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ABSTRACT. We study the implications of trade uncertainty for reshoring, automation, and
U.S. labor markets. Rising trade uncertainty creates incentives for firms to reduce exposure
to foreign suppliers by moving production and distribution processes to domestic producers.
However, we argue that reshoring does not necessarily bring jobs back to the home country or
boost domestic wages, especially when firms have access to labor-substituting technologies
such as automation. Automation improves labor productivity and facilitates reshoring,
but it can also displace jobs. Furthermore, automation poses a threat that weakens the
bargaining power of unskilled workers in wage negotiations, depressing their wages and
raising the skill premium and wage inequality. Our model predictions are in line with

industry-level empirical evidence.

I. INTRODUCTION

The COVID-19 pandemic has exposed important vulnerabilities in global supply chains.
Ongoing trade tensions as well as increasing risks from climate change and geopolitical con-
flicts are making global production strategies riskier than in the past. In this new economic
environment, moving some production and distribution processes from abroad back to do-
mestic suppliers (i.e., reshoring) is becoming an increasingly attractive option to mitigate

the risks of supply chain disruptions.
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'According to a Thomas Industrial Survey, about two-thirds of North American manufacturers reported

they are likely to bring manufacturing production and sourcing back to North America because of concerns
1
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How this process will unfold and what the impacts on labor markets will be remain highly
uncertain. One possibility is that reshoring could increase jobs in the home country and
boost wages for domestic workers, reversing the effects of the China shock originally studied
by Autor et al. (2013). In this paper, we argue that reshoring may not necessarily increase
domestic employment and wages when labor-substituting technologies, such as automation,
are available for firms to lower labor costs.

Over the past three decades, advanced economies that offshored production processes
have also experienced a steady increase in the adoption of automation technologies, such as
artificial intelligence, machine learning, and robotics. Empirical evidence suggests that au-
tomation raises labor productivity (Graetz and Michaels, 2018) and reduces unit labor costs
and worker wages (Acemoglu and Restrepo, 2020). The increased ability to automate labor-
intensive production processes could reduce firms’ need to offshore production to contain
labor costs. In line with these changing incentives, import growth has slowed significantly
relative to GDP since the trade collapse during the Great Recession.

Coupled with a greater ability to automate, recent increases in trade uncertainty may have
accelerated the trend in reshoring. While reshoring tends to raise domestic labor demand and
real wages, firms’ options to automate help mitigate the increase in labor costs, since it acts
as a threat against workers —especially unskilled workers who can be easily substituted by
robots in wage bargaining. This automation threat channel originally studied by Leduc
and Liu (2023) helps contain the rise in labor costs, reinforcing the incentive for reshoring.
Since robots substitute for unskilled workers and complement skilled workers, increased
automation spurred by reshoring may also raise the skill premium and income inequality.

In this paper, we formalize this perspective by developing a macro framework featur-
ing automation, heterogeneous worker skills, and international trade frictions. We use this
framework to examine the impacts of a rise in trade uncertainty on reshoring, automation,
and domestic labor markets. We generalize the automation threat channel in the Leduc
and Liu (2023) model to a small open economy with trade in intermediate inputs. Trade is
subject to time-varying iceberg costs with stochastic volatility meant to capture trade un-
certainty arising from geopolitical, climate, and trade policy risks. To produce a final good,
firms use a mixture of domestic and foreign intermediate goods. We capture the interaction
between reshoring and automation by assuming that domestic intermediate goods producers
can use two types of technologies: a labor-only technology that uses unskilled workers and
an automated process that uses both robots and skilled workers as inputs.?

about the global supply chain disruptions following the COVID-19 pandemic. In addition, about a quarter

of those manufacturers are considering expanding industrial automation.
2We focus on automation decisions at the business cycle frequency. However, automation can also be

the result of long-run technological improvements that can allow the automation of tasks previously done
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We assume that unskilled workers search for jobs in a frictional labor market, subject to
search frictions as in the standard Diamond-Mortensen-Pisarides (DMP) framework. Un-
skilled wages are determined by Nash bargaining between a firm and a worker. Because firms
have the option to automate unfilled vacancies, the threat of automation acts as an outside
option for the firm and weighs on bargained wages.? This effect is compounded when firms
do actually automate, since the associated productivity boost lowers domestic marginal costs
of production further.

In our framework, heightened trade uncertainty operates through three key channels.
First, trade uncertainty has an expenditure-switching effect that redirects the demand for
intermediate goods toward domestic producers (i.e., reshoring).* This expenditure-switching
effect stimulates automation investment, raising the demand for skilled workers. While a
greater use of automated processes has a job-creating effect through raising the value of
unfilled vacancies, this channel is more than offset by the job-displacing effect of automation
on unskilled workers. Second, trade uncertainty also generates greater precautionary savings,
which reduces the real interest rate and further stimulates automation. Third, heightened
trade uncertainty raises the option value of waiting, discouraging automation investment.

We show that, with our calibration, the positive effects from expenditure switching and
precautionary savings dominate the negative option-value effect, such that trade uncertainty
boosts automation, raises unemployment for unskilled workers, and also raises the skill pre-
mium. These effects of trade uncertainty are amplified for an economy that is more open to
trade, has more automated production, or faces more persistent trade uncertainty.

Our model produces a rich set of empirically testable predictions. First, the model predicts
that an increase in trade uncertainty increases reshoring and stimulate automation invest-
ment. Second, increased automation triggered by trade uncertainty raises labor productivity.
Third, the threat of automation depresses wages and employment of unskilled workers while
raising wages of skilled workers, resulting in an increase in the skill premium. These effects

should be stronger in an economy more open to international trade.

by labor. We view this form of automation as occurring relatively infrequently and instead focus on an

environment with fixed production technologies.
3Unlike the standard DMP framework, we assume that vacancy creation incurs a random fixed cost

(Fujita and Ramey, 2007; Leduc and Liu, 2020), such that an unfilled vacancy retains value in equilibrium

and captures the firms’ outside option and ability to automate in the future.
“To keep the analysis tractable, we model reshoring or offshoring in a reduced-form way. We do not

model firms’ choices of production locations. We interpret importing of intermediate goods as production
that could have been done domestically but is instead offshored. Similarly, we interpret a decline in imports

of intermediate goods as reshoring.
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The model predictions are consistent with empirical evidence from industry-level data. We
use data on industrial robots, intermediate goods imports, employment, value-added, and
wages in two-digit North American Industry Classification System (NAICS) industries to
construct measures of automation, offshoring, labor productivity, and the skill premium.” We
measure trade uncertainty using aggregate trade policy uncertainty (TPU) constructed by
Caldara et al. (2020), interacted with a measure of initial exposure to offshored production.
We show that, controlling for industry and time fixed effects, an increase in trade uncertainty
is associated with larger increases in automation and larger declines in offshoring in industries
that are more exposed to offshoring.®

We also find that an increase in trade uncertainty is associated with larger increases in labor
productivity and the skill premium in industries that are more exposed to offshoring and
that these effects work partly through an automation channel. We examine the channeling
effects using a two-stage least squares approach (Bertrand and Mullainathan, 2001). In
the first stage, we regress a measure of automation (robot density) on trade uncertainty,
controlling for industry and time fixed effects. In the second stage, we regress each variable
of interest (including labor productivity, employment, value-added, and the skill premium)
on robot density predicted from the first-stage regression. The estimated coefficient in the
second-stage regression indicates the sensitivity of each of the macroeconomic variables to
changes in robot density that comes from trade policy uncertainty. We find that an increase
in robot density driven by trade uncertainty is associated with an increase in both labor

productivity and the skill premium. The increase in labor productivity primarily reflects a

"Due to data limitations, this paper focuses on industrial robots, a specific type of automation tech-
nology. We use the terms “automation” and “robots” interchangeably. Robotics constitute an important
component of the automation technology. According to the Annual Business Survey, 8.7% of U.S. manu-
facturing firms, which account for 45% of manufacturing employment, utilize robotics in their production

processes (Acemoglu et al., 2022).
60ur model’s prediction that trade uncertainty raises automation investment does not necessarily con-

tradict the empirical finding of Caldara et al. (2020) that trade uncertainty reduces business investment
(such as nonresidential structures and general capital equipment). It would be straightforward to generalize
our model to incorporate business investment. For example, one could modify the traditional technology
(i.e., the non-automation technology) that uses unskilled labor as the only input in our baseline model by
assuming that both capital and labor are required as input factors. We conjecture that, in such a model,
an increase in trade uncertainty could boost automation investment, which in turn could displace unskilled

jobs and reduce business investment, in line with the findings of Caldara et al. (2020).
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decline in employment (rather than an increase in value-added), suggesting that automation
raises labor productivity through substituting for workers.”

Our work contributes to a relatively new but growing literature on the effects of reshoring.
Empirically, drawing clear conclusions about the effects of reshoring has been challenging
given the novelty of the practice and thus the lack of data. Nonetheless, a few papers
have assessed the empirical links between reshoring and automation. For instance, Dachs
et al. (2019) find a positive relationship between reshoring and investment in Industry 4.0
technologies for 1,700 firms in Austria, Germany, and Switzerland. More broadly, our paper
is also related to the literature on the effects of trade policy on the structure of trade and
global supply chains (Fajgelbaum et al., 2021; Alfaro and Chor, 2023; Utar et al., 2023;
Grossman et al., 2024).%

By emphasizing the effects of uncertainty on reshoring and automation, our paper comple-
ments recent work that examines the effects of changes in automation on trade. In particular,
a growing body of literature has documented the interaction between automation and off-
shoring and showed that automation tends to reduce offshoring (De Backer et al., 2018;
Artuc et al., 2019; Stemmler, 2019; Faber, 2020; Carbonero et al., 2020; Krenz et al., 2021;
Bonfiglioli et al., 2022). Mandelman and Zlate (2022) argue that offshoring and automation
reduce employment and wages of middle-skill occupations but enhance those for high-skilled
ones. We examine the nexus between offshoring and automation from a different angle by
showing how trade uncertainty induces reshoring and boosts automation investment and
how the interactions between reshoring and automation affect the responses of domestic
labor market variables to trade uncertainty.

