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Data Abundancy

Challenges of data proliferation in the digital era:

China

> Power oo
IT sect: - -l,lm'
> Storage . Global IT industry's 2012
i - electricity consumption
> Processing 5 compared to energy-
. . o - consuming countries
> Communicating
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Do we really need so much data?




Data Redundancy

Smart cities, autonomous cars
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“Analog Girl in a Digital World...”

Judy Gorman 99
Analog world Sampling
1 > Analog-to-Digital
T(l) e———p  CONVETtOr | ) (7] 010010110

> Music (ADC) Siona] .

> Radar \ > Signa Srocgsgng
> Communication ET I—" > gnage enoising

> Image... = / > Compression...

> t—

Yin|l=X(n/f, M
[n] = X(n/fs)
fs = # samples/sec
R = fslog,(#tof levels) (bit/sec)




“Analog Girl in a Digital World...”

Judy Gorman 99
Analog world Sampling
} > Analog-to-Digital
T(t) e——  CONVEItor — e——) y7] 010010110
> Music (ADC)
s Radar > Signal processing
o Sampling rate at least twice > Image denoising
> Communication the highest frequency > Compression. ..

> Image...

H. Nyquist C. Shannon

7




Standard Acquisition Systems

Design rule: Design rule:
Nyquist theorem “6dB per bit” rule of thumb

Quantizer

Each block optimized

separately 010010110

. . ‘ Design rule:
Dlglta.l | 2l Task dependent
Processing v MSE, error rate, etc.




Limitations of Standard Systems

Large Bandwidth High rate samplers > Large and expensive
and quantizers hardware-intensive
> High rate systems

communications > > High-energy systems

> High resolution
e.g.in radar and
imaging

> Large digital databases:
difficult to process,
store and transmit

In medical imaging, high rates often translate into 4
1ong scanning times or high radiation dosages

ADC:s, the front end of all digital devices, lead to
hardware, data and power bottlenecks




Task-Based Structured Acquisition

Sampler Quantizer

Joint Design:
* Structure in
input/system

* QOutput task
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Model based, efficient, and interpretable data driven methods!



Advantages of Joint Design
& & & &

Compact, portable = Joint radar and Efficient Compact, cheap
devices with better = communication wideband sensing = and high
imaging and systems resolution radar
detection quality

& &

Efficient massive High performance Super resolution Interpretable,
MIMO systems Low-bit microscopy and deep networks for
quantization ultrasound communication,

medical imaging,
radar and more )
i

)
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Talk Outline

> Exploiting structure: From Sampling to Xampling

> Sub-Nyquist ultrasound and radar - ﬂ .
i

> Wireless ultrasound R R M

2 Exploiting tasks: Task-based sampling L/ )
> Power spectrum estimation =

= Cognitive radio
= Super-resolution microscopy and US

> Task-based quantization

= Efficient massive MIMO systems

» Federated learning

= Metasurface multiantenna systems
= Joint radar-communication systems

2 Exploiting models: Model-based deep learning
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From Sampling to

Xampling
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Multiple Frequency Bands

> Multiband Communication

/\ > Mishali and Eldar 09
o 00
T '._‘_- T —> f

0 jjj /fl > f2—’—,—" f3 - v fN fmax
Unknown carriers —A—» f
O fllla.X

= Can be viewed as fmax— bandlimited

= But sampling at rate> 2 fi,ax is a waste of resources

- For wideband applications Nyquist sampling may be infeasible

> Multispectral imaging, multispectral CT m
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Streams of Pulses

Radar: > Vetterli et. al, 02

.~ - Veloc1ty
0

Ultrasound:

Dlstance to target

_OAAM .

A sampler that takes advantage of the pulses' structure can use

fewer samples and lead to higher resolution
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Compressed Beamforming > Chernyakova and Eldar 13-15

> SNR and resolution are increased by using an antenna array

> Beamforming is performed by introducing appropriate time shifts to the
received signals

Focusing the received
beam by applying

128-256 nonlinear delays

elements

Scan Plane

DO(t;0) = ﬁi(pm (t—%(t—\/t2 —4(5m/c)tsin9+4(5m/c)2))

Requires high sampling and processing rates (lots of data...)

One image trace needs 128 samplers @20M, beamforming to 150 points, total of

6.3x10° sums/frame! y



Challenges

Can we...
> Reduce analog sampling rates of very noisy signals
> Perform nonlinear beamforming on sub-Nyquist samples,
without interpolating to the high Nyquist-rate grid digitally

Yes, use Compressed Beamforming!

Y Reduce US machine size
at same resolution l- e

e
~,

2 Increase frame rate

e | W=l ) E

e -
g

2 Enable 3D imaging

2 Enable remote
wireless ultrasound
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Union of Subspaces

Y — U Ay > Lu and Do 08, Mishali and Eldar 09
AEA Axs
z(t) € Ax» — A* is unknown a-priori Axs z(t) Ax,
Each A, has low dimension

> Allows to keep low dimension in the problem model
> Low dimension translates to low sampling rate

A sampling operator is invertible over a union of subspaces U if and only if
it is invertible for every

Ay = Ax+ Ay = {z|z = 21 + 22, where 21 € Ay, 22 € A}

16



Xampllng Hardware > Mishali and Eldar, 10-14

> Alias the data onto low dimensional space by mixing with periodic functions

p1(t) T
/L nl,
X H(f) —rf— wnln]
Time ||||||
0o T x(t) ®*  Reduce bandwidth

P

—_— °
Frequency ||| | Il P () °

0

T,

AL, AAMAL.

