ME 303 A1: Fluid Mechanics Fall 2019

Lead Instructor:

Professor Tommaso Ranzani Department of Mechanical Engineering 730 Commonwealth Ave., EMA 210

Phone: 617-353-1127 Email: tranzani@bu.edu

Course schedule:

Lectures: Monday and Wednesday 2:30-4:15 (EPC 205)

Office hours: Wednesdays 12:30 – 1:30 PM (Ranzani – EMA 210)

for extra hours, please email $\underline{tranzani@bu.edu}$

Discussions: Review material with GTF, practice problems, discuss homework

BRB 121 Mon 10:10am 11:00am PSY B41 Tue 3:35pm 4:25pm PSY B43 Tue 11:15am 12:05pm

Labs: ENG 113, time to be scheduled

GTF: Kevin McDonald (kevinjm@bu.edu) Office Hours: TBD

Textbook: WileyPLUS: Fundamentals of Fluid Mechanics by Munson et al., Wiley 8th edition. No need for hard copy neither e-book. Visit www.wileyplus.com/go/coursefinder ·Enter your course ID, 724247 See pdf on Blackboard for more detailed instructions.

Top Hat: we will use Top Hat regularly to evaluate participation. You can register on the Top Hat website (https://tophat.com), the class is Fluid Mechanics - Fall 2019 and the Join Code is 210302

Course web page: Blackboard, WileyPLUS Prerequisites: ENG EK 301 or equivalent.

Course learning objectives:

This course is designed to teach fundamental concepts of fluid dynamics through a broad range of applications. Course learning objectives are:

- Develop the ability to describe a fluid qualitatively and quantitatively
- Develop the ability to analyze a fluid under static and kinetic conditions
- Develop insight into how fluids flow close to and far from boundaries
- Gain an appreciation for the value of using experimental methods to measure fluid properties and characterizing fluid flow/behavior through dimensional analysis and lab-based experiments
- Gain experience in writing technical reports on lab-based experiments
- Gain insight into the application of fluid mechanics to practical problems in a variety of disciplines, including aerospace, mechanical, and biomedical engineering

Policy on collaboration:

Collaboration is encouraged on homework and labs; however, students should turn in their own work in their own words. No collaboration is permitted on exams.

Grading:

Homework (7%): Problem sets assigned roughly every week to be submitted through WileyPLUS

Lab reports (13%): Two/Three laboratory exercises; must complete to pass the course

Exams (46%): Two closed-book exams; formula sheet will be provided, no cheat sheet allowed.

Final Exam (27%): Closed book; formula sheet will be provided, no cheat sheet allowed.

Participation (7%): Will be evaluated on **Top Hat**

Homework:

Homework assignments will be announced in class and on the course webpage. Homework must be submitted through WileyPLUS.

- Due date and time will be specified on the assignment.
- Late homework will **not** be accepted.
- Policies on homework will be available for each assignment in WileyPLUS

Lab exercises:

There will be two lab exercises for this course. Sign-up sheets will be posted in advance of the labs. The experiments will be done in groups, but lab reports will be done individually.

- Reports are limited to a **strict 4-page length limit**. pages beyond 4 will not be graded
- Fonts must be 11 pt or larger, margins must be 1" or larger. Using LaTex is strongly recommended, online editors like Overleaf (https://www.overleaf.com) are encouraged. Plots and data analysis have to be done in Matlab.
- Students will not receive credit for turning in a laboratory report if they have not physically completed the laboratory exercise.
- Individual laboratory reports are due at 4 PM on to the ME office.
- Email submission is acceptable in cases of emergency; email both Prof. Ranzani and the GST.
- Late reports WILL NOT be accepted without prior approval from Prof. Ranzani.

Exams:

Each exam will take place over an entire class period. Each exam will cover a block of lectures as noted in the schedule. The Final Exam is cumulative.

- Missing an exam due to vacation is not excusable. Arrangements will be made on a case-by-case basis for documented emergencies or University conflicts.
- Students requiring additional time to complete examinations must supply proper documentation from the Office of Disability Services at <u>least 5 business days in advance</u> of an examination to the instructor so suitable arrangements can be made.
- Exams written with pencil will not be accepted
- All exams will be <u>closed book tests</u>, the only reference materials that you will be permitted to use will have been given to you.
- The final exam Date and location will be made available on the website

Boston University Academic Conduct Code: Honesty is a core value of Boston University. Any violations of BU academic honesty and integrity standards *will be pursued* through appropriate University channels. This includes, but is not limited to: cheating, plagiarism and misrepresentation. If you have any questions as to what constitutes an honor code violation, please ask. **Ignorance is not an excuse for cheating.** You may access the BU Academic Conduct Code at: http://www.bu.edu/academics/policies/academic-conduct-code/

Course Schedule:

The following is an approximate schedule for the course. The GST and I will work with you to schedule your labs.

Date	Topic	Reading	
Sept 4	Introduction (Definitions, Viscosity, Surface Tension)	1	1
Sept 9	Fluid statics I (Pressure, Manometry, Hydrostatics)	2.1-2.7	2
Sept 11	Fluid statics II (Buoyancy, Fluid in Rigid-Body motion)	2.8-2.12	3
Sept 16	Fluid dynamics I (The Bernoulli Equation)	3.1-3.4	4
Sept 18	Fluid dynamics II (Examples of Use of the Bernoulli Equation)	3.4-3.6	5
Sept 23	Fluid kinematics I (velocity and acceleration fields)	4.1-4.2	6
	LAB I		
Sept 25	Fluid kinematics II (Reynolds Transport Theorem)	4.2-4.3	7
Sept 30	Control volume analysis I (Reynolds Transport Theorem, Conservation of Mass)	4.4, 5.1	8
Oct 2	Control volume analysis I (Conservation of Mass)	5.1	9
Oct 7	Control volume analysis II (Linear momentum)	5.2	10
Oct 9	Control volume analysis III (energy Equation)	5.3	11
Oct 15	Differential analysis	5.3, 6.1	12
Oct 16	I midterm (lect 1-11)		13
Oct 21	Differential Analysis (Conservation of mass and kinematics)	6.1-6.2	14
Oct 23	Differential Analysis (Inviscid Flow Equations of Motion)	6.3-6.4	15
Oct 28	Differential Analysis (Plane Potential Flows).	6.5-6.7	16
Oct 30	Differential Analysis (Plane Potential Flows).	6.5-6.7	17
Nov 4	Differential Analysis (Viscous Flow)	6.8-6.9	18
Nov 6	Differential Analysis (Viscous Flow)	6.8-6.9	19
Nov 11	Differential Analysis Recap	6.1-6.9	20
Nov 13	Dimensional Analysis (Buckingham Pi Theorem)	7.0-7.7	21

Nov 18	Dimensional Analysis (Modeling and Similitude)	7.8-7.10	22
Nov 20	Viscous flow (Pipe flow, fully developed laminar flow)	8.1-8.2	23
	LAB II		
Nov 25	II midterm (lect 12-22)		24
Dec 2	Viscous flow (Fully developed Turbulent Flow)	8.3 - 8.5	25
Dec 4	Flow on immersed bodies (External Flow, boundary layer)	9.1	26
Dec 9	Flow on immersed bodies (Drag)	9.2	27
Dec 11	Flow on immersed bodies (Lift)	9.3	28
TBD	Final exam (on lect. 1-28)		