Our paper also adds to an extensive literature on the effects of trade policy uncertainty
(e.g., Handley and Limao, 2015, 2017, 2022; Feng et al., 2017; Crowley et al., 2018; Alessan-
dria et al., 2019, 2021; Poilly and Tripier, 2023; Choi et al., 2023; Alessandria et al., 2024;
Rodrigue et al., 2024), and more broadly, on the macroeconomic effects of uncertainty (e.g.,
Bloom, 2009; Fernandez-Villaverde et al., 2011; Alessandria et al., 2015; Leduc and Liu,
2016; Basu and Bundick, 2017). Related to our study, Novy and Taylor (2020) argue that
trade flows can be more sensitive to uncertainty shocks than domestic production because of

higher fixed costs of orders of foreign inputs. Caldara et al. (2020) show that an increase in

"While these results are broadly in line with our theoretical predictions, we note that we are using a
relatively small sample of industries over a relatively short time period and therefore one should interpret

our empirical results with caution.
8The literature has also studied the importance of global supply chains in optimal trade policy; see, for

example, Blanchard et al. (2017); Grossman et al. (2023); Antras et al. (2024).
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TPU reduces business investment, both in the data and in an open-economy model. Com-
plementary to these studies, our paper highlights how trade uncertainty can drive three-way

interactions between reshoring, automation, and labor markets.

II. THE MODEL

This section presents a small open economy model featuring labor search frictions, en-

dogenous decisions of automation, and offshoring,.

I.1. Key features in the model. Final consumption goods are produced using interme-
diate goods that are imported or domestically produced. Domestic intermediate goods can
be produced using two types of technologies, a labor-only technology that uses unskilled
workers as the only input and an automation technology that uses both robots and skilled
workers as inputs.

Following Leduc and Liu (2023), we assume that a firm that chooses to use the automation
technology can adopt a robot at a random sunk cost and hire a skilled worker from a com-
petitive spot skilled labor market. If the firm chooses to operate the labor-only technology,
then it can hire an unskilled worker subject to labor market search frictions in the spirit of
the standard DMP framework.

In the beginning of a period ¢, firms carry over the stock of unfilled vacancies from the
previous period, a fraction of which is automated by adopting robots. The stock of vacancies
vy available for hiring workers consists of the remaining vacancies after automation, the jobs
separated in the beginning of the period, and newly created vacancies. The job seekers (the
mass of which is u;) randomly match with the vacancies (v;) in the labor market, with the
number of new matches (m;) determined by a matching technology. Production then takes
place, using either a labor-only or an automation technology. The unfilled vacancies and the
pool of employed workers at the end of the period are carried over to the next period, and
the same sequence of economic activities repeats in period ¢ + 1.

Compared to the standard DMP model, our model introduces four new features. First,
we replace the free-entry assumption in the DMP model with costly vacancy creation, as in
Fujita and Ramey (2007) and Leduc and Liu (2020). Since creating a new vacancy incurs
a fixed cost, a vacancy has a positive value even if it is not filled by an unskilled worker.
The number of vacancies becomes a slow-moving state variable (instead of a jump variable,
as in the standard DMP framework), enabling our model to match the persistent vacancy
dynamics in the data.

Second, we introduce endogenous automation decisions. In the beginning of period ¢, each
firm draws a sunk cost of automation, which determines whether the firm will automate

production or post the vacancy for hiring a worker. If the automation cost lies below a
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threshold value, then the firm automates production by adopting a robot and hiring skilled
workers to operate the robot. In that case, the firm obtains the automation value and the
vacancy would be taken offline. If the automation cost exceeds the threshold, then the firm
posts the vacancy for hiring an unskilled worker.

Third, we allow for worker skill heterogeneity, with skilled and unskilled workers, who
are all members of the representative household. In our model, robots and skilled workers
are complementary inputs, whereas they are substitutes for unskilled workers. This feature
allows us to examine the joint effects of automation and offshoring on employment of workers
with different skills and also on income inequality stemming from the skill premium.

Fourth, we introduce offshoring by allowing final goods producers to import intermediate
goods. Changes in trade costs caused by, for example, global supply chain disruptions or
trade wars can affect the effective costs of offshoring, which in turn affects the relative demand
for intermediate goods that are imported versus domestically produced. Such changes in
relative demand in turn drive changes in automation decisions, employment, and income

distribution.

I1.2. The frictional labor market for unskilled workers. At the beginning of period ¢,
there are N;_; existing job matches for unskilled workers. The measure of unemployed job

seekers is given by
Uy = 1—(1—6)Nt_], (1)

where § € (0,1) denotes the job separation rate and we have assumed full labor force
participation with the size of unskilled labor normalized to one.

The stock of vacancies v; at the beginning of period ¢ consists of unfilled vacancies carried
over from period ¢t — 1 that are not automated plus the separated employment matches and

newly created vacancies. The law of motion for vacancies is given by
v = (1 =g 4)(1 —qf)ve1 +ONg1 +my, (2)

where g, denotes the job filling rate in period ¢ — 1, ¢f denotes the automation probability
in period ¢, and 7, denotes newly created vacancies (i.e., entry).
In the labor market, new job matches (denoted by m;) are formed between job seekers

and open vacancies based on the matching function
a, l-a
my = piuy vy (3)

where p is a scale parameter that measures matching efficiency and a € (0, 1) is the elasticity

of job matches with respect to the number of job seckers.
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The flow of new job matches adds to the employment pool, whereas job separations sub-

tract from it. Aggregate employment evolves according to the law of motion
Nt = (1 — J)Nt_] + my. (4)

At the end of period t, the searching workers who failed to find a job remain unemployed.

Thus, unemployment is given by
Ut=ut—mt=l—Nt. (5)

For convenience, we define the job finding probability ¢;* as
w my
= —. 6
q; s (6)
Similarly, we define the vacancy filling probability ¢; as

v T

qy =

(7)

Ut
II.3. The representative household. The representative household has the utility func-
tion

(o ]

EY B (InC,—xNy), (8)

t=0
where [E [-] is an expectation operator, 5 € (0,1) is a subjective discount factor, C; denotes
consumption, and N; denotes the fraction of unskilled household members who are employed.

The representative household faces the sequence of budget constraints
Ci+ By =1 1B + wpe Ny + was + ¢(1 — Ny) +dy — T3, V>0, 9)

where B; denotes the household’s holdings of a risk-free bond (in units of final goods) at the
real interest rate r; w,; and w denote the real wage rates of unskilled and skilled workers
(also in units of final consumption goods), respectively; d; denotes the household’s share of
firm profits; and T; denotes lump-sum taxes. The parameter ¢ measures the flow benefits of
unemployment. For simplicity, we assume that the aggregate supply of skilled labor is fixed
at s.

Denote by Vi(B;_1, N;_1) the value function for the representative household. The house-
hold’s optimizing problem can be written in the recursive form

Vi(Bi—1, Ne—1) = CmA;’D% InCy — xNy + E.Dy 11 Vi (B, Ny), (10)

subject to the budget constraint (9) and the employment law of motion (4) for unskilled

workers, which can be written as

Ny = (1= 0)Ni—1 + qj'uy, (11)
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where we have used the definition of the job finding probability ¢;* with the measure of job
seekers u;. In the optimizing decisions, the household takes the economy-wide job finding
rate g;' as given.

The stochastic discount factor (SDF) is given by

(12)

where A; denotes the Lagrange multiplier for the budget constraint (9).
We define the employment surplus (i.e., the value of employment relative to unemploy-
— 1 9Vi(Bi_1,Ni—1)

ment) as S/ = r —on. - The optimizing decision for employment implies that the

employment surplus satisfies the Bellman equation
Sit = wpt — § — A&t + B Dy (1= gt) (1= 0)S{. (13)
The employment surplus has a straightforward economic interpretation. If the household
adds a new unskilled worker in period ¢, then the current-period gain would be wage income
net of the opportunity costs of working, including unemployment benefits and the disutility of
working. The household also enjoys the continuation value of employment if the employment
relation continues. Having an extra unskilled worker today adds to the employment pool
tomorrow (provided that the employment relation survives job separation); however, adding
a worker today would also reduce the pool of searching workers tomorrow, a fraction ¢,
of whom would be able to find jobs. Thus, the marginal effect of adding a new worker in
period ¢ on employment in period ¢+ 1 is given by (1 — g3, ;)(1 — ), resulting in the effective
continuation value of employment shown in the last term of Eq. (13).
Finally, the household’s optimizing consumption-savings decision implies the intertemporal
Euler equation
1= E,Dy 7. (14)

IT1.4. Final goods production. A homogeneous final good is produced using two types
of intermediate inputs, one produced by domestic firms (denoted by Yy) and the other
imported from the foreign country (Yy;). Importing goods is subject to a delivery lag such
that imported intermediate goods today can be used for final goods production tomorrow.’
The production function of final goods is given by
161 L 01155

Yi=[afva” +(1-a)?y, 2] (15)
where the parameter § measures the elasticity of substitution between home-produced and
imported intermediate goods, and the parameter «y; measures the importance of domestic

IWe incorporate delivery lags for imported inputs to enhance the realism of our model. As demonstrated

in Appendix D, the results remain qualitatively similar even when these delivery lags are excluded.
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intermediate goods for final goods production. We assume that intermediate goods are
tradable while final goods are nontradable. To keep the analysis tractable, we interpret
importing of intermediate goods as part of the production that could have been undertaken
domestically but is instead offshored.'®

We denote by pg: and py, the relative prices of intermediate goods (i.e., in units of final
consumption goods) produced domestically and imported, respectively. The relative price of

imported goods faced by domestic final goods producers is given by

T P
Prt = tpt = 19y, (16)
t

where 7, denotes an iceberg trade cost, P is the price of final consumption goods, P is the
foreign price level, and Q; = %': is the real exchange rate (RER). The small open economy
takes the foreign price level P as exogenously given. Without loss of generality, we normalize
P} =1 such that the real exchange rate is isomorphic to the domestic price level.

We assume that, for every unit of goods delivered to the destination, 7; > 1 units of goods
need to be shipped. The trade cost 7; is an exogenous process with a time-varying volatility,
which captures trade uncertainty related to factors such as trade wars, geopolitical tensions,
or climate change risks that might cause global supply chain disruptions. Sepecifically, we

assume that the trade cost follows the stationary stochastic process
In(r) = (1 — pr) n(7) + pr In(74-1) + 0reEre, (17)

where 7 is the mean of 7, p, € (—1,1) is a persistence parameter, and &,; is a white noise
innovation. The term o, is a stochastic volatility of the trade cost shock, which we interpret

as trade uncertainty, and it follows the process

Ort = (1 - Paq—)Ur + PorOrt—1 + Nrllrt. (18)

Here, p,r € (—1,1) is the persistence and 7, is the standard deviation of the trade uncertainty
shock, u,; is a white noise innovation, and o, is the average standard deviation of the trade
cost shock.