> Functions designed so that in digital we have a CS problem

@—

Compressed

Acquisition ) IRl () recovery
processing

Analog preprocesing Low rate (bandwidth)
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Xampling Hardware

Sample at low rate using standard ADCs such that in digital we get a CS problem

Low rate, low bandwidth, simple hardware and low computational cost

Achieves the Cramer-Rao bound given a sub-Nyquist sampling rate
(Ben-Haim, Michaeli, and Eldar 12)

Minimizes the worst-case capacity loss for a wide class of signal models
(Chen, Eldar and Goldsmith 13)

n(t)
X(t) v
Message (3 | Encoder [ 3 h(?) > P o

signal structure,
captured by channel

i, s Contos = 5 9) ot (7 )
H(8) = ~Blog  — (1= §)log(1 — )

binary entropy function

capacity-achieving
sub-Nyquist sampler

> o undersampling factor
> [3: sparsity ratio
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Compressed Sensing

- i

Short n, MmN

> Candes, Romberg, Tau 06, Donoho 06

Compressed
Sensing

Theory and Applications

Yonina C. Eldarand Gitta Kutyniok
.

~ 2K measurements

HEE EEEEE BN BEEPS

Long f -sparse

Main ideas: (K nonzeros)

> Sparse input vector with unknown support
> Sensing by sufficiently incoherent matrix (semi-random)

> Polynomial-time recovery algorithms from K log n measurements
19



Compressed Sensing Extensions

> Nonlinear sparse recovery (optics):
» Phase retrieval
(Shechtman et. al 11, 14, 15, Eldar and Mendelson 12,
Ohlsson et. al 12)
= Nonlinear compressed sensing
(Beck and Eldar 12, Bahman et. al 11, Ohlsson et. al 13,
Yang et. al 15)

> Reference based sparse recovery (MRI)
(Weizman, Eldar and Ben Bashat 16)
> Sparsity with tracking (ultrasound) (Solomon et. al 18)

> Statistical sparsity
(Pal and Vaidyanathan 14, Solomon et. al 18, Cohen and Eldar 18,
Romero et. al 16)

> Deep learning (Gregor and LeCun 10, Mousavi and Baraniuk 17,
Borgerding et. al 17, Aggarwal et. al 18, Bora et. al 17, Wu et. al 19)

llllllllllllllllll
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uuuuuuuuu

uuuuuu
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Xampling: Practical Compression + Sampling

> Xampling: practical sub-Nyquist sampling and processing

> Many examples in which we reduce sampling rate by
exploiting structure

> Low rate translates to lower radiation dosage, faster
scanning, processing wideband signals, smaller devices
and improved resolution

DOA Estimation
=

21



COMPRESSED ——— A Jint Radar-Commuicaions Srategie
SENSING - Analog-to-Digita for Autonomgsehulet

in Radar Signal Processing compressiun

Analog-to-Digital il
Antonio De Maio, Yonina C. Eldar, cogn“i"e Radio

and Alexander M. Haimovich
Sampling, detection, and hardware

Applications

“In theory, theory and practice are the same.

In practice, they are not.”
Albert Einstein
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Sub-Nyquist Ultrasound Imaging

> Chernyakova and Eldar 13-15

Standard Imaging

~1/32 of the Nyquist rate
f 0

A

-80 -60  -40 -20 0 20 40 60 80

Low rate sampling enables:

> 3D imaging

> High frame rate for cardiac imaging

> Handheld wireless device: rural medicine,
emergency imaging in the field/ambulance

23



Bring the Digital Revolution to Ultrasound, Anywhere

Xampling technology samples and processes ultrasound signals without loss
of information at very low rates!

> Allows to integrate electronics into probe: wireless ultrasound

> Enabling an “open imager” — advanced signal processing and AI methods on
channel data that can run on any platform

> Enabling remote health flexibility
> Super resolution methods

< Advanced cloud based

Low bandwidth \\é_:/ Signal processing
CHANNEL data \ v
) L/ 9))) — :
& '1 (L\ J
Low rate !ro\&‘ Low rate
sampling HW w processing

24



W Demo Movie
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Deep Adaptive Beamforming

> Luijten et. al 19

p:;'"ps EINDHOVEN
, e UNIVERSITY OF
‘ TECHNOLOGY

High-quality
target (EBMV)

Deep learning
Delay-and-sum

(standard) Improved contrast

and resolution

26



Channel Data Clinical Forum

Improve diagnostics from channel data!

> Ovarian cancer detection with MGH > Detection of pleural diseases with
and MIT Haemek
> Tumor classification with NYU medical > Fetal anemia detection with Hillel Yaffe

and Siemens

> Breast cancer detection with Beilinson L : o ,)) —> Channel
> Children cardiology with Shiba '—"/{ data!
> US for developing countries with L
. , . . ow rate
Children’s hospital and Brigham Women sampling HW

Boston ‘ ‘ _
é Children’s NYU Langone The Chaim Sheba / | RABIN MEDICAL CENTER
HOSpItaI '\ y Medical Center at |

MEDICAL CENTER _TelHashomer HIIIeIY‘a’{fﬁ 15 all about the people PRV NI T3 (@™ BEILINSON « HASHARON

Until every child is wel

11111111111111111111

New clinical applications enabled by new acquisition strategy

27



Radar/Time of Flight Imaging
> Bar-Ilan and Eldar 14, Rossi et. al 14, Cohen and Eldar 18, Cohen et. al 18

> Small, cheap radars with excellent resolution

> We can also reduce physical parameters:
= Create a radar map in less time

= Use fewer antenna elements cogwE ILRSEIz(SBED
> Spectrum sharing between radar and e i inRadarSignlProcessig

communication over the same channel
> Free congested spectrum
> Fast frequency detection — g




Sub-Nyquist and Cognitive Radar COMPRESSED

SENSING

in Radar Signal Processing

K T
EDITED BY
Antonio De Maio, Yonina C. Eldar,
and Alexander M. Haimovich




Cognitive Automotive Radar |
> Mulleti et. al 18-20

> In autonomous systems the number of vehicles
(radars) vary over time
2 > Radars require to share bandwidth without interference

> Our cognitive system divides the bandwidth into
multiple narrow subbands adaptively

> Based on desired no. of radars the subbands are
assigned to each radar

30



Radar With Unknown Pulse Shape

> Mulleti et. al 20

< \k > In practice the pulse shape can be

distorted and unknown

Signal from Rx-1

<t &
%\\\\ : 4. A .5 We propose the use of multiple receivers
Rx-1 ) Zg 0

Signal from Rx-2

v\ (at least 2) to recover the targets and pulse

tiz tyn

> Each Rx operates at a sub-Nyquist rate

Signal recovery from samples at 10 times lower than Nyquist

31



Blind SIMO Sub-Nyquist Radar

PC
Matlab
ReAntl 4eeesssssmesus . ‘

Y = LPF1——|=

< o H

Tx antenna . L

HX) .
. .
L -
M

VSG with fading capabilities

Baseband signal

Single-Input Multi-Output
Sub-Nyquist Radar
With Unknown Pulse Shape

............

