ME 303: Fluid Mechanics Spring 2020

Lead Instructor:

Professor Tommaso Ranzani Department of Mechanical Engineering 730 Commonwealth Ave., EMA 210 Phone: 617-353-1127 Email: tranzani@bu.edu

Course schedule:

Lectures: Monday and Wednesday 10:10-11:55 (EPC 209) Office hours: Wednesdays 12:30 – 1:30 PM (Ranzani – EMA 210) for extra hours, please email <u>tranzani@bu.edu</u>

Discussions: Review material with GTF, practice problems, discuss homework PHO 205 Fri 12:20pm 1:10pm

Labs: ENG 113, time to be scheduled

GTFs: Allison Kaminski (allison9@bu.edu), Max McCandless (mdm1024@bu.edu) Office Hours: TBD

Textbook: WileyPLUS: Fundamentals of Fluid Mechanics by Munson et al., Wiley 8th edition. No need for hard copy neither e-book. Visit <u>www.wileyplus.com/go/coursefinder</u> Enter your course ID, 748503 We negotiated a discounted price with Wiley, using the promo code BNU02. See pdf on Blackboard for more detailed instructions.

Top Hat: we will use Top Hat regularly to evaluate participation. You can register on the Top Hat website (<u>https://tophat.com</u>), the class is Fluid Mechanics and the Join Code is **622258**

Course web page: Blackboard, WileyPLUS, Piazza **Prerequisites:** ENG EK 301 or equivalent.

Course learning objectives:

This course is designed to teach fundamental concepts of fluid dynamics through a broad range of applications. Course learning objectives are:

- Develop the ability to describe a fluid qualitatively and quantitatively

- Develop the ability to analyze a fluid under static and kinetic conditions

- Develop insight into how fluids flow close to and far from boundaries

- Gain an appreciation for the value of using experimental methods to measure fluid properties and characterizing fluid flow/behavior through dimensional analysis and lab-based experiments

- Gain experience in writing technical reports on lab-based experiments

- Gain insight into the application of fluid mechanics to practical problems in a variety of disciplines, including aerospace, mechanical, and biomedical engineering

Policy on collaboration:

Collaboration is encouraged on homework and labs; however, students should turn in their own work in their own words. No collaboration is permitted on exams.

Grading:

Homework (7%):	Problem sets assigned roughly every week to be submitted through WileyPLUS
Lab reports (13%):	Two/Three laboratory exercises; must complete to pass the course
Midterms (46%):	Two closed-book exams; formula sheet will be provided, no cheat sheet allowed.
Final Exam (27%):	Closed book; formula sheet will be provided, no cheat sheet allowed.
Participation (7%):	Will be evaluated on Top Hat

Homework:

Homework assignments will be announced in class and on the course webpage. Homework must be submitted <u>through WileyPLUS</u>.

- Due date and time will be specified on the assignment.
- Late homework will **not** be accepted.
- Policies on homework will be available for each assignment in WileyPLUS

Lab exercises:

There will be two lab exercises for this course. Sign-up sheets will be posted in advance of the labs. The experiments will be done in groups, but lab reports will be done individually.

- Reports are limited to a strict 4-page length limit. pages beyond 4 will not be graded
- Fonts must be 11 pt or larger, margins must be 1" or larger. Using LaTex is strongly recommended, online editors like Overleaf (<u>https://www.overleaf.com</u>) are encouraged. Plots and data analysis have to be done in Matlab.
- Students will not receive credit for turning in a laboratory report if they have not physically completed the laboratory exercise.
- Individual laboratory reports are due at 4 PM through Blackboard.
- Email submission is acceptable in cases of emergency; email both Prof. Ranzani and the GST.
- Late reports WILL NOT be accepted without prior approval from Prof. Ranzani. Points will be removed for late submissions.

Exams:

Each exam will take place over an entire class period. Each exam will cover a block of lectures as noted in the schedule. The Final Exam is cumulative.