Final goods producers take all prices as given and choose Yy and Yy to maximize the
expected present value of profit flows. The optimizing problem is described by the Bellman

equation
Vi(Ysio1) = max Y —paYa — Y5 + BiDip 1 Vi (Yie), (19)

Yai, Y5t

101n addition, we treat the rest of the world as a uniform area subject to the same degree of trade
uncertainty. Thus, we abstract from the possibility that higher trade uncertainty in a specific region could
lead firms to diversify the sourcing of their products to other regions. While that is an interesting and

relevant issue, it is beyond the scope of this paper.
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subject to the technology constraint (15), where V;(Y}:_1) denotes the value function, which
depends on the state variable Y, 1. The first-order conditions for this optimizing problem

are given by
oYy

Pit = 5> Pft = ]EtDt,tJert'Jrl(th)- (20)
OY 4
The envelope condition implies that
oYy
"(Yieoq) = . 21
V) = gyt (21)
Combining (20) and (21), we obtain
1 1
agY:\? 1—ay)Y; 4
Pat = ( 2 t) v Pie =KDy (M) . (22)
Yat Yie

The domestic intermediate good is itself a Constant Elasticity of Substitution (CES) aggre-
gate of two types of intermediate goods produced using labor-only technology and automa-
tion technology. In particular, the quantity of domestically produced intermediate goods Q4
is given by

1 o—1 1 =171 5=1
b

Qu = [0f Yo7 + (1= )7 Yo’ (23)

where Y,,; denotes the intermediate goods produced using the labor-only technology, Y,
denotes the intermediate goods produced using the automation technology, the parameter
o is the elasticity of substitution between the two types of intermediate goods, and the
parameter «a,, governs the relative importance of Y,; in the aggregation technology.

Some domestically produced intermediate goods are exported to the foreign country. Thus,

we have
Qat = Yar + 1 X, (24)

where X; denotes the quantity of exports.

The optimal choices of domestic intermediate goods producers imply that

1 1
Pt _ (“_"Ydt) © Pa (7(1 — an)y‘“) ’ (25)
Pat Yo " Par Yot
The zero-profit condition for domestic intermediate goods producers implies that

1—0o

P — [a P 4 (1= an) p;;°] . (26)
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Discussion. To maintain tractability, our model abstracts from a few potentially important
adjustment channels. On the household side, we exclude potential effects of automation
on labor force participation (e.g., Grigoli et al., 2020) or the reallocation of workers to
the services sector (Autor and Dorn, 2013). However, these adjustment channels are more
likely to be quantitatively important in the longer term rather than at the business cycle
frequency, which is the focus of our paper. Taking these additional adjustment channels into
account would likely reduce the impact of trade uncertainty on unemployment in the long
run. On the production side, we abstract from firms’ ability to smooth unexpected changes
in demand arising from trade uncertainty through variations in inventories (e.g., Alessandria

et al., 2019).

I1.5. Domestic production of intermediate goods. A firm makes automation decisions
at the beginning of the period t. Adopting a robot requires a sunk cost v in units of
consumption goods, which is drawn from the i.i.d. distribution G(v).!' A firm chooses to
adopt a robot if and only if the cost of automation is less than the benefit. For any given
benefit of automation, there exists a threshold value v} in the support of the distribution
G(v), such that automation occurs if and only if v < y}. If the firm adopts a robot to replace
the job position, then the vacancy will be taken offline and will not be available for hiring
a worker. Thus, the automation threshold v} depends on the value of automation (denoted
by J{) relative to the value of a vacancy (denoted by Jy). In particular, the threshold for
automation decision is given by
vy = J¢ —J}. (27)
The probability of automation is then given by the cumulative density of the automation
costs evaluated at v;. That is,
4 = Gf). (28)
The flow of automated job positions adds to the stock of automated positions (denoted by
Ay), which becomes obsolete at the rate p® € [0, 1] in each period. Thus, A; evolves according
to the law of motion
Ay = (1= p°)Aer + ¢ (1 — g 1)ve, (29)

where ¢¢(1 — ¢’ ,)v;_; is the number of newly automated job positions.'?

HThe assumption that adopting a robot requires a sunk cost implies that the automation decision is
irreversible. This irreversibility tends to reduce the incentive to automate in response to trade uncertainty,
making our results conservative. In contrast, if the automation decision was reversible (e.g., involving a
per-period fixed cost of automation), the automation response to trade uncertainty would likely be stronger,

as the option value of delaying automation would no longer exist in this case.
121f a vacancy is “filled” by a robot, it will be taken offline once and for all. Even if the robot later

becomes obsolete, the vacated position does not return to the stock of vacancies.
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If the firm adopts a robot, then it optimally chooses the input of skilled workers s;, with

the production function
Yar = Ztc’yasl _'Yﬂa (30)

where 7, € (0, 1) denotes the elasticity of output with respect to the robot input, Z; denotes
a total factor productivity (TFP) shock, and ¢ denotes an automation-specific productivity.'?

TFP follows a stationary AR(1) stochastic process
In(Z) = (1= p)In(Z) + p.In(Z,_1) + 0.6, (31)

where Z is the mean of Z;, p, € (—1,1) is a persistence parameter, €.; is a white noise
innovation, and o, is the standard deviation of the TFP shock.
The firm takes the skilled real wage rate wy as given and chooses s; to maximize the profit

before paying the robot operation cost k,. The value of automation is then given by

Jp =7 (1= Kq) + (1 — p°)Ey Dy g1 I, 4, (32)

= 1= 1—
? - sy Mat4t t ‘= st2t — laVat4t t “.
where 7 = max, patZ:(7*s WstSt = YaPat £:C1°S

If the automation sunk cost exceeds the threshold v/, then the firm chooses not to adopt
a robot and instead chooses to post the vacancy in the labor market for hiring an unskilled
worker. In addition, newly separated jobs and newly created vacancies add to the stock
of vacancies for hiring unskilled workers. Following Leduc and Liu (2020), we assume that
creating a new vacancy incurs an entry cost e in units of consumption goods, which is drawn
from an 7.i.d. distribution F(e). A new vacancy is created if and only if the net value of entry
is non-negative. The benefit of creating a new vacancy is the vacancy value J7. Thus, the
number of new vacancies 7, is given by the cumulative density of the entry costs evaluated
at J7. That is,

me = F(J}). (33)

Posting a vacancy incurs a per-period fixed cost £ (in units of final consumption goods).
If the vacancy is filled (with probability ¢}), the firm obtains the employment value Jf.
Otherwise, the firm carries over the unfilled vacancy to the next period, which will be
automated with the probability ¢f,,. If the vacancy is automated, then the firm obtains the

automation value J{, | net of the expected robot adoption costs; otherwise, the vacancy will

13In our baseline model, the use of robots is not subject to trade costs. However, in practice, firms’
automation technology may partly be imported and thus subject to trade costs and trade uncertainty. We

consider this more general case in a robustness exercise below.
We focus on trade uncertainty in the main analysis, although we also examine the effects of TFP

uncertainty, which is measured by time-varying volatility of the TFP shock (see Appendix D).
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remain open, and the firm receives the vacancy value J/, ;. Thus, the vacancy value satisfies

the Bellman equation

Vi
Ji=—k+q/Ji+(1— ‘IZJ)]EtDt,tH {q?+l‘]:+l - / vdG(v) + (1 — q?+1)JZJ+1} . (34)
Jo

If a firm successfully hires an unskilled worker, then it can produce Z; units of intermediate

goods. The value of employment satisfies the Bellman equation
Jte = Pt Lt — Wt + ]EtDt,tH {(1 - 5)Jte+1 + 5Jtv+1} : (35)

Hiring a worker generates a flow profit p,;Z; —w,, in the current period (in final consumption
units). If the job is separated in the next period (with probability §), then the firm receives

the vacancy value J¢,,. Otherwise, the firm receives the continuation value of employment.

I1.6. The Nash bargaining wage. When a job match is formed, the wage rate is deter-
mined through Nash bargaining. The bargaining wage splits the joint surplus of a job match
between the unskilled worker and the firm. The worker’s employment surplus is given by
SH in equation (13). The firm’s surplus is given by J¢ — J?. The possibility of automation
affects the value of a vacancy and thus indirectly affects the firm’s reservation value and its
bargaining decisions.
The Nash bargaining problem is given by
max  (S)" (Jg — I, (36)

Wnt
where b € (0, 1) represents the bargaining weight for workers.
Define the total surplus as
Se=Jf —J)+ S (37)
Then the bargaining solution is given by

Je—J'=(1-b)S,, SH=0S,. (38)

The bargaining outcome implies that the firm’s surplus is a constant fraction 1 — b of the
total surplus S; and the household’s surplus is a fraction b of the total surplus.
The bargaining solution (38) and the expression for household surplus in equation (13)

together imply that the Nash bargaining wage w?, satisfies the Bellman equation

b e v _ N X
1— b(']t Jy) = wy A,
u b € v
'HEtDt,tH(l - ‘It+1)(1 - 5)1 — b( t+1 t+1)' (39)

In the baseline model, we assume that real wages are flexible and are given by the Nash

bargaining wage (i.e., Wy = w,ﬁ).
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I1.7. Export demand. To close the model, we follow Chang et al. (2015) and specify the

export demand schedule

AN ipa "
- t « _ [ TtPat *

where X[ denotes an exogenous foreign demand shifter. Demand for exported intermediate
goods is inversely related to the effective price of exports, consisting of both the relative
price pg, converted to foreign goods units by the real exchange rate, and the iceberg trading
cost 7;. We assume that the demand elasticity for home exports is identical to the demand

elasticity for imported intermediate goods (both elasticities are given by ).

I1.8. Government policy and search equilibrium. The government finances unemploy-
ment benefit payments ¢ for unemployed workers through lump-sum taxes. We assume that

the government balances the budget in each period such that
(1 —Ny) =T (41)

In a search equilibrium, the markets for final goods, intermediate goods, and skilled labor
all clear. We also assume that trade is balanced such that export revenue equals the import
costs.

