ME 302 A1: ENGINEERING MECHANICS II

Instructor: Prof. Kamil L. Ekinci (ekinci@bu.edu) Graduate TA: Kathryn Regan (kregan@bu.edu) Class: EPC 205 Lecture: TTh 3:30-5:15 pm Discussion: F 3:35-4:25 pm

Recommended Textbook:

Williams JH, *Fundamentals of Applied Dynamics*, John Wiley and Sons, Inc., 1996. (Any edition is fine.)

Supplemental Resources:

Handouts and quizzes will be given during class.

Course Topics:

Kinematics of particles and rigid bodies; Direct/Algebraic approach to kinetic analysis (Newtonian); Indirect approach to kinetic analysis (Lagrangian).

Grading:

Quizzes + Project:	10% (quizzes given weekly)
Exam 1:	25% (on 10/14/2021 during class)
Exam 2:	30% (on 11/18/2021 during class)
Final Exam:	35% (comprehensive; date determined by registrar)
In-class participation:	Responses to cold calls during class is factored into final grades

Make-up Policy:

If you miss an exam without a valid excuse, you will get a zero. If you have to miss an exam with an excuse, I prefer to give you an oral exam. Since I grade on the curve and no two exams are identical, please understand that taking a written make-up exam will put you at a disadvantage.

Attendance Policy:

You are required to attend every class. Attendance will be taken. You will fail if you miss more than 3 classes without a valid excuse. You must arrive to class on time; you may not arrive late without a valid excuse.

Electronics Policy:

No electronics use allowed, except a scientific calculator.

Assignments:

- (1) Homework problems will be assigned and solutions made available on Blackboard usually on Thursdays. **Please check promptly.** The homework problems and lectures will serve as the basis for quizzes to be given the week after homework is assigned.
- (2) The project will serve as a platform for students to apply principles learned in class to real-world scenarios. Further information will be given later in the semester.

Collaboration:

Needless to say, you may not collaborate with anyone on quizzes or exams. When in doubt, please ask. Given the circumstances, I will give you detailed instructions on how to do your exams.

COVID-19:

We will follow all university policies. If you have to be absent due to COVID, you must inform me immediately.

ME 302 A1 Syllabus Fall 2021

WK	DATES	BOOK	TOPIC
1	9/2	PY211	Review of Particle Kinematics
2	9/7	CH 3	Review of Particle Kinematics
	9/9		Introduction to Rotations
3	9/14	CH 3	Mashanical Constraints
	9/16		Mechanical Constraints
4	9/21	CH 4	Mechanics in Rotating Frames
	9/23		
5	9/28	CH 4	Particle Dynamics
	9/30		
6	10/5	CH 4	Particle Dynamics
	10/7		
7	10/14	СЦ 6	N.B.: No class on 10/12.
	10/14	CH 0	Exam 1 on 10/14
0	10/19		
8	10/21	СН 5	Rigid Body Dynamics
9	10/26	CH 5	Rigid Body Dynamics
	10/28		
10	11/2	CH 5	Generalized Coordinates
	11/4		
11	11/9	CH 6	Work and State Functions
	11/11		Hamilton's Principle
12	11/16	CH 6	Lagrangian Dynamics
	11/18		Exam 2 on 11/18
13	11/23	CH 6	Lagrangian Dynamics
14	11/30	CH 8	Oscillations
	12/2		
15	12/7	CH 8	Oscillations
	12/9		

Note: Syllabus will be updated as the semester goes by. Final will be given on the date determined by registrar.