Announcing the Winners of the 2016 MSE Innovation Grants

in ECE Spotlight-Research, ENG Spotlight Faculty, ENG Spotlight-Research, ME Spotlight-Research, MSE Spotlight Faculty, MSE Spotlight Research, NEWS

The Division of Materials Science & Engineering is pleased to announce the winners of the 2016 MSE Innovation Grants. They are:

Harold Park, ME and David Campbell, Physics
“Novel Memory Effect Materials: the Monolayer Group-IV Monochalcogenides”

The discovery of two-dimensional graphene and the recognition of its many exotic electronic properties have led to intense interest in other two-dimensional (2D) materials that can be isolated into single layers through exfoliation. The hope is these exotic properties—including the existence of multiple “valleys” in momentum space, which essentially confer another spin-like degree of freedom to electrons in these materials—can be used to make novel electronic devices. To date, however, any putative “valleytronic” devices have lacked the ability store information in non-volatile memories. We propose to study a class of materials in which the “valleytronics” are coupled to structural phase changes in the material, so that the bit value corresponds to a distinct structural phase of the material. As prototypical materials we will use SnS and GeSe, which belong to the family of group-IV layered monochalcogenides MX (M=Ge or Sn, and X=S or Se) and are known to undergo structural phase changes under mechanical strain. We will use computational studies to demonstrate that mechanical strain, and potential phase transformations in the monochalcogenides, can excite electrons from the valence band to the conduction band at the X or the Y-valley separately, using appropriately polarized light. The success of this research project could have a transformative effect on the field of 2D electronics and specifically lead to an entirely new class of nanoscale electronic devices based on non-volatile valleytronics.

Keith Brown, ME
“Imaging with Cantilever-free Scanning Probes”

The atomic force microscope (AFM) is a tool that images surfaces with extremely high resolution by detecting miniscule forces acting on a sharp tip. Conventionally, these instruments require the use of a flexible microscopic cantilever in order to detect these forces; a fact which makes AFM probes difficult to manufacture and operate in parallel. Here, we propose to detect forces acting on probes that are directly mounted on a rigid support coated with a compliant film. Since these cantilever-free probes can easily be manufactured in massively parallel arrays, using them to image would transform AFM into a tool that can accommodate centimeter-scale, rather than microscopic, samples.  This capability is expected to enable advances in diverse fields including biomedical engineering, hierarchical materials, and nanoelectronics.

Bjorn Reinhard, Chemistry

“Photonics Molecules for Enhanced Optical Forces for Chiral Trapping”

Chemical chirality refers to a phenomenon that occurs when a molecule does not superimpose with its own mirror image. Importantly, the chemical properties of the so-called enantiomers can differ even though the molecules have the same formula. The concept of chirality is, however, not limited to stereochemistry but also applies to some electromagnetic fields.  The goal of this project is to take advantage of the chirality of electromagnetic fields to develop new strategies for separating chemical enantiomers.  In particular, the design criteria and fundamental working principles of nanoscale antennas that generate strong gradients in the optical chirality as needed for strong enantiomer-selective forces will be explored.

Michelle Sander, ECE
“Multi-dimensional Photothermal Vibrational Infrared Spectroscopy”

Infrared spectroscopy in the mid-infrared fingerprint region has emerged as a powerful tool to determine molecular structure. However, for characterization in crowded and overlapping vibrational spectral bands, unique material identification can be challenging. Thus, the combination of spectral characterization with additional thermal material-specific properties can provide critical information for the detection of hazardous materials or chemical analysis. Similarly, spectral signatures of proteins (amide-bands) combined with variations in thermal properties across a sample could provide a novel way to systematically differentiate healthy from diseased tissue. The overall goal of this project is to develop a mid-infrared multi-dimensional vibrational spectroscopy system with high sensitivity that combines photothermal and characteristic thermal material measurements in one label-free, contactless configuration at eye-safe wavelengths, utilizing a fiber laser probe.

Xin Zhang, ME and Stephan Anderson, Radiology, BUSM
“Marrying MEMS with Acoustic Metamaterials to Realize Ultrasound Applications”

Metamaterials composed of sub-wavelength unit cell can exhibit extraordinary behaviors that do not exist in the nature. Achieving negative permeability and permittivity in electromagnetic metamaterials (EMM) has been widely reported with a range of phenomena such as negative index materials and cloaking having been realized in this area. With regards to acoustic metamaterials (AMMs), the design of these sub-wavelength unit cell structures enables acoustic wave manipulation and many promising acoustics applications have been explored. Despite the promise of AMMs, one of the fundamental limitations include their relatively low working frequency as the majority of proposed acoustic metamaterials are effective in the range of Hz-kHz. Overcoming this common limitation of AMMs would enable their practical application in ultrasound imaging, which requires operation in the MHz regime. During this project, we seek to design and fabricate AMMs in the micron-scale using MEMS fabrication approaches, thereby achieving operating frequencies in the MHz regime, appropriate for biomedical ultrasound imaging. Achieving functional AMMs in the frequency regime optimal for ultrasound imaging enables a host of applications that may dramatically potentiate this powerful medical imaging modality.

Congratulations! And many thanks to all who applied.