Market clearing for domestic intermediate goods along with that for skilled labor implies
that

Ynt - ZtNt, Yat = Zt(CAt)"{ug] _7". (42)

Final goods market clearing requires that consumption spending, vacancy posting costs,
robot operation costs, robot adoption costs, and vacancy creation costs add up to aggregate
final goods output. The aggregate robot operation cost is given by 7v,patYa:- Thus, the
aggregate resource constraint is

*
t

v Jp
Cy + kvg + KoYaPatYar + (1 — @7 1)ve—1 / vdG(v) + / edF(e) =Y. (43)
Jo Jo

We focus on a balanced-trade equilibrium. In such an equilibrium, the revenue from
exporting intermediate goods equals the costs of importing foreign intermediate goods, such
that

TiPar Xt = pftth- (44)

We assume that the initial foreign asset holdings are B_; = 0. Then, with balanced trade,
the current account balance is also zero for all periods, and we have B; = 0 for all £.

Appendix A summarizes the equilibrium conditions.
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TABLE 1. Calibrated parameters

16

Parameter Description value
B Subjective discount factor 0.99
« Elasticity of matching function 0.50
¢ Unemployment benefit 0.25
b Nash bargaining weight 0.50
) Job separation rate 0.10
p° Automation obsolescence rate 0.03
Ka Flow cost of automated production 0.98
" Matching efficiency 0.6606
K Vacancy posting per-period fixed cost 0.1128
Qn Share of worker-produced intermediate goods 0.39
o Elasticity of substitution between domestic intermediate goods 2.03
3 Scale of vacancy creation cost distribution 3.07
v Scale of automation cost distribution 8.57
ag  Weight on domestic intermediate input (home bias) 0.85
0 Substitution elasticity between domestic and imported goods 0.8
T Average iceberg trade cost 1.74
Z Average level of TFP 1
5 Supply of skilled workers 0.3
Ya Share of automation equipment in production 0.32
¢ Automation-specific productivity 3.4422
X Disutility of working 0.3741
Pz Persistence of TFP shock 0.95
oz Volatility of TFP shock 0.01
pr Persistence of first-moment trade cost shock 0.99
or Volatility of first-moment trade shock 0.00215
por Persistence of trade uncertainty shock 0.96
Nr Volatility of trade uncertainty shock 0.37

III. PARAMETER CALIBRATION

We use our model to study the macroeconomic impact of trade uncertainty shocks. We
solve the model based on third-order approximations to the equilibrium conditions. To
solve the model requires assigning values to the parameters. Table 1 shows the calibrated
parameter values.

We have a quarterly model. We set the subjective discount factor to 8 = 0.99, such
that the steady-state real interest rate is 4 percent per year. We set the matching function
elasticity to o = 0.5, in line with the literature (Blanchard and Gali, 2010; Gertler and
Trigari, 2009a). Following Hall and Milgrom (2008), we set the worker bargaining weight
to b = 0.5 and the unemployment benefit parameter to ¢ = 0.25. Based on the data from
the Job Openings and Labor Turnover Survey (JOLTS), we calibrate the steady-state job
separation rate to d = 0.10 at the quarterly frequency. We set p° = 0.03, so that automation
equipment depreciates at an average annual rate of 12 percent, in line with the depreciation
rate of industrial robots used by the International Federation of Robotics (IFR) for estimating
the average life span of robots and for constructing their measure of the operation stocks of
robots. Following Leduc and Liu (2023), we set the flow cost of automation to x, = 0.98. We

calibrate the vacancy posting cost £ = 0.1128 such that the flow cost of vacancy posting is
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about 1 percent of aggregate output. We set the matching efficiency parameter to p = 0.6606
such that the quarterly job filling rate is ¢" = 0.71 in the steady state, as calibrated by den
Haan et al. (2000).

We follow Leduc and Liu (2023) and assume that the distribution functions F(e) for
vacancy creation costs and G(v) for automation costs both follow a uniform distribution,
such that

e

Fle) ==, GW)= (45)

R R

We calibrate the scale parameter of the vacancy creation cost function to € = 3.07 to match
the estimation of Leduc and Liu (2023). We calibrate the scale of the automation cost
function to v = 8.57 such that the model implies a steady-state automation probability of
q* = 0.096, or about 38 percent at the annual frequency, which lies within the range of
firm-level estimates. For example, in a recent study based on the 2019 Annual Business
Survey (ABS) of the U.S. Census Bureau, Acemoglu et al. (2022) report that, in total, 30.4
percent of U.S. workers are employed at firms using advanced technologies for automating
tasks. Exposure to automation is higher in manufacturing, with 52 percent of manufacturing
workers employed at firms using advanced technologies for automation. Outside of manufac-
turing, the exposure to automation is lower, at 28.3 percent. The model-implied automation
probability in the steady state (38 percent), which corresponds to the measured automation
exposure, lies within this empirical range.

Based on Firooz et al. (2023), we calibrate the weight of worker-produced intermediate
goods in final goods production to «, = 0.39 and the elasticity of substitution between
intermediate goods produced by automation equipment and by workers to o = 2.03.1°

Following Leduc and Liu (2023), we set the output elasticity with respect to automation
equipment to v, = 0.32. We normalize the average level of TFP to Z = 1. We also normalize
the supply of skilled workers to § = 0.3, matching the median ratio of employment of college-
educated workers to aggregate employment in the period from 2000 to 2019. We calibrate
the average level of the automation-specific productivity to ( = 3.4422 such that the model
implies a steady-state skill premium of 55 percent, in line with the observed ratio of median
weekly earnings of workers with a bachelor’s degree or higher to those with some college or
associate degrees reported by the Bureau of Labor Statistics.

We set the average iceberg trade cost to 7 = 1.74, which lies within the range of empir-
ical estimates as surveyed by Anderson and van Wincoop (2004). We calibrate the weight

on domestically produced intermediate goods in the aggregation technology for final goods

15Firooz et al. (2023) calibrate these two parameters to target the 2016 level of robot density in the U.S.
manufacturing sector of 0.02 and the cumulative increase of robot density of about 300 percent from 2002

to 2016 while the relative price of robots declined by 40 percent during the same period.
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to ag = 0.85, reflecting home bias in goods consumption. We calibrate the elasticity of
substitution between domestic goods and imported goods to € = 0.8, which is in line with
empirical literature. For example, Boehm et al. (2023) find that the elasticity of trade flows
to exogenous changes in tariffs is about -0.76 in the short run and about -2 in the long run
(see also di Giovanni et al., 2023; Corsetti et al., 2008). Since our model focuses on the
short-run fluctuations induced by trade uncertainty, our calibration of # = 0.8 is consistent
with the short-run elasticity estimated by Boehm et al. (2023). We normalize the export
demand shifter to X} = 1, which implies a steady-state export share of about 10.8 percent
of GDP.

We calibrate the disutility of working to x = 0.3741 such that the model implies a steady-
state unemployment rate of 5.9 percent, matching the average unemployment rate from 2000
to 2019.

For the parameters in the TFP shock processes, we set p, = 0.95 and o, = 0.01, in line
with the real business cycle literature. For the first-moment shock to trading costs, we set
pr = 0.99 and o, = 0.00215 based on the estimates of Caldara et al. (2020). The trade
uncertainty shock parameters are also calibrated based on the study of Caldara et al. (2020).

Specifically, we set p,r = 0.96 and n, = 0.37.

IV. MACROECONOMIC EFFECTS OF TRADE UNCERTAINTY

To study the macroeconomic effects of trade uncertainty, we use our calibrated parameters
and solve the model based on third-order perturbations around the steady-state equilibrium.
We then compute impulse responses to a trade uncertainty shock following the approach of
Fernandez-Villaverde et al. (2011) and Leduc and Liu (2016).' To illustrate the model’s

mechanism, we perform several counterfactual exercises.

IV.1. Trade uncertainty in the baseline model. Figure 1 presents the impulse responses
of several key macroeconomic variables following a one-standard-deviation shock to trade
uncertainty. An increase in trade uncertainty reduces imports, redirecting production of
intermediate goods from foreign sources toward domestic producers (i.e., reshoring). This
expenditure-switching effect stimulates automation investment. Trade uncertainty further
boosts automation through a precautionary-savings channel, which lowers the real interest
rate and therefore raises the present value of automation. However, trade uncertainty could
discourage automation through an option-value channel. Under our calibration, the positive
effects from expenditure switching and precautionary savings dominate the option-value

16The impulse responses of a given variable to a trade uncertainty shock are measured by the differences

between the values of that variable in the presence of the shock and its value in the stochastic steady state

(i.e., its ergodic mean).
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FIGURE 1. Impulse responses to a trade uncertainty shock in the baseline

model
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effect, such that trade uncertainty leads to an increase in automation measured by the robot
density.

Increased automation raises labor productivity, stimulating the incentive for creating new
vacancies. However, with our calibration, this job-creating effect is more than offset by the
job-displacing effect of automation, leading to an increase in unemployment of unskilled
workers. Nonetheless, aggregate output and consumption both rise persistently because the
productivity gains stemming from automation outweigh the drags from lowered imports and
domestic production by unskilled workers. The automation-driven productivity gains also
lowers the domestic price level, leading to a real exchange rate depreciation (i.e., an increase
in Q).

The increased threat of automation also weakens the bargaining power of unskilled workers
in wage negotiations, lowering their wages. In contrast, skilled workers are a complementary
input with automation equipment. Thus, automation raises demand for skilled workers,
pushing up the skilled wage while depressing the unskilled wage, resulting in a higher skill

premium.

IV.2. Transmission channels. The model embeds two important transmission channels

for trade uncertainty shocks: an automation channel and a trade channel.
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FIGURE 2. Impulse responses to a trade uncertainty shock: Constant automa-

tion probability vs. the baseline model.
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IV.2.1. The automation channel. To examine the importance of the automation channel, we
consider a counterfactual version of the model with a constant automation probability. In
particular, we keep the automation probability ¢f fixed at the steady-state level.

Figure 2 shows the impulse responses to a trade uncertainty shock in the counterfactual
model with a constant automation probability (red dashed line) compared to those in the
baseline model (blue solid line). Absent adjustments in the automation probability, the
effects of trade uncertainty on the macroeconomic variables are more muted than in the
baseline model. Furthermore, in the counterfactual model, trade uncertainty reduces unem-
ployment because it creates an expenditure switching effect, boosting demand for domestic
goods. Since firms cannot adjust automation investment, they can meet the increased de-

mand for domestic goods only by raising domestic employment.

