitzki (Crohn), Ahuva Grubstein and Yael Rapson (breast cancer)

Temporal 
mean

SUSHI STORM
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❯ Many imaging results are indeterminate requiring biopsy for pathologic confirmation

❯ Problems: emotional stress, risk of complications and additional time and cost

❯ Improved ultrasound imaging methods can provide advantages in screening and diagnosis

Scanning with our methods:

❯ One week of scans took place at Beilinson hospital

❯ A total of 21 patients between the ages of 30-70 participated

❯ 4 patients with malignant lesions and 17 patients with benign lesions

❯ Advanced sparsity based deep learning methods were applied to the data to get super resolved
images at real time (< 1 min)

Super Resolution Ultrasound for Breast Lesions
> Collaboration with Drs. Ahuva Grubstein, Yael Rapson, and Dror Suhami
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D e ep  u n f o lded  U L MM I P

Patient 2: Fibroadenoma
B  m o de

Standard maximum intensity projection. Difficult to 
separate lesion signal from tissue signal.

Super resolved image. Displays a highly vascularized 
lesion.
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Patient 18: Malignant mass

D e ep  u n f o lded  U L MM I P

B  m o de

Standard maximum intensity projection. Difficult to 
separate lesion signal from tissue signal.

Super resolved image. Displays a high vascularization at 
the edges of the mass and a low concentration of blood 

vessels at the middle.
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Quantization

ADC

ADC

ADC

Base

station
…
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Analog to Digital Compression

❯ Until now we ignored quantization

❯ Quantization introduces inevitable distortion to the signal

❯ Since the recovered signal will be distorted due to quantization:

> Kipnis, Goldsmith, Eldar and Weissman 17-19

Do we still need to sample at the Nyquist rate?

Goal: Unify sampling and rate distortion theory

Sampling Theory

( )x t quantizer

Source Coding [Shannon]

ˆ[ ]y n[ ]y n
2log (#levels)

bit/sec
sR f

01001001001010010…
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2

2

1
( , ) log ( ) /

2

fs

fss X Y
R f S f df 



 
 

2

2

( , ) ( ) min{ ( ), }
fs

fss sX Y X Y
D f mmse f S f df 


  

Quantizing the Samples: Source Coding Perspective

❯ Preserve signal components above “noise floor” q, dictated by R

❯ Distortion corresponds to mmse error + signal components below noise floor

Theorem (Kipnis, Goldsmith, Eldar, Weissman 2016)
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Can we achieve D(R) by sampling below fNyq?

“we are not interested in exact transmission when we have a continuous 
source, but only in transmission to within a given tolerance”

> Kipnis, Eldar and Goldsmith 18

Optimal Sampling Rate

❯ Yes!
For any non-flat PSD of the input

Shannon [1948]

( , ) ( ) for 

        ( )!

s

s DR

D R f D R

f f R





No optimality loss when sampling at sub-Nyquist (without input structure)!
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Task-Based Hardware-Limited Quantization

❯ Optimal quantization typically using vector quantizers

❯ ADCs are usually serial scalar quantizers

❯ Signals are often acquired for a task:

 Channel estimation

 Source localization…

> Shlezinger, Eldar, Rodrigues 19 

Hybrid quantization system

Jointly optimize in light of the task

Quantizer 
support

Digital 
processing

Analog 
combining

Tools: Majorization theory, dithering, water filling

Exploit task to reduce number of bits 
and simplify hardware
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Application: Massive MIMO
❯ Next generation cellular communications

❯ Equip base stations with large antenna array

 Increases throughput (Marzetta 10, Shlezinger and Eldar 19)

 Costly in power and memory

 Efficient quantization is essential

❯ Hybrid architectures are common (Mo et al 17), (Roth et al 17), (Stein and Eldar 19)….