Tx Pulse gen./

simulator Lozacz  RX processing
/) MPL
S 2 Acoaton iding higranfvar g} e
Allows for low power, low BW radar
detection in complicated settings like =
automotive radar Lowpeass filters for Rx

32



Deep-Sparse Antenna Array

> Mulleti et. al 19-20

High-res DOA(® Large array (¥ High-cost, power

>
O
- S . n > We propose NN-based sparse subarray selection
> The method is cognitive and adapts according to the

a‘ < S ﬁ?‘ . current target scene

o2 > The method is scalable and performs better than a
non-adaptive random selection method

FAST-LEARNING SPARSE ANTENNA ARRAY
FOR AUTOMOTIVE RADAR




Deep-Sparse Antenna Selection

EEmE=E 1111
mmum 1011
panl

. LR

1 5 GHz system

16 element Rx Transceiver Target-2

GUI
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Task-Based Sampling

Digital hardware

Analog-to-digital conversion
4 ..a. " ——‘—b b ?
(t0)) B 01101101
Digital -
processing
| B
5 . . - 1
Sensor array Sampling Quantization




Task-Based Sub-Nyquist Sampling

Can we reduce sampling rates for signals without structure?

Consider the case where we don't actually need the signal, but rather some function of it

AV VA VY

Easier than H - ?

Signal statistics: Power spectrum estimation > with Geert Leus and Deborah Cohen
Quantized version of the signal > with Alon Kipnis, Andrea Goldsmith, and Tsachy Weissman
Task-based quantization in communication > with Nir Shlezinger and Miguel Rodrigues

Compressed beamforming > with Tanya Chernyakova and Regev Cohen

36



Power Spectrum Reconstruction

> Often the required information can be extracted from the covariance rather
than the signal itself:

198 b and $49100 101 grth

crum Access | %
. - s |
e -, ¢ LN m/’\‘w“‘\.;\ '
CRC T & R /"v I
4 - flg i 1 W { 3
= N - W
B WY o =" 2|/ } Y
ol =T £ a 199 1997 1908 1999 2020 250 2082 2003 2004 200 .

Time

= Support detection

= Statistical analysis

» Array processing (e.g. DOA)

: : Cognitive Radios Financial time
. Brlghtness Image & series analysis

What is the minimal sampling rate to estimate the signal
covariance of a wide-sense stationary ergodic signal?

> Previous work studied specific samplers in the asymptotic regime:
= Vaidyanathan 11: coprime sparse samplers with arbitrarily low rate
= Tarczynski 07, Davies 11, Leus 12: multicoset samples with arbitrarily low rate

For covariance estimation substantial rate reduction is possible!

37



Covariance Estimation

> Letx(t) be a wide-sense stationary ergodic signal
> We sample x(t) with a stable sampling set at times R = {t;};ez
> We want to estimate 1, (t) = E[x(¢t)x(t — 7)]

> Cohen, Eldar and Leus 15

What is the minimal sampling rate to recover r,(7)?

Sub-Nyquist sampling is possible even for finite rates!
Intuition:
> The covariance 7,,(7) is a function of the time lags 7 = t; — ¢;
> To recover r,(7), we only need the difference set which can grow
quadratically in the set size

t, —t4
t i3 —t4
tl 2 t4 - tl
t, — t
ty ty—t; * 2
t3 t4 — t3
Sampling set ts b=l ¢ —t, Difference set

R ={t;}iez ls — 1y R ={ti = tj}i jez

38



Difference Set Density

It is possible to create sampling sets with Beurling density 0 for which the
difference set has Beurling density oo!
> The density of the set should go to 0 slower than the square root

> There should be enough distinct differences so that the size of the difference set
grows like the square of the size of the sampling set

2 The density of the square (difference set) goes to o

~

—_—— 00— 0-0—0—0—0—0—0 ..HR

Let R = {t;}icz, be a sampling set with lower Beurling density D~ (R) = 0,
so that the set of differences between two sets of size p and g is of the order
of pg. Let R = {t; —t;},Vt; > t; € R be the associated difference set. If

lim, o0 da(r) _ 00, then, D™ (R) = o0

\/F

39



W Cognitive Radio

> Cognitive radio mobiles utilize unused spectrum “holes”
> Need to identify the signal support at low rates

frequency

S_spectrum
} “holes”

Federal Communications Commission (FCC)
frequency allocation

UNITED

STATES
FREQUENCY
ALLOCATIONS

THE RADIO SPECTRUM

time

TV 7-13: 174216 M,

Maritime Mobe, Amatewr, ofhers: 216-225 Mz

Fixed Mobike, Aero, ofhers: 225406 MHz.