IV.2.2. Trade openness. Exposure to trade (or equivalently, offshoring) is also important for
the transmission of trade uncertainty shocks. To illustrate this, we consider a counterfactual
with high openness to international trade. Specifically, we lower the home-bias parameter
ag to 0.6 from the baseline value of 0.85.

Figure 3 shows the impulse responses in this counterfactual (red dashed line) versus those
in the baseline model (blue solid line). When the economy is more open to international

trade, the effects of trade uncertainty are amplified. Trade uncertainty leads to larger declines
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FIGURE 3. Impulse responses to a trade uncertainty shock: Higher openness

vs. the baseline model.
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in imports and larger increases in robot density, unemployment, productivity, consumption,

and the skill premium.
IV.3. Robustness. The main results are robust to several variations of our model.

IV.3.1. Capital flows. Our model features a closed capital account such that the interest
rate is endogenous. As an extension, we consider an alternative framework where interna-
tional capital flows are allowed. In particular, the small open economy can borrow from
or lend to the rest of the world at an exogenous world interest rate r; (in units of foreign
consumption goods). To capture the frictions in capital markets, we assume that changes
in capital flows are subject to an adjustment cost. Since the real interest rate is fixed, the
precautionary-savings channel is absent in this alternative model, and therefore, trade un-
certainty boosts automation through the expenditure-switching channel only. Appendix B
presents this alternative framework and equilibrium conditions.

Figure 4 shows the impulse responses to a trade uncertainty shock in the model with
capital flows.!” Increased trade uncertainty reduces imports and capital outflows, triggering
an expenditure-switching effect that boosts automation. The resulting increase in robot

density raises the unemployment of unskilled workers. Increased automation also boosts

1"We calibrate the bond adjustment cost parameter to ¢ = 2 for solving the model.
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FIGURE 4. Impulse responses to a trade uncertainty shock in the model with

capital flows.
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labor productivity, aggregate output, and the skill premium. This in turn leads to a rise
in consumption and a real exchange rate depreciation. Overall, these impulse responses
are qualitatively and quantitatively similar to those obtained in our baseline model under

financial autarky.

IV.3.2. Imported intermediate inputs for automated production. In our baseline model, a
firm that operates the automation technology uses robots and skilled workers for production.
However, in practice, firms’ automation technology may also rely on imported intermediate
goods (e.g., robot parts or other automation equipment). To incorporate this channel, Ap-
pendix C considers a generalization of the baseline model to include imported intermediate
goods for automating firms. In particular, we assume that imported intermediates are a
complement input to robots in the automation technology.

Figure 5 plots the impulse responses to a trade uncertainty shock in this model. The
impulse responses are similar to those in our baseline model. Trade uncertainty reduces
imports and raises demand for domestic goods through an expenditure-switching effect.
Since employment is a long-term relation, firms reduce hiring as the option value of waiting
increases. To meet the increased demand for domestic intermediate goods, firms rely more
on automation, raising the demand for robots. All else being equal, an increase in trade

uncertainty would lower demand for imported equipment in the automation sector. However,
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FIGURE 5. Impulse responses to a trade uncertainty shock in the model with

imported equipment for automated production
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the increased reliance on robots for producing domestic intermediate goods raises the demand
for imported equipment since imported intermediate inputs complement robots. Overall,
trade uncertainty reduces imported goods and domestic employment, and raises robot density
and imported equipment for automated production. As in the baseline model, the increased

automation also boosts labor productivity and the skill premium.

IV.3.3. Persistence of trade uncertainty. Trade uncertainty may be more persistent than
past data suggest for the calibration of the baseline model. Trade tensions, geopolitical con-
flicts, and climate change risks may be part of a new normal with persistently elevated trade
uncertainty. We consider a counterfactual case with a higher persistence of the trade uncer-
tainty shock by raising the persistence parameter p,, from 0.96 in the baseline calibration
to 0.99, proxying for a quasi-permanent regime with higher trade uncertainty.

Figure 6 shows the impulse responses in this counterfactual case (red dashed line) versus
those in the baseline model (blue solid line). Near-permanent trade uncertainty generates a
stronger expenditure-switching effect, resulting in greater reshoring (i.e., larger declines in
imports) and a larger increase in automation investment. The stronger expenditure-switching
effect in this case is such that it raises domestic employment of unskilled workers in the short
run, although the job displacing effects of automation dominates over time, leading to a rise

in unemployment. The larger boom in automation investment also results in greater gains in
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FIGURE 6. Impulse responses to a trade uncertainty shock: More persistent

trade uncertainty shock vs. the baseline model.
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productivity and larger increases in the skill premium and consumption than in the baseline

model.

IV.3.4. The role of wage rigidity. In the baseline model, we assume that real wages are
flexible. We now examine the robustness of the results to wage stickiness. Following the
literature (Hall, 2005a; Shimer, 2005), we assume that the real wage of unskilled workers
is a geometrically weighted average of the Nash bargaining wage and the wage rate in the
previous period, such that

Wae = Wy () (46)

nt

where v, € (0, 1) represents the degree of real wage rigidity. We follow Leduc and Liu (2016)
and set the real wage rigidity parameter to 7, = 0.8, which is in line with Gertler and Trigari
(2009b), who calibrate the probability of nonrenegotiation of wage contracts at 0.89.
Figure 7 compares the impulse responses from the case with wage rigidities (red dashed
line) to those in the baseline case with flexible wages (blue solid line). As in the standard
DMP framework, wage rigidities amplify the increase in unemployment following the trade
uncertainty shock, reflecting the Shimer volatility puzzle (Shimer, 2005; Hall, 2005b). The
impulse responses of the other macroeconomic variables are similar to those in the baseline

model.
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FIGURE 7. Impulse responses to a trade uncertainty shock: Sticky wages vs.

the baseline model.
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IV.3.5. Delivery lags. In the baseline model, we assume that importing intermediate inputs
for final goods production requires a delivery lag. Appendix D.1 presents a version of the
model without delivery lags. The impulse responses to trade uncertainty in the model
without delivery lags are similar to those obtained in the baseline model. In particular,
trade uncertainty reduces imports, and increases unemployment and robot density. We note
that trade uncertainty in this version of the model still activates the expenditure-switching

channel because of the curvature in the import demand schedule.

IV.3.6. Other shocks. Appendix D.2 considers other shocks to the economy and shows that
impulse responses to these shocks are quite different from those of trade uncertainty. In

particular, we consider first-moment shocks to trade costs as well as first and second-moment

shocks to TFP.

IV.4. Welfare consequences of automation. The labor search frictions in our model lead
to a congestion externality as in the standard DMP model, implying that the competitive
equilibrium allocations are not necessarily Pareto optimal. More importantly, fluctuations in
the automation probability lead to endogenous fluctuations in the workers’ relative bargain-
ing power in wage negotiations (Leduc and Liu, 2023). Thus, even if the Hosios condition

holds (i.e., the bargaining weight b is equal to the elasticity of the matching function «,
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which is true under our calibration), endogenous variations in the worker bargaining power
driven by fluctuations in automation could push the equilibrium allocations away from the
social optimum.

To examine the welfare consequences of endogenous automation, we compute the wel-
fare gains of moving from our baseline model to a counterfactual economy with a con-
stant automation probability (i.e., the counterfactual model that we have examined in Sec-
tion IV.2.1). Under our calibrated parameters, allowing automation to fluctuate (as in our
baseline model) incurs a modest welfare loss of about 0.75 percent of consumption equiv-
alent.'® This result is driven by the fact that automation amplifies macroeconomic fluctu-
ations as shown in Figure 2 and thus reduces the welfare of the risk-averse representative

household.*

V. EMPIRICAL EVIDENCE

Our theoretical model predicts that trade uncertainty can stimulate automation invest-
ment and reduce imported intermediate goods. The increased automation driven by trade
uncertainty in turn raises labor productivity, value added, and the skill premium and re-
duces domestic employment. We now present some empirical evidence supporting the model

predictions.

V.1. Data. We measure trade uncertainty using the U.S. TPU index constructed by Caldara
et al. (2020), which is based on the frequency of articles in several major U.S. newspapers
that discuss economic policy uncertainty and contain one or more phrases related to trade
policy (such as “import tariffs,” “import barriers,” “WTO,” “trade policy,” and “trade
agreement” ). The monthly TPU index is available starting from 1960.%

We measure automation using robot density in U.S. manufacturing industries. Specifically,
we define robot density in industry j and year t (Robot ) as the operational stock of industrial
robots per thousand employees. We obtain the data of industrial robots for each two-digit

manufacturing industry based on the International Standard Industrial Classification (ISIC,

18The welfare gain (or loss) of keeping the automation probability constant relative to the baseline econ-

omy is measured by a constant A such that

~log(1+A)

oo
Vi=Y_ B [log(Ci(1+A)) x|
t=0
where V; and V; denote, respectively, the welfare in the baseline economy and the counterfactual and C, and

N, denote the consumption and employment in the counterfactual.
Y0ur framework can be extended to study the welfare implications of tax policies in a model with

automation and labor search frictions, which is an important subject for future research.
20Caldara et al. (2020) also develop a firm-level measure of TPU and another aggregate measure of TPU

based on a stochastic volatility model for U.S. import tariffs.
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Rev. 4) from the International Federation of Robotics (IFR). We obtain employment data
for each manufacturing industry at the two-digit NAICS 2017 level from the NEBR-CES
database. We match the industries by cross-walking two-digit ISIC codes to NAICS codes.
The matched sample contains 12 industries (at the NAICS two-digit level) for the years 2004
to 2018, thus restricting our sample to the pre-pandemic period.

To help explore the differential effects of trade uncertainty across industries with different
exposure to offshoring, we construct a measure of industry-level offshoring exposure using
the initial share of imported intermediate goods in gross output (i.e., in the beginning year
of our sample) for each two-digit NAICS manufacturing industries. We obtain data on the
gross imports of intermediate products from OECD Trade in Value-Added, and on gross
output from the Bureau of Economic Analysis. For each industry-year pair, we also use
the import-weighted average of tariffs that the U.S. imposes on its imports from the World
Integrated Trade Solution (WITS). The annual sample covers 15 two-digit NAICS industries
for the years from 1997 to 2018.