❯ Lots of work on low bit ADCs: approximate ADC output

and apply MMSE (Li et. al 17), (Choi, Mo, Heath 17),  (Mollen et. al 17), (Mo et. al 18), (Jacobsson et. al 17), …

> Shlezinger, Eldar, and Rodrigues 19-20 

ADC

ADC

ADC

Base

station
…

Jointly optimize as a task-based quantizer!
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Proposed Research:
Task-Based MIMO IC

❯ Task is to minimize error vector 
magnitude (EVM) 

❯ Task-oriented architecture using 
low quantization rate

❯ Configuring optimal analog 
pre-quantization matrix A and 
digital post-quantization filter B, 
using statistical model of signals 

❯ Analog/digital beamforming for 
spatial interferer rejection

Fully Digital
(Conventional)

Orthogonal Beamforming 
(Golabighezelahmad et al 19) 

Proposed
Task-Based MIMO

RF Front End Power LOW HIGH LOW

ADC Power HIGH LOW LOW

Low Quantization Rate

Spatial Filtering

> Zirtiloglu, Shlezinger, Eldar, Yazicigil `21
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Deep Task-Based Quantization

❯ Data-driven task-based quantization

❯ Learn mapping from training

❯ Model-ignorant

> Shlezinger and Eldar 19 

Structure in the quantizer + the task

Simple and robust deep quantizers 
that achieve optimal performance!
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Massive MIMO Demo

❯ Significantly reduce power and hardware cost

❯ Similar performance!

Practical MIMO receiver with fewer RF chains than antennas + low bit samplers
> Ioushua et. al 18-20

Task-based quantizers lead to simple low power hardware for 
comm and radar systems without degrading performance! 
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Dynamic Metasurface Antennas

❯ Emerging antenna technology:

❯ Scalable

❯ Low power

❯ Dynamically configurable radiation pattern

❯ Applications:

❯ Microwave imaging

❯ Radar systems

❯ Satellite communications

❯ Intelligent reflective surfaces (Huang et al, TWC 19)
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Metasurfaces for Analog Precoding

Alternative approach to dedicated analog precoder hardware

❯ Inherent tunable analog precoding in the antenna structure

❯ Low power, small hardware

❯ Enhanced frequency-selective analog processing

> Shlezinger et. al 19-21 
> Collaboration with the group of Prof. David Smith
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Metasurface Antennas with Low-Bit ADCs

❯ Exploit analog precoding for task-based quantization

❯ Frequency selectivity

❯ Suitable for wideband signaling

> Wang et al. 20

Jointly optimize in 
light of the task

Quantizer 
support

Digital 
processing

Metamaterial 
element setting

Digital 
process
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Joint Radar-Communications for Autonomous Driving
❯ We have seen ways to reduce size, power, space in both radar and comm

❯ Can we combine?

❯ Autonomous cars constantly assess their environment requiring wireless 
communication transceivers and radars

❯ Motivates designing these functionalities jointly 

❯ Dual-function radar communication (DFRC) systems:
 Size and cost reduction

 Facilitate coexistence

 Reduce spectral congestion
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DFRC Strategies

Leading design approaches:

❯ Separate coordinated signals

❯ Beamform / orthogonalization

❯ Communication waveform

❯ OFDM radar

❯ Dual-function waveform

❯ Dedicated design

❯ Radar waveform

❯ Embed message

> Ma et al. SPMag 20
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Embedding Information in Radar Waveforms

❯ Convey digital messages with radar signals:

❯ Embed bits in the waveform parameters

❯ Index modulation: Frequencies, antenna elements 

❯ Benefits

❯ Use conventional radar signals

❯ Minimal radar degradation

❯ Drawbacks

❯ Limited bit rates

❯ Challenging decoding Radar beam

101 011
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MAJoRCom: Multi-carrier Agile Joint Radar Communications

❯ Use only radar waveforms

❯ Embed information in:

❯ Frequency selection

❯ Antenna allocation

❯ Spectrally efficient:

• Upper bound

• Lower bound

• One dedicated antenna

• Two dedicated antennas

❯ Angular resolution:

> Huang et al. 20

Comparable to using 
dedicated comm. antennas 

without affecting radar
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SpaCoR: Spatial Modulation Based Communication-Radar

❯ Orthogonal transmissions:

• Distinct bands

• Distinct antennas

❯ Toggle antenna allocation: 

• Spatial modulation

• Spatial agility

• Improved resolution and throughput

> Ma et al. 20
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Hardware Prototype

❯ Using over-the-air signaling

❯ 16 antenna elements

❯ Radar echo generator (REG)
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Task-Based Quantization for Federated Learning

❯ Train on edge devices

❯ Quantize model updates

❯ Aggregate quantized weights

  < Shlezinger, Chen, Eldar, Poor, Cui, 19

Central 
model

Distributed 
training

Expensive 
communications

Reliable centralized 
model with less 
communication
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Part 3:

Model-based deep learning

x y
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Deep neural networks (DNNs) achieve 
superior performance in:

❯ Computer vision

❯ Speech processing

❯ Problems which are hard
to tackle with models

Challenges:

❯ Large training sets

❯ Interpretability?