Amateur, Fixed, Mobile, Rad . 406470 ke

TV 1420 47052 Mz
TV 2136 512608

TV 37-51: 606-698 MHz
TV 52.62: 698-806 Mz
Gl phone and SMIR: 506-502 M
Unii 902928 Mre =
Paging, SMS, Fixed, BX Al and FMS: 926.905 Mz
IFF, TACAN GPS, others: 960-1240 Miz |20

Amateur 1240-1300 M

Aero Radar, Mitary: 1300-1400 Mz
‘Space/Satelite, Fixed hobile, Telemetry” 14001525 Mz
Mobile Satelite, GPS, Meteorologicial: 15251710 MHz

“Amatelr, WCS, DARS: 2300-2360 Mz e
23602390

00% 250% s0.0% 75.0% 100.0%
Spectrum Occupancy

Shared Spectrum Company (SSC) — 16-18 Nov 2005

Licensed spectrum highly underused: E.g. TV white space, guard bands and more 40



Sub-Nyquist Cognitive Radio

Analog-to-Digital
Gognitive Radio




Super Resolution Microscopy

>

>

>

>

Abbe’s diffraction limit in optical imaging: Diffraction Limit
Super resolunon | Optical mlcroscopy resolution
M:{:zl;lle Proteln Virus |Bactena Cell  Hair Ant
A
DL = —— z‘f%}#\'-\ Sl e
2NA N
1nm 10nm 100 nm :1 pm 10um 100pm 1 mm
Noble prize 2014: super resolution using optical fluorescence C; / & ﬂ g

microscopy (Betzig, Hell, Moerner) .
New measurement process — control fluorescence of individual molecules

Image the same area multiple times — only a few point-emitters each time

Spatial resolution of ~20nm

Limited temporal resolution! > 10000 frames to collect all molecules

Can we get both high temporal resolution and high spatial resolution?

42



SPARCOM: Super Resolution Correlation Microscopy

> Solomon et. al 18
Diffraction limited Ground truth STORM 12000 F SPARCOM 361 F

Similar resolution to STORM - two orders of

magnitude faster )

Diffraction limited STORM 500 F SPARCOM 500 F SPARCOM 50 F

Data from: http://bigwww.epfl.ch/smlm/
Super-resolution microscopy web site developed by Prof. Michael Unser’s group at EPFL



http://bigwww.epfl.ch/smlm/

LSPARCOM: Learned SPARCOM

Ground truth SPARCOM

Diffraction limited

> Dardikman-Yoffe and Eldar, 20
LSPACROM

> Performance equivalent to SPARCOM, but with no prior “| -*
knowledge regarding PSF or parameter selection

> 10 x improved convergence rate

(0) H(0)
oy B

0
(=i

(10) 4(10)
% Bo




Super-resolution of T-cell Receptors

> Collaboration with the group of Prof. Haran from Weizmann

> Immune response of T-cells involves T-cell
receptor (TCR) molecules

> TCRs are clustered inside the microvilli
> STORM experiment with 30000 exposures
> SPARCOM performs reliable recovery with

100 times shorter

350

300

May lead to live cell

inspection of TCR
arrangement

45



Super Resolution Contrast Enhanced Ultrasound

> Bar Zion et. al 18

Bolus injection of Acquisition of Sub-wavelength
micro-bubbles into ) 4 consecutive > image
the blood stream frames

Micro-bubbles act as point emitters in the bloodstream

Temporal Mean

8.,
>4
S i
o el
&

w .

]

3
£

Depth [mi
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SUSHI: Sparsity-Based Ultrasound Super-
resolution Hemodynamic Imaging

> Super-resolution imaging using CEUS in real-time
> Applications: Relapse detection & treatment monitoring in Crohn’s disease, breast-cancer screening
> Clinical evaluation: Drs. Anat Ilivitzki (Crohn), Ahuva Grubstein and Yael Rapson (breast cancer)

Temporal SUSHI STORM

. RABIN MEDICAL CENTER
@™ BEILINSON « HASHARON

N

x[mm] 1.3 ) 0.1 x[mm] 0.8 ‘ "
RAMBAM




Super Resolution Ultrasound for Breast Lesions

> Collaboration with Drs. Ahuva Grubstein, Yael Rapson, and Dror Suhami

> Many imaging results are indeterminate requiring biopsy for pathologic confirmation
> Problems: emotional stress, risk of complications and additional time and cost
> Improved ultrasound imaging methods can provide advantages in screening and diagnosis

Scanning with our methods:

> One week of scans took place at Beilinson hospital ._ RABIN MEDICAL CENTER
-- BEILINSON « HASHARON

> Atotal of 21 patients between the ages of 30-70 participated
> 4 patients with malignant lesions and 17 patients with benign lesions
>

Advanced sparsity based deep learning methods were applied to the data to get super resolved
images at real time (< 1 min) ‘




Patient 2: Fibroadenoma

Standard maximum intensity projection. Difficult to Super resolved image. Displays a highly vascularized
separate lesion signal from tissue signal. lesion.




Patient 18: Malignant mass

B mode

e e £ — el i M e,

B e —— T — . W T e Wi =l B T X E it R

== -....-:..rlh PP ——
B

MIP Deep unfolded ULM

e

Super resolved image. Displays a high vascularization at
the edges of the mass and a low concentration of blood
vessels at the middle.

Standard maximum intensity projection. Difficult to
separate lesion signal from tissue signal.




mEmes 100

smun 1001

Observed physical signal

ADC

DSP

H‘HI‘M -" )

Digital representation

Processing
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Analog to Digital Compression —

o . . ~ Analog-to-Digital
| | .> Kq.)ms, Goldsmith, Eldar and Weissman 17-19 Comprestii )
> Until now we ignored quantization ol

A new paradigm for converting

> Quantization introduces inevitable distortion to the signal
> Since the recovered signal will be distorted due to quantization:

Do we still need to sample at the Nyquist rate?

VERPERUE > yin]

............................. R= 1. log, (#levels)
fs = # samples/sec bit/sec

Sampling Theory Source Coding [Shannon]

Goal: Unity sampling and rate distortion theory

52



Quantizing the Samples: Source Coding Perspective

D(f,R=1)

Distortion

@:% [10g"[16]df
. :Jlmin{J,O}df
B -/ s/ )ar

> Preserve signal components above “noise floor” g, dictated by R
> Distortion corresponds to mmse error + signal components below noise floor

R(f.,0) %j% log* [ S,., (1) /6 [
2

fs
D(f,,0) = mmsex‘Y(f3)+'ﬁs min{§x‘Y(f),¢9}df
2

53



Optimal Sampling Rate

> Kipnis, Eldar and Goldsmith 18

“we are not interested in exact transmission when we have a continuous
source, but only in transmission to within a given tolerance”

Can we achieve D(R) by sampling below fy?

fopr vs R

a

> Yes!
For any non-flat PSD of the input

D(R, f.) = D(R) for
f.>f_(R)

0T

v

No optimality loss when sampling at sub-Nyquist (without input structure)!