We measure labor productivity for a two-digit NAICS industry by the ratio of real value
added to total employment in that industry, using data from the NBER-CES. We construct
a measure of the skill premium using data from the Current Population Survey (CPS). In
particular, the skill premium is measured by the earnings per hour of skilled workers (i.e.,
with a college degree or above) divided by those of unskilled workers (with a high school
degree).

Since we have annual data on industrial robots and imports of intermediate goods, we
aggregate the TPU index from a monthly frequency to an annual frequency by taking the
within-year average.

Table 2 reports the summary statistics of our data. Robot density (in log units) in the data
displays substantial variations across industries and time, with a standard deviation of 2.73,
which is over four times its sample mean. The interaction between TPU (in log units) and
the initial share of intermediate imports also displays significant variations, with a standard
deviation (0.246) of about 70 percent of its mean. The share of imported intermediate
goods (in log units) our measure of offshoring activity —has more modest variations across
industries and time, with a standard deviation of about 30 percent of the mean (in absolute
value). The real outcome variables, including labor productivity, employment, value-added,
and the skill premium, are relatively stable, with standard deviations between 6 and 20

percent, of their respective means.

V.2. Trade uncertainty, automation, and offshoring. To examine the empirical rela-

tionship between automation and offshoring with trade uncertainty, we consider the following
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TABLE 2. Summary Statistics

Mean Count  SD Min Max IQR

log Robot density 615 161 2731 -6.570 6.040 3.520
log TPU x

Initial share of intermediate imports .345 264 .246 .059 1.553 152
log Share of intermediate imports -2.234 264 684 -4.188  -.961 708
log Labor Productivity 5.176 264 488 4.136 6.522 628
log Employment 6.476 264 611 5.174 7.630 1.070
log Real Value-Added 11.652 264 .769 10.055 13.563 .920
log Skill premium 484 264 101 .247 768 139
log(1+4 Tariff) .200 264 .023 0 113 .0124
Observations 264

Note: The table shows the summary statistics of the variables used in the regressions. Ro-
bot density is defined as the operation stock of industrial robots per thousand employees
in each industry. The share of intermediate imports is the ratio of imported intermediate
goods to gross output in each industry. TPU is the trade policy uncertainty index, which
is an aggregate time series constructed by Caldara et al. (2020). Labor productivity is the
ratio of value-added to employment in each industry. Skill premium is the ratio of hourly
earnings of workers with a college degree or above to those with a high school education.
Tariff is the industry-year-specific import-weighted average of tariffs that the U.S. imposes
on its imports. See the text for data sources.

empirical specification
In Robotj; = o + arImpShare; x InTPU, + azIn(1 + Tarif fir) +m; + 60 +c5¢,  (48)

where I'mpShare; is the share of imported intermediate goods in gross output for industry
Jj at the beginning of our sample (2004), as a proxy for the initial exposure of the industry
to offshoring. The terms 7; and 6, denote industry and time fixed effects, respectively, and
et denotes the regression residuals. In the regression, we include industry-level tariffs (i.e.,
In(1+ Tarif f;;)) as an additional control variable to mitigate potential confounding effects
of changes in trade barriers.

The key parameter of interest is oy, which measures the sensitivity of an industry’s robot
density to changes in trade policy uncertainty, depending on the industry’s initial exposure
to offshoring. In what follows, we refer to the interaction between TPU (in log units) and the
import share as “trade uncertainty exposures.” Our theory suggests that an increase in trade
uncertainty should be associated with an increase in robot density, and this response should
be stronger for industries that are more exposed to offshoring. Specifically, the impulse
responses in Figure 3 show that, in a more open economy, trade uncertainty should lead to
a larger increase in robot density. Thus, the theory predicts that a; > 0.

This prediction is supported by the data, as shown in Table 3 (Column (1)). The table
shows that, after controlling for the industry and time fixed effects as well as tariffs, an
increase in TPU is associated with a larger increase in robot density in industries that are

more exposed to offshoring. This correlation is statistically significant at the 99 percent
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TABLE 3. Trade policy uncertainty, automation, and offshoring

(1) (2
log(Robot density) log(Import share)

Initial import share x log(TPU) 5.251%** -1.001**

(1.369) (0.425)
log(1+Tariff) 18.21 -7.598

(85.48) (8.167)
Industry fixed effect v v
Time fixed effect v v
Observations 161 308
R? 0.917 0.956
Years 2004:2018 1997:2018
No. of industries 12 14

Note: Column (1) reports the estimates of the regression of robot density on
trade uncertainty proxied by the interaction between TPU and initial exposure
to offshoring. Column (2) reports the estimates of the regression of the share
of imported intermediate goods in gross output on trade uncertainty. Both
regressions control for industry and time fixed effects as well as industry-time-
specific tariffs that the U.S. imposes on its imports. Standard errors clustered
at the industry level are shown in parentheses. The levels of statistical signif-
icance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05, and * for
p < 0.1.

confidence level and economically important. A one-standard-deviation increase in trade
uncertainty exposures is associated with an increase in robot density of about 1.29 log points
(5.251 x 0.246 =~ 1.29), which is about half of the standard deviation of the logarithm of the
robot density (2.73).

Our model also predicts that heightened trade uncertainty reduces offshoring, especially in
industries that are initially more exposed to offshoring (see the impulse response of imports
to trade uncertainty in Figure 3). This model prediction aligns well with the empirical
evidence. Table 3 (Column (2)) shows that, controlling for industry and time fixed effects as
well as industry tariffs, an increase in TPU is associated with a larger decline in offshoring
for industries that are initially more exposed to importing of intermediate goods.”’ The
estimated negative correlation between trade uncertainty and imports of intermediate goods
is also economically meaningful. A one-standard-deviation increase in trade uncertainty
exposures is associated with a reduction in the share of imported intermediate goods of
about 0.246 log points (—1.001 x 0.246 ~ —0.246), which is about one-third of the standard
deviation of the import share (0.246/0.683 ~ 0.36).%>

21We show in the Appendix that TPU has heterogeneous effects on imports from different origin countries.
In particular, Table E.1 shows that an increase in TPU is associated with a large and significant decline in
imports from China, partly reflecting the effects of sharp increases in bilateral trade tensions (beyond that
explained by tariffs) between the United States and China.

22The estimated coefficient on tariffs in the regression of import shares has the expected signs, but it is

statistically insignificant, reflecting the lack of within-industry variations in tariffs in our sample.



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 30

TABLE 4. Trade policy uncertainty, offshoring, and macroeconomic variables

(1) (2 3) (4)
log(Labor productivity) log(Employment) log(Value Added) log(Skill premium)

Initial import share x log(TPU) 0.326** -0.168 0.158 0.143**

(0.125) (0.201) (0.193) (0.0531)
log(1+Tariff) -1.088 8.739 7.651 0.983

(4.409) (16.85) (15.11) (1.757)
Industry fixed effect v v v v
Time fixed effect v v v v
Observations 264 264 264 308
R2 0.970 0.943 0.961 0.790
Years 1997:2018 1997:2018 1997:2018 1997:2018
No. of industries 12 12 12 14

Note: Columns (1), (2), (3), and (4) report the results of regressing labor productivity, employment, value-added, and skill
premium, respectively, on the interaction between TPU and initial exposure to offshoring. All regressions control for indus-
try and time fixed effects as well as industry-level tariffs imposed by the U.S.. Standard errors clustered at the industry level
are shown in parentheses. The levels of statistical significance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05,
and * for p < 0.1.

V.3. Trade uncertainty and other macroeconomic variables. Our model further pre-
dicts that heightened trade policy uncertainty should increase labor productivity, the skill
premium, and value-added, while reducing employment (see Figure 1). These model predic-
tions are broadly consistent with the data, as shown in Table 4.

The table shows the same regressions as in equation (48), where we replace the dependent
variable with each of the macroeconomic variables of interest. As shown in the table, an
increase in TPU is associated with a greater increase in labor productivity and the skill
premium in industries more exposed to offshoring in the initial period. These effects are
statistically significant and economically important. In particular, a one-standard-deviation
increase in trade uncertainty exposures is associated with an increase in labor productivity
of about 0.08 log points (0.326 x 0.246 =~ 0.08), which is about 16 percent of the standard
deviation of labor productivity (0.49). The same increase in trade uncertainty exposures is
associated with an increase in the skill premium of about 0.035 log points (0.143 x 0.246 ~
0.035), which is about 35 percent of the standard deviation of the skill premium (0.1).

The correlations between TPU with employment and value-added are imprecisely esti-
mated, reflecting the noise in the relatively small sample. However, the sign of the estimated

coefficients are in line with our theoretical predictions.

V.4. The automation channel. In our model, the effects of trade uncertainty on em-
ployment, labor productivity, output, and the skill premium work through the automation
channel. Specifically, as shown in Figure 2, the automation channel amplifies the responses

of labor productivity and the skill premium to a trade uncertainty shock. Trade uncertainty
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TABLE 5. Two-stage least squares: Empirical importance of automation

(1) (2) (3) (4)
log(Labor productivity) log(Employment) log(Value Added) log(Skill premium)

Predicted log(Robot density) 0.0608*** -0.0429* 0.0179 0.0389**

(0.0201) (0.0229) (0.0265) (0.0173)
log(1+Tariff) -17.75%* -6.568 -24.32%** 2.209

(7.690) (4.590) (8.989) (5.783)
Industry fixed effect v v v v
Time fixed effect v v v v
Observations 161 161 161 161
Years 2004:2018 2004:2018 2004:2018 2004:2018
No. of industries 12 12 12 12

Note: This table shows the second-stage regressions using the robot density predicted from the first-stage regression
shown in Column (1) of Table 3 as the regressor. All regressions control for industry and time fixed effects as well as
industry-time-specific tariffs that the U.S. imposes on its imports. Standard errors clustered at the industry level are
shown in parentheses. The levels of statistical significance are denoted by asterisks: *** for p < 0.01, ** for p < 0.05,
and * for p < 0.1.
also reduces low-gkilled employment in our baseline model, whereas it raises employment in
the counterfactual economy with a constant automation probability.

