Tian received the College's 2021 Rising Stars: Junior Faculty Receive Abundant Honors.

Professor Eshed Ohn-Bar has been designated a Peter J. Levine Career Development Professor. Professor Ohn-Bar was also a recipient of a $450K grant from the NSF, which she received to develop COSSY (Computational Occupancy Sensing System). This project is primed to address problems such as traffic congestion and the need for more efficient crowd management. The COSSY project focuses on developing highly advanced sensors that can detect passive thermal emissions. These sensors will help AVs navigate without the use of light (or at least, light that is visible to the human eye). The project aims to develop a new ultrafast fingerprint-stimulated Raman spectroscopic imaging platform, with broad applications to cancer treatment, reducing fossil fuel use, and more. Professor Rabia Yazicigil is in the midst of developing a miniaturized diagnostic device that could benefit millions of gastrointestinal sufferers around the world—this device is currently being tested in animals.

Professor Abigail Ekedo is aiming to address problems that will affect the next generation. Working in collaboration with researchers at MIT, Professor Ekedo plans to create groundbreaking new apps to help people with disabilities. Professor Eshed Ohn-Bar and Professor Ashok Cutkosky are now working on developing a fully functional self-driving car. This is a collaboration of their expertise in robotics and computer science. The professor's new training paradigm calls for a change in how the vehicle is trained. While its current training process involves mimicking the movements of those around it, the professor is hoping to emulate this paradigm with self-driving cars. The professor believes that this approach will allow AVs to navigate without the use of light (or at least, light that is visible to the human eye). The Stealth Mode: Headlights project is forging a unique path to innovation. The project is focused on developing highly advanced sensors that can detect passive thermal emissions. These sensors will help AVs navigate without the use of light (or at least, light that is visible to the human eye). The COSSY project is focused on developing a new ultrafast fingerprint-stimulated Raman spectroscopic imaging platform, with broad applications to cancer treatment, reducing fossil fuel use, and more. Professor Rabia Yazicigil is in the midst of developing a miniaturized diagnostic device that could benefit millions of gastrointestinal sufferers around the world. This device is currently being tested in animals.