54



Task-Based Hardware-Limited Quantization

> Shlezinger, Eldar, Rodrigues 19
Optimal quantization typically using vector quantizers

ADCs are usually serial scalar quantizers

Signals are often acquired for a task:
= Channel estimation

= Source localization... ™ E E """""""" =
e \ / QSP ADC
28 (x)
38 1y (z)l . )
Y » Scalar quantizer (5)1
36 »
. Analog : Digital '
g™ combiner : procesing :
()
(X),, N (z)“ Scalar quantizer Ep
Input Task

Number of bits log, M

Jointly optimize in light of the task

Analog Quantizer Digital
Exploit task to reduce number of bits combining support processing

and simplify hardware

Tools: Majorization theory, dithering, water filling
55



Application: Massive MIMO

> Shlezinger, Eldar, and Rodrigues 19-20

Next generation cellular communications

Equip base stations with large antenna array Base
* Increases throughput (Marzetta 10, Shlezinger and Eldar 19) station
= Costly in power and memory = &
= Efficient quantization is essential D ,EI =% O len

Hybrid architectures are common (Mo etal 17), (Roth et al 17), (Stein and Eldar 19)....
Lots of work on low bit ADCs: approximate ADC output
and apply MMSE (Li et. al 17), (Choi, Mo, Heath 17), (Mollen et. al 17), (Mo et. al 18), (Jacobsson et. al 17), ...

. I(
0 . S Massive MIMO reciver
\ | AN '
@ P - N Analog-to-digital conversion
."; = ; :

o Gla)
— N '%.“ > — ﬁ -
N W

Jﬁ-

MIMO e

U Channel Analog a
s Lo X processing z Digital |y s
! processing
5 VY z, olz,)

y St e — T
[~

L

Asymptotic average distortion

Jijf

Quantization Recovered
symbols

symbols

Overall quantization rate R
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Proposed Research:

Input 1

Task-Based MIMO IC o

Observation |
1x8

> Zirtiloglu, Shlezinger, Eldar, Yazicigil 21

INTEGRATED CIRCUIT (IC)

SOFTWARE (MATLAB)

1
1
1
. .. Y : — MSE :
Task is to minimize error vector INT Analog  |Z1x2=Ax P Recovered Data |
1 mbiner
magnitude (EVM) Y Joouncomenar|—><o8 ——— |
b . . ! DSP Post - 1
Task-oriented architecture using ., Y., - Af’: _ < e oigis [5- |
low quantization rate Q‘f N | PSS -7 R '
. . . 1 ’ ’ 1 B '
Configuring optimal analog ) > o 1t ! :
. . . 1 atistical Model o
pre-quantization matrix A and P:ix,v Y |S‘DLs§reJ2"ig‘n‘als'| :
o e . . . 1 \~
digital post-quantization filter B, ! Cor g :
b * * b Complex Gain | ! "
using statistical model of signals pgd |7—>: Ao Aoz [ [ RSCE fe—T—— :
L. . USER 2 l - - ! I
Analog/digital beamforming for P o !
spatial interferer rejection S S T !
= Fully Digital Orthogonal Beamforming Proposed
Bit-Constrained MIMO Receiver (Conventional) (Golabighezelahmad et al 19) Task-Based MIMO
= " "ot RF Front End Power LOW HIGH LOW
__HE ADC Power HIGH LOW LOW
. ~ 1 mim Low Quantization Rate X X v/
oA J Spatial Filtering X v/ v/




Deep Task-Based Quantization

> Shlezinger and Eldar 19

> Data-driven task-based quantization

7

(z)

1‘
N

Q

Learn mapping from training

Model-ignorant =

Pre-guantization DNN Quantization Post-quantization DNN

Structure in the quantizer + the task

v

Simple and robust deep quantizers
that achieve optimal performance!

| |
6 7 8 9 10 1" 12 13 14
SNR [dB]



MaSSive MIMO Demo > Joushua et. al 18-20

Practical MIMO receiver with fewer RF chains than antennas + low bit samplers
> Significantly reduce power and hardware cost
> Similar performance!

igtantraraiie’s “SoK_MPL
WEIZMANN INSTITUTE OF SCIENCE S o an taa

RF Chain Reduction for
MIMO Channel
Estimation Demo

Task-based quantizers lead to simple low power hardware for
comm and radar systems without degrading performance!
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Dynamic Metasurface Antennas

> Emerging antenna technology:
> Scalable
> Low power

> Dynamically configurable radiation pattern

e

> Applications:

[

> Microwave imaging
> Radar systems
> Satellite communications

> Intelligent reflective surfaces (Huang et al, TWC 19)

BS with
traditional an

Passive reflective metasurface

Reflective metasurface

tenna

)
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W Metasurfaces for Analog Precoding

> Shlezinger et. al 19-21
> Collaboration with the group of Prof. David Smith

Alternative approach to dedicated analog precoder hardware [ o ierinoms

%DMA (M 16 RF chains, N= 160 eleme ts)
%F‘hase shifters (M=16 RF cha ins, N=160 elements) B X i

> Inherent tunable analog precoding in the antenna structure g ** 5 smsevnion e

2F Phase-shifters x~

> Low power, small hardware

> Enhanced frequency-selective analog processing

Per-user average sum-rate [bps/Hz]

Transmitting microstri

N metamaterial elements , . Transmitted Transmit path model
/| — signals Outgoing analog

signal - Channel Microstrip i

» . . . \ . .
__________ nputs - 10 15 20 25 30
J From response 'rwlpon SNR [dB]
M digital From
processor - '"’""‘:i- digital
processor
) /A
convertor

S}
o
S}

Receive path model

Channel Microstrip i

autpuls -

~ P ion inci
oS ] / ide
\ /
\
\
N P To digital
\
\ 2 processor - - To digital
N processor
Re'cetved / N 7S R
signals ' Incoming n x convertor
lanalogsignal . .eeeee- 61




W Metasurface Antennas with Low-Bit ADCs

> Wang et al. 20

> Exploit analog precoding for task-based quantizationf—

> Frequency selectivity
> Suitable for wideband signaling

Analog processing

Analog
filter

Analog
filter

Analog
filter

Analog
filter

Analog
filter

Analog
filter

3.