We now present some empirical evidence that is consistent with our model’s automation
channel. Trade uncertainty can influence macroeconomic variables through multiple chan-
nels. To highlight the automation channel, we follow the two-stage estimation procedure
of Bertrand and Mullainathan (2001). In the first stage, we regress robot density on the
interactions of TPU with initial exposure to offshoring, controlling for industry and time
fixed effects. In the second stage, we regress the variables of interest (labor productivity,
skill premium, etc.) on the predicted robot density from the first-stage regression, con-
trolling for industry tariffs. We interpret the estimated coefficient on the predicted robot
density in the second-stage regression (shown in Table 5) as reflecting the sensitivity of those
macroeconomic variables to trade policy uncertainty through the automation channel.

Table 5 shows that an increase in robot density driven by an increase in trade uncertainty
is associated with a statistically significant increase in both labor productivity and the skill
premium. An increase in robot density driven by trade uncertainty also reduces employment
significantly, although it does not have significant effects on value-added. Thus, the increase
in labor productivity primarily reflects the job-displacing effects of automation.

The responses of labor productivity, employment, and the skill premium to trade un-
certainty through the automation channel are economically important. A one-standard-
deviation increase in trade uncertainty exposures is associated with an increase in robot
density of 1.29 log points (as shown in the first-stage regression). Working through this
automation channel, trade uncertainty raises labor productivity by about 7.8 percent, which
is about 16 percent of its standard deviation (1.29 x 0.0608/0.488 ~ 0.16). Trade uncer-

tainty also raises the skill premium by about 5 percent, or half of its standard deviation
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(1.29 x 0.0389/0.101 =~ 0.5) and it reduces employment by about 5.5 percent, which is 9
percent of its standard deviation (1.29 x (—0.0429)/0.611 ~ —0.09). These results suggest
that the automation channel is empirically important for the transmission of trade policy

uncertainty.

VI. CONCLUSION

Trade uncertainty has risen in recent years, stemming from risks associated with tariffs,
geopolitical tensions, and climate change. This uncertainty has led to a reconsideration of
the costs and benefits of offshoring to lower production costs.

In this paper, we have examined how automation affects domestic labor markets when
trade uncertainty creates the incentive to reshore production processes from foreign sources
back to the domestic market. In our model, domestic firms can produce intermediate goods
using either a labor-only technology or an automation technology. Through an expenditure-
switching effect, heightened trade uncertainty raises domestic production but not necessarily
domestic employment because automation is a labor-substituting technology. Although au-
tomation raises productivity and thus labor demand, the job-displacing effect dominates
under our calibration. As such, trade uncertainty boosts automation investment while rais-
ing unemployment of unskilled workers. Increased automation also leads to a higher skill
premium.

Our model’s predictions are in line with industry-level empirical evidence. Our evidence
suggests that, in industries more exposed to offshoring, heightened trade uncertainty reduces
offshoring while stimulating automation relative to other industries. Consistent with our
model’s predictions, this translates into higher productivity and pushes up the skill premium
while lowering employment.

We focus on the positive aspects of the interactions between reshoring, automation, em-
ployment, and wages, taking government policy as given. Our model implies that, in line
with Leduc and Liu (2023), the threat of automation (e.g., stemming from trade uncer-
tainty) could weaken the bargaining power of unskilled workers. Such endogenous variations
in workers’ bargaining power can create a potential source of inefficiency that may call for
policy interventions. Studying policy implications in a theoretical framework like ours is a
promising avenue for future research, and it would complement the recent work of Grossman
et al. (2023), who examine optimal policy in a model with critical production input in the

face of global supply chain disruptions.



RESHORING, AUTOMATION, AND LABOR MARKETS UNDER TRADE UNCERTAINTY 33
APPENDIX A. SUMMARY OF EQUILIBRIUM CONDITIONS

A search equilibrium is a system of 30 equations for 30 variables summarized in the vector

[Tta Cta }/ta tha Ydt, tha Yata Ynta Xta At,Pdtant, Qtapat,pnta mg, Ut, Vg, (IZ‘, (IZJ, (1?, Nt, Ut, Mt

JEyJY T8 VS Wty Wy -

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

G
1 =EpB—=——r Al
tﬂ Ct+1 T't, ( )
(2) Matching function
my = pulv; e, (A.2)
(3) Job finding rate
my
v % A3
=2 (A3)
(4) Vacancy filling rate
my
p = — A4
t v ’ ( )
(5) Employment dynamics
Nt = (]. — 6)Nt_1 + My, (AS)
(6) Number of searching workers
Uy = 1-— (1 — J)Nt_], (A6)
(7) Unemployment
Ut - ]. - Nta (A?)
(8) Vacancy dynamics
Vy — (1 — qz}—l)(l — (I?)Ut—l + 5Nt_1 + 7, (AS)
(9) Automation dynamics
Ap = (1= p°) A+ i (1= g/ y)ve, (A.9)
(10) Employment value
e Ct v €
Jt- = pntZt — Wpt + ]EtBC—I [6Jt+l + (1 — J)Jt—}—l] s (AIO)
t+

(11) Vacancy value

C

Vi
J=—k+q Ji+(1— q;’)]EtﬁCtJr1 {(1 — g @I — /0 I/dG(V)} . (A.11)
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(12) Automation value

_ 1—va
5 C
e =pani () (=) + (1= BB T (A12)
A Ci
(13) Automation threshold
v =Je— Jo, (A.13)
(14) Robot adoption
v* TNa
- (%) (A14)
(15) Vacancy creation
J’U Te
= (%) : (A.15)
e
(16) Final goods output
101 L -1 175
Y= [O‘fz)ydt” +(1 - ad)ayf,to—l] ; (A.16)

(17) Domestic intermediate goods production

Qu = [af v + (1 a7 (A17)
(18) Domestic intermediate goods feasibility constraint.
Qat = Yar + 1 X4, (A.18)
(19) Intermediate goods produced by workers
Yo = Zi Ny, (A.19)
(20) Intermediate goods produced by robots
Yar = Zy(CA) 5 e, (A.20)
(21) Demand for domestically produced intermediate goods
agqYy G
Pat = ( Yo ) ; (A.21)
(22) Demand for imported intermediate goods
Pft = ]Etﬂcf; ((1 = 3;))/”] ) ' (A.22)

(23) Relative price of worker-produced domestic intermediate goods

1
Pnt anYdt i
e _ , A.23
Padt ( Yo ) ( )
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(24) Relative price of robot-produced domestic intermediate goods

1
[ﬂ _ ((1 — an)Ydt) 7
Pat Yot ’
(25) Foreign demand for exported intermediate goods

—0
TtPd *
Xt: ( tQtt> Xt&

(26) Balanced trade condition:

TePar Xt = pftyft,

(27) Import price:
Pt = 719y,

(28) Resource constraint

-

Vi Jy
Cy + kv + KoYaPatYar + (1 — @/ 1)Ve-1 / vdG(v) + / edF(e) =Y.
0 0

(29) Nash bargaining wage

b d v G bt
ﬁ)(‘]t( —JY) = wne — ¢ — xCy + Etﬂc —(1 - qp4,)(1—9)
— t+1

(30) Skilled wage

b (& v
1-b (i1 = i),

¢\ ™
Wt = (1 - ’Ya)PatZt (E) .
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(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)
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APPENDIX B. CAPITAL FLOWS

The baseline economy has a closed capital account, such that the interest rate is en-
dogenous. Now we consider an alternative framework where international capital flows are
allowed.

The small open economy can borrow from or lend to the rest of the world at the exogenous
world interest rate r; (in units of foreign consumption goods). Denote by B; the net capital
outflows (i.e., lending to the rest of the world). To capture the frictions in capital markets, we
assume that changes in capital flows are subject to an adjustment cost. In this environment,

the budget constraint for the representative household is given by

id
2
where Q; denotes the real exchange rate (units of domestic consumption goods per unit of

Ci+ OBy + Qt(B:_B*)2 =1 QB Fwa Ne+wsi S+d(1— Ny )+dy—T;, VE>0, (B.1)

foreign consumption goods), 1) > 0 is a parameter measuring the size of the bond adjustment
costs, and B* denotes the steady-state level of foreign lending.

The intertemporal Euler equation is given by

1+ y(Bf — B*) = EtDt,tHQé—:lr{. (B.2)

The Euler equation is a generalization of the standard uncovered interest parity (UIP) con-

dition. The presence of bond adjustment costs implies an upward-sloping supply curve of

foreign lending: the amount of foreign lending (relative to the steady-state level) increases
with the world interest rate r} adjusted for expected real exchange rate depreciation.

In equilibrium, the balance-of-payment condition implies that the current account balance

(i.e., net capital outflows) should be equal to the trade balance (i.e., net exports) plus net

interest payments received from abroad. This balance-of-payments condition is given by
Qu(Bf — By ) = ipaeXe — ppuYye + (17 — 1) By . (B.3)
The aggregate resource constraint is given by
Ci + 1ipar Xe — p ftth =Y} — KV — KaYaPatYat—
vi I "
(1—q; v / vdG(v) — / edF(e) — 5
0 0

where the left side gives the real GDP, which equals consumption plus net exports.

Qu(B; - B*), (B.4)

B.1. Summary of equilibrium conditions. A search equilibrium is a system of 30 equa-

tions for 30 variables summarized in the vector

[Bt, Ct, Y, th, Yat, Qat, Yat, Yot, Xt At,Pdt,Pft, Qt, Dats Prts M, Ug, Vg, q/q;,q¢, Ne, U, g,

JEyJY T8 VS Wty Wy -
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We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:
1 + w(B: - B*) - EtDt,t—H_

(2) Matching function
my = pudvo, ",

(3) Job finding rate

u __ my
t U_t,
(4) Vacancy filling rate
v o my
q; = 'U_t’

(5) Employment dynamics

Ny = (1= 90)Ny_y + my,
(6) Number of searching workers

up=1—(1—=08)N_q,
(7) Unemployment

Ui =1- Ny,
(8) Vacancy dynamics
v=01-q¢ )1 —qg")v_1+ 0N+ n,
(9) Automation dynamics
A= (1= p°)Aea + ¢ (1 — ¢/_1)ve,

(10) Employment value

C
Ji = PutZe — Wnt + Etﬂﬁ 01+ (1 =8) i ],

(11) Vacancy value

Cy

Vi
J=—Kk+q J; + (1 - qZ’)lEtﬂCtH {(1 - ‘I?+1)Jtv+1 + (I?+1Jza+1 - /0 VdG(V)} .