❯ Robustness?

❯ Generalization limited

❯ Generic architectures

Black-Box Deep Learning
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❯ Signal processing is based on modeling

❯ Can incorporate domain knowledge and structure 

❯ Allows inference from relatively small amounts of data

❯ Analytical techniques to assess quality of the output

However:

❯ Requires accurate model knowledge

❯ Inference can be slow

Model Based Signal Processing

Combining model-based algorithms and deep learning:
Compact, interpretable, and simple to train data-driven systems!
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Optimize a metric function
𝑓(𝑔(𝑥), 𝑦)

Model-Based vs. Deep Learning

Input y

(Measurement)

Output x

❯ Model-based signal processing:
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❯ Model-based signal processing:

❯ Deep learning:

Math. 
operation

Generic 
computation

Math. 
operation

Model 
dependent 

processInput y

(Measurement)

Output x

Many
Inputs

Many
Outputs

New y x

Model-Based vs. Deep Learning
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Model-Based Deep Learning

❯ Model-based signal processing:

❯ How to combine?

Math. 
operation

Generic 
computation

Math. 
operation

Model 
dependent 

process

❯ Deep learning:

1. Integrate model-based 
algorithms into deep networks

2. Integrate deep networks into 
model-based algorithms

Data-driven hybrid algorithms

Deep unfolding / unrolling
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Deep Unfolding

Deep networks inspired by iterative 
model-based algorithm:

❯ Unfold iterations into layers

❯ Learn parameters of the layer from data

❯ Model-driven network

> Gregor and LeCun 10; Hershey, Le Roux, and Weininger 14 

Recent review in SP Magazine

M
o

d
el-b

ased
         

D
eep

 n
etw

o
rk

Benefits: 
❯ Faster convergence
❯ Less trainable parameters
❯ Interpretable network
❯ Better performance from less 

training data
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DUBLID: Deep Unrolling for Blind Deblurring
> Li, Tofighi, Monga and Eldar, 19

❯ Many deblurring methods based on 
optimization (e.g. total variation)

❯ We perform total variation in the gradient 
domain y≈k*x

❯ We solve the problem by a variable 
splitting approach and then unfold

y

Blurred Image

k

Blur Kernel

x

Sharp Image

n

Random Noise

= * +
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Deblurring Results
> Li, Tofighi, Monga and Eldar, 19

(a) truth     (b) Perrone et. al  (c) Nah et. al (d) DUBLID

Superior performance, parameter free and computational 
benefits. All code available online.

❯ Training based 
on BSDS500 
dataset

❯ Blur kernels of 
linear motion 
with different 
lengths and 
angles
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Super-resolution via Deep Learning
❯ Resolve overlapping bubbles via deep network scheme

 Improved performance over sparse recovery methods

 Faster execution time

❯ Relies on a learned ISTA approach via unrolling

❯ Cost function:
| 𝑓 𝑥 𝜃 − 𝐺 ∗ 𝑦 |2

2 + 𝜆||𝑓 𝑥 𝜃 ||1

> Van Sloun et. al. 2018

Super-resolution of rat spinal cord vasculature

High resolution sparse frame

Deep unfolded iterative shrinkage for ULM 

+

Deep unfolding

+

λ

+𝜇𝐴𝑇

𝐼 − 𝜇𝐴𝑇𝐴

λ0 λ1 λ𝐾

𝑥𝑘

𝑥𝑘−1

High resolution sparse vector

𝐾 unfolded iterations
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Removing Tissue Background via Deep Learning

❯ Blood signal is cluttered by unwanted tissue

❯ We use the model:

 low rank (background) + 

 sparse (contrast signal)