.3 34 35 a.} 37

5 3 35 45 5 55

Frequency [GHz]

6

Digital
process

Jointly optimize in
light of the task

Metamaterial
element setting

Quantizer
support

Digital
processing
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Joint Radar-Communications for Autonomous Driving

> We have seen ways to reduce size, power, space in both radar and comm
> Can we combine?

> Autonomous cars constantly assess their environment requiring wireless
communication transceivers and radars

> Motivates designing these functionalities jointly
> Dual-function radar communication (DFRC) systems:

= Size and cost reduction
= Facilitate coexistence ((( )))
= Reduce spectral congestion

((( ’)) Comm. TX
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DFRC Strategies

Leading design approaches:

> Separate coordinated signals

> Beamform / orthogonalization

> Communication waveform
> OFDM radar

> Dual-function waveform
> Dedicated design

> Radar waveform

> Embed message

>Ma et al. SPMag 20

Joint Radar-Communications Strategies
for Autonomous Vehicles

Combr'nfng two key aufomotive iechnofogfes

Coordinated signals

(COIERIN

Communications waveform-based

() W\

4((&)

Dual-function waveform

@ \\\\

%

Radar waveform-based

N \\\
_ () \ \

™
A
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Embedding Information in Radar Waveforms

> Convey digital messages with radar signals:
> Embed bits in the waveform parameters

> Index modulation: Frequencies, antenna elements

> Benefits
101 011
> Use conventional radar signals NN ((( )))
o ) \ AV Y
> Minimal radar degradation NN A
(N
> Drawbacks AR

> Limited bit rates
> Challenging decoding
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MAJoRCom: Multi-carrier Agile Joint Radar Communications

> Use only radar waveforms >Huang et al. 20
} .. / 0 1
> Embed information in: o=

. InPut " L2A
> Frequency selection (... —4)) 1. +251
requency modulation Antenna 0 ¢

0
Spatial modulation —Q )) fe
Antenna 1

Antenna 0 I B

> Antenna allocation

Achievable rate [bits/pulse]

> Spectrally efficient:

Antenna | Bl [0
+ Upper bound 0 1
* Lower bound Comparable to using
. Time
e Two dedicated antennas without affecting radar §
Frccl‘ 1
> Angular resolution: E
i ‘ i ) Frc\q 2
i - DA G G ¢ e
: ‘ , A s » ‘ - : " - 0 Ant. 0 Ant. 1 Ant. 2 Ant. 3 Ant. 4 Location
Instantaneous Expected 66



SpaCoR: Spatial Modulation Based Communication-Radar

> Ma et al. 20

. . 0 Subcarrier Set
> Orthogonal transmissions: *“ Tx Bits Y“ Y” =
. . 107" 110 f: UL 4y
e Distinct bands o -
102 000 Sfi Zfs
. . e '
* Distinct antennas = _ Mapping Rule
> Togg]e antenna allocation: ., |Z-an s ] Bits 10000014010} 011! 100} 101 § 110 | 111
= ¢ =GSM — 8PSK (8Bits/symbol) % [ G e i atuinints Snteiials it b
. Spatlal mOdUIation — © —SMX — 16PSK (8Bits/symbol) Waveform : fi fi E,/i fi : s fi : fi [ ‘;ﬁ : NORE : f

0 5 10 15 20
SNR/dB

* Spatial agility Y Y Y Y
 Improved resolution and throughput

%1078 %1078

1 1

-4 -4
0.8

= -2 = -2
g g 0.6

20 0.5 2 0
. -2 0.4

g2 v o2
0.2

4 4

1]

-0.5 0.5 -0.5 0.5

0 0
fo) 2 fol2m
(a) Full Antenna Array (b) SpaCoR m=0 m=1 m=2 m=3



Hardware Prototype

> Using over-the-air signaling

- Pashargliwial
& WEZMANN INSTITUTE OF SCIENCE ff ? } %
1

> 16 antenna elements

> Radar echo generator (REG) Joint Radar and
Communication System
Prototype Based on

Tsinghua University

Radar& Comm Tx
siEddNRRNNN

. ‘ (AR R R RN N
X Generalized Spatial
W echo elemenl_s MOdulation
Ef ........................ ; /§>(~ MP|

DFRC antenna
Receive elements 1-8

REG Tx
antenna

al

REG Rx
antenna




Task-Based Quantization for Federated Learning

> Shlezinger, Chen, Eldar, Poor, Cui, 19
> Train on edge devices

> Quantize model updates
Central

model

> Aggregate quantized weights

Expensive
communications

WOy
@ = Distributed
—A— subsampling with 3 bits quantizers, R=1 tralnlng = \
—7 - Subsampling with 3 bits quantizers, R=2 e
3 6 9 12 15
Number of users o —————————————————————-—~n
MGt ~ """ T e I s {0
‘ r1 7' 190, (h"+2 )} | | =ener O, (h 'J} W
| B, :h['\ | - Lattice Entropy ‘ ! I Entropy l H,
1 Partition 1 _ N
] Model 3 quantizer encoder ‘ | Digital decoder — Collect
o I

Reliable centralized =

Model

|
|
| &
. : ! —
model with less N i ey Jp——
communication ] P [ ¥y —— '

" Entropy ‘l‘ i,
Digttal decoder | - Collect
codeword |

b
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Model-based deep learning




Black-Box Deep Learning $. ooocbeoe
R i

> Deep neural networks (DNNs) achieve

superior performance in: o Lion
> Computer vision

> Speech processing

> Problems which are hard fabels

to tackle with models

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT

2 Challenges: THE ANSLERS ON T OTFER SIDE.
. WHAT I THE ANGLERS ARE LIRONG? |
> Large training sets JUSTSTR THE PILE L
THEY START LOOKING RIGHT.
Interpretability?
Robustness?