- Missing an exam due to vacation is not excusable. Arrangements will be made on a case-by-case basis for documented emergencies or University conflicts.
- Students requiring additional time to complete examinations must supply proper documentation from the Office of Disability Services at *least 5 business days in advance* of an examination to the instructor so suitable arrangements can be made.
- Exams written with pencil will not be accepted
- All exams will be <u>closed book tests</u>, the only reference materials that you will be permitted to use will have been given to you.
- The final exam Date and location will be made available on the website

Demos:

Non-mandatory demos (<u>two people max</u>) will be proposed during the semester. If interested you should set up an appointment to discuss them in detail. I will grade them and give extra points on the midterm based on a two-pages report. **Only demos approved and discussed before by Prof Ranzani will be considered for extra points.**

Each exam will take place over an entire class period. Each exam will cover a block of lectures as noted in the schedule. *Boston University Academic Conduct Code:* Honesty is a core value of Boston University. Any violations of BU academic honesty and integrity standards *will be pursued* through appropriate University channels. This includes, but is not limited to: cheating, plagiarism and misrepresentation. If you have any questions as to what constitutes an honor code violation, please ask. *Ignorance is not an excuse for cheating*. You may access the BU Academic Conduct Code at: http://www.bu.edu/academics/policies/academic-conduct-code/

Course Schedule:

The following is an approximate schedule for the course. The GST and I will work with you to schedule your labs.

Date	Торіс	Reading		
Jan 22	Introduction (Definitions, Viscosity, Surface Tension)	1	1	
Jan 27	Fluid statics I (Pressure, Manometry, Hydrostatics)	2.1-2.7	2	
Jan 29	Fluid statics II (Buoyancy, Fluid in Rigid-Body motion)	2.8-2.12	3	
Feb 3	Fluid dynamics I (The Bernoulli Equation)	3.1-3.4	4	
Feb 5	Fluid dynamics II (Examples of Use of the Bernoulli Equation)	3.4-3.6	5	
Feb 10	Fluid kinematics I (velocity and acceleration fields)	4.1-4.2	6	
LABI				
Feb 12	Fluid kinematics II (Reynolds Transport Theorem)	4.2-4.3	7	
Feb 18	Control volume analysis I (Reynolds Transport Theorem, Conservation of Mass)	4.4, 5.1	8	
Feb 19	Control volume analysis I (Conservation of Mass)	5.1	9	
Feb 24	Control volume analysis II (Linear momentum)	5.2	10	
Feb 26	Control volume analysis III (energy Equation)	5.3	11	
Mar 2	Differential analysis	5.3, 6.1	12	
Mar 4	I midterm (lect 1-11)		13	
Mar 16	Differential Analysis (Conservation of mass and kinematics)	6.1-6.2	14	
Mar 18	Differential Analysis (Inviscid Flow Equations of Motion)	6.3-6.4	15	
Mar 23	Differential Analysis (Plane Potential Flows).	6.5-6.7	16	
Mar 25	Differential Analysis (Plane Potential Flows).	6.5-6.7	17	
Mar 30	Differential Analysis (Viscous Flow)	6.8-6.9	18	
Apr 1	Differential Analysis (Viscous Flow)	6.8-6.9	19	
Apr 6	Dimensional Analysis (Buckingham Pi Theorem)	7.0-7.7	20	
Apr 9	Dimensional Analysis (Modeling and Similitude)	7.8-7.10	21	

Apr 13	Viscous flow (Pipe flow, fully developed laminar flow)	8.1-8.2	22
Apr 15	ll midterm (lect 12-22)		23
	LAB II		
Apr 22	Viscous flow (Fully developed Turbulent Flow)	8.3 - 8.5	24
Apr 27	Flow on immersed bodies (External Flow, boundary layer)	9.1	25
Apr 29	Flow on immersed bodies (Drag and Lift)	9.2, 9.3	26
TBD	Final exam (on lect. 1-26)		