❯ Use model based deep learning

❯ Improved performance in terms of noise, frame rate 

> Solomon et. al. 2018CORONA: Convolutional rObust 
pRincipal cOmpoNent Analysis

In-vivo contrast rat brain scan

Van Sloun, Cohen, Eldar
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Tissue

Blood+

+

Input frames

ISTA for RPCA 

Iterative proximal gradient scheme

Low-rank + sparse model (L+S, RPCA)

Data

Low-rank tissue clutter

Sparse MBs

DL for Clutter Suppression
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Input Output

x y

x y
❯ Limited training data

❯ Maintain optimality when 
no uncertainty

❯ Allows for model 
distortions

❯ Once trained, easy 
computation

Advantages:

Math. 
operation

Generic 
computation

Math. 
operation

Model 
dependent 

process

Data Driven Hybrid Algorithms

Recent review: Nariman et. al,“Data-Driven Symbol 
Detection via Model-Based Machine Learning”
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Viterbinet: Symbol Detection with Unknown Channels

❯ Viterbi detection algorithm

❯ Requires channel knowledge

❯ Viterbinet: Model based deep detection

❯ Unknown computations  DNNs

> Shlezinger, Farsad, Eldar and Goldsmith 19

 Pr |y s

Likelihood

Channel knowledge
Channel 
output

Learned 
likelihood

Channel 
output

Viterbi (Model-based)

ViterbiNet (Data-driven)

Optimal symbol 
detection from 

minimal training
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Data-Driven Factor Graph Methods
❯ A family of signal processing algorithms

 Represent distribution as graph

 Message passing

❯ Data-driven factor graphs:

 Learn the factor graph

 Message passing over graph

❯ Example: BCJRnet

 Learned BCJR detector:

> Shlezinger, Farsad, Eldar and Goldsmith 20

Model-based factor graph

Learned factor graph

Learned MAP symbol detection
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DeepSIC: Deep Soft Interference 
Cancellation for Massive MIMO
❯ Massive MIMO symbol detection

❯ Learn how to cancel interference

> Shlezinger, Fu and Eldar 19

Iterative SIC 
Model-based

DeepSIC 
Data-driven

No channel knowledge
Applicable in non-linear channels
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COVID19 Task Force
❯ Put together a task force of 4 hospitals and AI experts

❯ COVID19 detection using Xray: Over 90% detection 
rate! (PCR achieves 70%)

❯ Based on model-based features

❯ Starting to deploy in Beilinson

❯ Next steps in project including postcovid

Step 1: Pre-processing + Segmentation

Step 2: Deep learning algorithm
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COVID19 Task Force
❯ Collaboration with Prof. Libertario Demi et. al

❯ COVID19 detection from LUS + severity grading

❯ Based on model-based features

❯ Close to 80% detection

Step 1: Line Detection

Step 2: Deep learning algorithm

B-lines

Pleural line
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Efficient, Interpretable, High Resolution 
Sensing: Results and Vision

Mathematical limits:
Sampling rates
Coding rates
Superresolution limits

Engineering Research:
Development of new samplers
Technological applications
that break existing barriers

Exploit structure and goal in model based and data driven methods

Scientific/clinical breakthroughs:
Thanks to the possibility of 
seeing what we could 
not see before ...

To learn more from less data we must take 
advantage of all the information possible!
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Visit Our Webpage

http://www.wisdom.weizmann.ac.il/~yonina/YoninaEldar

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and 
Applications", Cambridge University Press, 2012
A. D. Maio, Y. C. Eldar and A. M. Haimovich, "Compressed Sensing 
in Radar Signal Processing", Cambridge University Press, 2019

Y. C. Eldar, “Sampling Theory: Beyond Bandlimited Systems", Cambridge University Press, 2015

http://www.wisdom.weizmann.ac.il/~yonina/YoninaEldar
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SAMPL Team

If you want to go fast go alone 

If you want to go far bring others
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Collaborators (Partial…)

Andrea GoldsmithMiguel Rodrigues David Smith Alon Kipnis

Tianyao HuangVishal MongaRuud Van Sloun Nir Shlezinger

Shai Tejman-
Yarden

Geert Leus
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If you found this interesting …
Looking for graduate students 

and post-docs!

Thank You!