Generalization limited

VoV VNV

Generic architectures




Model Based Signal Processing

Signal processing is based on modeling

Can incorporate domain knowledge and structure
Allows inference from relatively small amounts of data
Analytical techniques to assess quality of the output

However:
> Requires accurate model knowledge
> Inference can be slow

Combining model-based algorithms and deep learning:

Compact, interpretable, and simple to train data-driven systems!
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Model-Based vs. Deep Learning

> Model-based signal processing:

Inputy =2 Optimize a metric function
(Measurement) f (g (X )' y )
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Model-Based vs. Deep Learning

> Model-based signal processing:

Model
dependent

Inputy O Output x

(Measurement)

> Deep learning;:

Many Many
Inputs Outputs
New y X
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Model-Based Deep Learning

> Model-based signal processing:

Model
) dependent

process

> How to combine?

>

> Deep learning;:

1. Integrate model-based
algorithms into deep networks

Deep unfolding / unrolling

2. Integrate deep networks into
model-based algorithms

Data-driven hybrid algorithms

76



Deep Unfolding
> Gregor and LeCun 10; Hershey, Le Roux, and Weininger 14

lterative optimization algorithm

2 Deep networks inspired by iterative

model-based algorithm: ol = -
> Unfold iterations into layers = | W'?M p e g;
> Learn parameters of the layer from data T, %
> Model-driven network torston 1| [Heraton2 teraont

> Benefits: {w »\ e / \ e / \@/ o o |
> Faster convergence o
> Less trainable parameters Doutoos — L
> Interpretable network Al IR | 2
> Better performance from less ”*H%#*H%Hm &

training data

Vishal Monga, Yuelong Li, and Yonina C. Eldar

Recent review in SP Magazine Algorithm Unrolling

Interprefable, efficient deep learning for signal and image processing




DUBLID: Deep Unrolling for Blind Deblurring

> Li, Tofighi, Monga and Eldar, 19

Blurred Image Blur Kernel Sharp Image  Random Noise

> Many deblurring methods based on
optimization (e.g. total variation)

> We perform total variation in the gradient
domain Vy~=k*Vx

> We solve the problem by a variable
splitting approach and then unfold
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Deblurring Results

> Li, Tofighi, Monga and Eldar, 19

> Training based o L f N
on BSDS500 Pt v N

" . “AA 5 X
A
‘ — ‘*ﬂ

dataset

> Blur kernels of
linear motion =)\[7 \ T
with different B ' R il A2

S (/170

(a) truth  (b) Perrone et. al (c) Nah et. al (d) DUBLID

Superior performance, parameter free and computational

benefits. All code available online.
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Super-resolution via Deep Learning

> Resolve overlapping bubbles via deep network scheme
- Improved performance over sparse recovery methods

- Faster execution time
> Relies on a learned ISTA approach via unrolling

> Cost function:
[1f(x16) — G * yl|5 + Al f (x]6)]]4

Deep unfolded iterative shrinkage for ULM

Xk
High resolution sparse vector

A
| 14
a8

S Deep unfolding

£
- , ot
High resolution sparse frame
ey
A% M7 A?
K unfolded terations

> Van Sloun et. al. 2018
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Removing Tissue Background via Deep Learning
CORONA: Convolutional rObust > Solomon et. al. 2018
pRincipal cOmpoNent Analysis

> Blood signal is cluttered by unwanted tissue
> We use the model:

- low rank (background) +

+ sparse (contrast signal) In-vivo contrast rat brain scan

> Use model based deep learning

> Improved performance in terms of noise, frame rate
Lo == Van Sloun, Cohen, Eldar

0 Deep Learning in Ultrasound

Imaging

-20 This article pro
sourn

-10

-30

-40
LOUN® | Member IEEE, REGEV COHEN, Graduate Student Member IEEE
Fellow IEEE

-50

-60

-70



DL for Clutter Suppression

Low-rank + sparse model (L+S, RPCA)

1 5 ISTA for RPCA
Ll gHD — L — S||% + A||L|s + X2|[S][1,2

Tissue

tSparse MBs

Low-rank tissue clutter
(e)

Input frames

D—

Iterative proximal gradient scheme

Blood

Lo = SVT, 2 (514 -S4+ D)

’ 1 . b
S}.—I — .77\2;;2 (SSL. _ LL. 4 D)




Data Driven Hybrid Algorithms

Advantages:

>
>

e

Model 1
[ 3 dependent >
process 1

Input =) == Output

Limited training data

Maintain optimality when ¥ =
no uncertainty

AllOWS for model input layer hidden layer 1 hidden layer 2 output layer
distortions

Once trained, easy

computation Recent review: Nariman et. al,“Data-Driven Symbol

Detection via Model-Based Machine Learning”
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Viterbinet: Symbol Detection with Unknown Channels

> Shlezinger, Farsad, Eldar and Goldsmith 19

\, \chlseJl K

Channel

Recewer

Viterbi detection algorithm
Requires channel knowledge
Viterbinet: Model based deep detection
Unknown computations - DNNs

AR VAR VA V4

Optimal symbol

detection from
minimal training

—B- Viterbi
-©- Viterbi
~/X- Viterbi, perfect CSI
3¢ Viterbi, CSI uncertainty
—f& SBRNN, perfect CSI

5 4 2 0 2 4 6 8
SNR [dB]

= Iz se?
o P g

output
||I|I|l|l Iﬁ

Y142, -+

Viterbi (Model-based |

(i)}:ﬂ;?lil | et lf}anngl kenow%gcelgé | (y|s) |
.|||||-|- : Likelihood |
|

I
O O O O O]

1 . o
© @@ e

@\ @@

Learned
likelihood
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Data-Driven Factor Graph Methods

) . . . > Shlezinger, Farsad, Eldar and Goldsmith 20
> A family of signal processing algorithms

