MS/ME 503 Kinetic Processes in Materials Spring 2021

Prof. Soumendra Basu Rm. 204, 730 Commonwealth Avenue Office Phone: 617-353-6728

Email: <u>basu@bu.edu</u> (preferred mode of contact)

Lectures: M, W: 10.10AM – 11.55AM (LfA model, in-class lectures also on Zoom*)

Location: EPC 205

Office/discussion hours: 1-2 PM Friday (on Zoom*)

* All Zoom links are on Blackboard under the Zoom tab in Tools. Links to Zoom lecture recordings will be provided.

Required Textbook:

Materials Kinetics Fundamentals: Principles, Processes, and Applications, Ryan O'Hare, John Wiley and Sons Inc., 2015

Other Suggested Readings:

Essentials of Materials Science and Engineering, D. R. Askeland, and P. Phule Diffusion in Solids, P. G. Shewmon Chemical Kinetics, K. J. Laidler Phase Transformations in Metals and Alloys, D. A. Porter and K. E. Easterling

Grading:

There will be 2 midterms and a final. The final is NOT cumulative. Dates for Exams 1 and 2 will be set during the semester. The date for the Final will be set by the university.

Grading will be as follows:

Midterm I	-	30%
Midterm II	-	30%
Final exam	-	30%
Homeworks	-	10%

Homeworks:

3 HW sets will be handed out, one for each exam. Solution sets will be handed out, and will be discussed in class before each exam.

Syllabus

I	THERMODYNAMICS VERSUS KINETICS	
	Introduction to chemical thermodynamics	1 lecture
	Phase diagrams, driving force, flux	1 lecture
II	KINETICS OF MASS TRANSPORT	
11	Fick's Laws and solutions to Fick's laws	3 lectures
	Interdiffusion, types of diffusivities	1 lecture
	Diffusion and chemical potential, multipath diffusion	1 lecture
	Atomistic models of diffusion, tracer diffusion	1 lecture
	Diffusion in ionic crystals	2 lectures
III	KINETICS OF CHEMICAL REACTIONS	
	Order of reaction, kinetics of gas/solid reactions	1 lecture
	Mixed rate control, CVD, vapor phase etching	1 lecture
IV	KINETICS DRIVEN BY MICROSTRUCTURE	
	Surface curvature, Gibbs Thompson effect	1 lecture
	Grain growth, particle coarsening, sintering	1 lecture
		1 lecture
	Surface energy anisotropy	1 lecture
V	KINETICS OF PHASE TRANSFORMATIONS	
	Nucleation and growth	2 lectures
	Solidification	1 lecture

1 lecture

1 lecture

Spinodal decomposition

Martensitic transformation