- Represent distribution as graph I Model-based factor graph I
n Message paSSIHg I _fl[yl,s s ] fj[yz,sz,sl} - ‘,’3[}’3,53,53] S f,,(yn,s”s’_l} I
pm e —— | |
[ i[; : '
3 : :t_ 1’1[1’ (x4) ’ I I
Hy, (x3) : ! —
X3 : &l : ((_)+ el e e
—— My (x5) !V
f‘xj(xx): ) : I/ I
> Data-driven factor graphs: \ ' s,
N e e i I
- Learn the factor graph I
- Message passing over graph :

> Example: BCJRnet
-  Learned BCJR detector:

Learned MAP symbol detection EE

X Model-Based BCJR, CS! uncertaint y

Symbol error

-5 0 5 10
SNR [dB]



DeepSIC: Deep Soft Interference
Cancellation for Massive MIMO

hlezi F El 1
> Massive MIMO symbol detection > Shlezinger, Fu and Eldar 19

Iterative SIC symbol detector
p terative te ) S0
Model-based |" [orms | s P oo | Sontecode " R
] Initial . Hard
—). /% o festimate fteration 1 P Iteration Q decision
. pr [ (e et sonducose | agman
Decode k Channel ¥ ‘
T T T ‘ ‘ ‘ o DeepSIC
: A < (0)
E Previous deep receiver ‘ k _Avi p‘L [ §
100x more training . Data-driven | argmax 1
101 Softmax |
| Initial Iteration 1 Heration Q Hard
Fully connected | lostimate e e . decision
network T
u v {pu u} y Px Py
7] - ik Channel
Sk
102 3 o
R
o "II"' I
10 : ‘ ; ; ‘ 12 T D .Illlllll ﬂ
0 2 4 6 8 10 12 14
v « P
SNR [dB] ) 1] ‘TI'H [

. Symbol e -
; = detector =

LY .

No channel knowledge

Ry b

Transmitter MIMO channel

Applicable in non-linear channels

Receiver
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COVID19 Task Force

Put together a task force of 4 hospitals and Al experts
COVID19 detection using Xray: Over 90% detection

rate! (PCR achieves 70%)

Based on model-based features

Starting to deploy in Beilinson

Next steps in project including postcovid

Step 1: Pre-processing + Segmentation

-

»

Step

==

2: Deep learning algorithm

hidden layer 1~ hidden layer 2

COVID-19 Classification of X-ray Images

Using Deep Neural Networks

Elisha Goldstein', Daphna Keidar’, Daniel Yaron™, Yair Shachar’, Ayelet Blass, Leonid
Charbinsky MD®, Israel Aharony MD®, Liza Lifshitz MD®, Dimitri Lumelsky MD®, Ziv Neeman
MD®, Matti Mizrachi MD ®, Majd Hajouj MD °, Nethanel Eizenbach MD®, Eyal Sela MD®, Chedva
S Weiss MD 7, Philip Levin MD’, Ofer Benjaminov MD’, Gil N Bachar MD®, Shlomit Tamir MD?,
Yael Rapson MD?, Dror Suhami MD®, Amiel A Dror MD PhD®, Naama R Bogot MD’, Ahuva

Grubstein MD®, Nogah Shabshin MD®, Yishai M Elyada PhD®, Yonina C Eldar PhD?




COVID19 Task Force .

> Collaboration with Prof. Libertario Demi et. al ym7om2ymon Lo
> COVID19 detection from LUS + severity grading -
> Based on model-based features Ve

> Close to 80% de

O e LR

Sackler Faculty of Medicine
Tel Aviv University

WEIZMANN INSTITUTE OF SCIENCE o JERUEALEM

.....

Gemelli @

LS

tection BRI mattoo

Step 1: Line Detection

=)
=)

\/ hpes F 4
EMB NPSS & . & IEEE TRAMSACTIONS ON MEDICAL IMAGING, PREPRIMT — UNDER REVIEW

A Framework for Integrating Domain Knowledge
into Deep Networks for Lung Ultrasound, and its
Applications to COVID-19

Oz Frank, Nir Schipper, Mordehay Vaturi, Gino Soldati, Andrea Smargiassi, Riccardo Inchingolo, Tiziano
Perrone, Federico Mento, Libertario Demi, Member, I[EEE, Meirav Galun, Yonina C. Eldar, Fellow, IEEE,
and Shai Bagon

Pleural line

J—Tondi s

Step 2: Deep learning algorithm

@chi
Jocc
S

g
g
~
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Efficient, Interpretable, High Resolution

Sensing: Results and Vision

To learn more from less data we must take
advantage of all the information possible!

Exploit structure and goal in model based and data driven methods

Mathematical limits:
Sampling rates
Coding rates
Superresolution limits

Scientific/clinical breakthroughs:

Thanks to the possibility of
seeing what we could
not see before ...

Engineering Research:
Development of new samplers
Technological applications
that break existing barriers
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Visit Our Webpage

Y. C. Eldar, “Sampling Theory: Beyond Bandlimited Systems", Cambridge University Press, 2015
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SN COMPRESSED
SENSING

in Radar Signal Processing

Y. C. Eldar and G. Kutyniok, "Compressed Sensing: Theory and
Applications”, Cambridge University Press, 2012
A. D. Maio, Y. C. Eldar and A. M. Haimovich, "Compressed Sensing

£0ITED BY

in Radar Signal Processing", Cambridge University Press, 2019 o e

and Alexander M. Haimovich

http://www.wisdom.weizmann.ac.il/~yonina/YoninaEldar

Yonina C. Eldar

Samplin,
Theopry -

Beyond Bandlimited Systems

‘_ .
£ Fl P m
e P

Compressed
Sensing

Theoryand Applications

Yonina C. Eldarand Gitta Kutyniok
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http://www.wisdom.weizmann.ac.il/~yonina/YoninaEldar

SAMPL Team

S/ .MPL

Signal Acquisition Modeling
Processing and Learning

If you want to go fast go alone

If you want to go far bring others
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Collaborators (Partial...)

Alon Kipnis Shai Tejman-

Miguel Rodrigues  Andrea Goldsmith
Yarden

PN

Ruud Van Sloun Vishal Monga Nir Shlezinger Tianyao Huang Geert Leus
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Thank You!

If you found this interesting ...
Looking for graduate students
and post-docs!