(12) Automation value

1_“/0

s C

B =maen () (=) + (= B T
t t+1

(13) Automation threshold

x __ 70 v
v =Jy = J¢,
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(B.10)

(B.11)

(B.12)

(B.13)

(B.16)

(B.17)
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(14) Robot adoption
(15) Vacancy creation

(16) Final goods output
1 61 1. 9-1 781
i b -2

(17) Domestic intermediate goods production

(24
1 o1 1 o1 o—1
)

Qar = [al;lYntT + (1 —an)7Y,”

(18) Domestic intermediate goods feasibility constraint.

Qat = Yar + 1 X,
(19) Intermediate goods produced by workers

Yot = ZeNy,
(20) Intermediate goods produced by robots
Yar = Zi(CAy) 25",
(21) Demand for domestically produced intermediate goods
agqY; G

Pdt = ( Yy, ) )

(22) Demand for imported intermediate goods

Cy (1 - ad)YtH G
=K
Prt tﬂCH—l ( Y5

(23) Relative price of worker-produced domestic intermediate goods

Pnt anYdt %
ﬁ B ( Ynt ) ,
(24) Relative price of robot-produced domestic intermediate goods
Pat _ ((1 - an)Ydt)%
Pat Yot ’
(25) Foreign demand for exported intermediate goods

—0
TtPdt *
X, = X/,

t ( Q > ‘
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(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)
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(26) Balance of payments condition:
Qt(Bt* - Bt*—l) = TiPatX¢ — Pftth + (Tf — 1)QtBt—1
(27) Import price:
Pt = Ty 9y,

(28) Resource constraint

Ci + 1par Xt — Y = Yo — KU — KaYaPat Yat—

vy JY -
(1— ¢/ )ves / vdG(v) — / edF(e) — %Qt(B;* — B)?
0 0

(29) Nash bargaining wage

b e v C u b e v
m(Jt‘ —JY) = wpt — ¢ — xCy + Etﬂ?;(l —qi)(1 - 5)m(=]t+1 = ),

(30) Skilled wage
Ya
Wy = (1 — Ya)ParZy (g) -
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(B.31)

(B.32)
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APPENDIX C. IMPORTED INTERMEDIATE INPUTS FOR AUTOMATED PRODUCTION

This section considers a generalization of the baseline model to include imported interme-

diate goods for automating firms.

C.1. Changes relative to the baseline model. Denote by z,; the imported input for an
automating firm. The production function for a firm that operates an automation technology
is given by

Yat = Zt (Cl_’”m;{{)% 31}_7"') (Cl)

where 1—7, denotes the share of skilled labor and ~; denotes the share of imported non-labor
(equipment) input.

The firm takes as given the relative price of imported inputs ps; and the real wage rate
wg of skilled workers and chooses z,; and s; to maximize the profit before paying the robot

operation cost k,. The value of automation is then given by
Jta = 71'21(1 — K)a) + (1 — pa)EtDt,t_f_lJf_*_l, (CQ)

where
Yat

a 1— v Ya 1_')’0 .
Ty = ?lflff Pat 2t (C 7[113at) St — Pftlat — WstSt = Ya(l — ’Yf)PazE,

where we have imposed the market clearing condition that Y, = A;yu:.

The aggregate output of all automating firms is given by
Yoo = 2, (CA) T X175, (C.3)

where X,; = Az, denotes the aggregate imports of intermediate input used by all automat-
ing firms.

The input demand functions can be written in terms of aggregate variables and they are

given by
Y,
Pt = ’Yf’YaPatX—tt (C.4)
Y,
Wet = (1_7a)pat?t- (CS)

The trade balance condition in the baseline model needs to be modified accordingly and
it is now given by

TP Xt = Pre(Yie + Xat)- (C.6)

Compared to the baseline model, we have an extra endogenous variable X,; and an extra
equation (C.4). There is an extra parameter 7 to be calibrated. We set it to vy = 0.15,

such that the home bias in the automation sector is the same as in the final goods sector.
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C.2. Summary of equilibrium conditions. A search equilibrium is a system of 31 equa-

tions for 31 variables summarized in the vector

[rta Cta th: thu Ydt) thy Yatu Yntv Xta At)pdtupftu Qtapat)pnta My, Ug, Vg, qzia Qf, q;la Nt) Ut)nta

Jtea Jz)a ']taa Vz{)wnta wst; Xat] .

We write the equations in the same order as in the dynare code.

(1) Household’s bond Euler equation:

Ci
1=E C.7
tﬁ Ct.*.] Tty ( )
(2) Matching function
my = pufvl e, (C.8)
(3) Job finding rate
my
p=— C.9
4 e’ (C.9)
(4) Vacancy filling rate
My
P = — C.10
Qt v ’ ( )
(5) Employment dynamics
Nt = (1 — 6)Nt_1 + my, (Cll)
(6) Number of searching workers
Uy = 1— (1 - 6)Nt_1, (C12)
(7) Unemployment
Ut = ]. - Nta (013)
(8) Vacancy dynamics
v=01-q¢ )1 —qg")v_1+ 0N+ n, (C.14)
(9) Automation dynamics
Ap= (1= p") Ay + (1 — g7 1)ve, (C.15)
(10) Employment value
e Ct v e r
JP = Pl — Wy + IEt[iC— (6071 + (1—=0)J,] (C.16)
t+1

(11) Vacancy value

J=—k+q/Jf + (1 —q)EpB

Vi
Goa- i+ttt - [ vicw)} . ©an
t+1 0
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(12) Automation value

Yo 0 Ci .
JE =7l = vp)pat—(1 = Ka) + (1 — p°)EeBm— T2 (C.18)
Ay Ci1

(13) Automation threshold
v =Ji = J, (C.19)

V* Ta
q; = (;t) : (C.20)

J'U Tle
= (f) : (C.21)

(14) Robot adoption

(15) Vacancy creation

(16) Final goods output

1 0-1 1 91761
Vo= [adVe” + (-0t 7" (C.22)
(17) Domestic intermediate goods production
1 o=l L o=l 500
Que = [0k Vo + (1= ) Ve |7 (C.23)
(18) Domestic intermediate goods feasibility constraint.
Qar = Yar + 1 X, (C.24)
(19) Intermediate goods produced by workers
Ynt - ZtNt, (025)
(20) Intermediate goods produced by robots
Yar = Z: (AT X051, (C.26)
21) Demand for domestically produced intermediate goods
yp g
PAY
Par = ( ;,ut) , (C.27)
(22) Demand for imported intermediate goods
1
Cr ((1—aq)Yis1)?
=E C.28
bt tﬂct—i-l ( Y ( )

(23) Relative price of worker-produced domestic intermediate goods

1
Pnt anYdt i
ot , C.29
Padt ( Yo ) ( )
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(24) Relative price of robot-produced domestic intermediate goods

1
[ﬂ _ ((1 — an)Ydt) 7
Pat Yot ’
(25) Foreign demand for exported intermediate goods

—0
TtPd *
Xt: ( tQtt> Xt&

(26) Balanced trade condition:
TePar Xt = Pre(Yie + Xat)-

(27) Import price:
Pt = 719y,

(28) Resource constraint

*

Vy Jy
Cy + kv + KoYaPatYar + (1 — ¢ 1)Vt / vdG(v) + / edF(e) =Y.
0 0

(29) Nash bargaining wage

b c v C' u b (& v
Tt =) = wn =& = xCi + Etﬂi(l = G11)(1 = 0) 37— (i — i),
(30) Skilled wage

Y.
Wt = (1 - 7a)pat?t

(31) Demand for imported input by automating firms
o Ya
Pyt = ’)’f’)’apatX

at
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(C.30)

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)
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FIGURE D.1. Impulse responses to a trade uncertainty shock: No delivery

lags.
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APPENDIX D. ADDITIONAL MODEL RESULTS

D.1. No delivery lags. In the baseline model, we assume that importing intermediate
inputs for final goods production requires a delivery lag. To show that our main results do
not depend on this assumption, we consider a version of the model without delivery lags.

The final goods production function (15) is replaced by

0—1 9—1] 71

Vo= [agYa” +(1— a0y, (D.1)

The demand for imported intermediate goods in Eq. (22) is replaced by

Prt = (u_y—;)id)yt)% . (D.2)

The rest of the equilibrium conditions remain the same.

We use the same calibrated parameters to simulate the impulse responses to a trade
uncertainty shock. Figure D.1 shows that the impulse response are qualitatively similar to
those in the baseline model shown in Figure 1., although the magnitude of the responses are
slightly different. For example, compared to the baseline model, trade uncertainty in the
model without delivery lags leads to a smaller expenditure-switching effect. Thus, imports

decline less, unemployment rises more, and robot density increases less.
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FI1GURE D.2. Impulse responses to a first-moment trade cost shock.
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D.2. Other shocks. The effects of trade uncertainty are different from those of a first-
moment shock to trade costs. Figure D.2 shows the impulse responses to a first-moment
trade cost shock. When the trade cost rises, imports fall persistently. The increase in trade
costs worsens the terms of trade, raising the cost of final goods production and resulting
in lower automation and higher unemployment. The decline in automation reduces labor
productivity, further exacerbating the recessionary effects of the shock, leading to persistent
drops in consumption. The decline in automation also reduces the demand for skilled workers,
resulting in a fall in the skill premium.

Figure D.3 shows that, unlike trade uncertainty, TFP uncertainty encourages offshoring,
resulting in an increase in imports. TFP uncertainty has a recessionary effect, raising un-
employment and reducing consumption. Unlike trade uncertainty that boosts automation,
TFP uncertainty lowers to persistent declines in robot density after the initial increases.
Accordingly, labor productivity declines persistently following initial increases.

Figure D.4 shows the impulse responses to a first-moment shock to TFP. An increase
in TFP lowers unemployment and stimulates automation investment, leading to persistent
increases in productivity and aggregate consumption. The rise in automation also leads to a
higher skill premium. The increase in productivity leads to real exchange rate depreciation

(not shown in the figure), resulting in lower imports.
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FiGUure D.3. Impulse responses to a TFP uncertainty shock.
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F1GURE D.4. Impulse responses to a first-moment TFP shock.
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APPENDIX E. ADDITIONAL EMPIRICAL RESULTS

Table E.1 shows that TPU has a greater negative effects on the import shares of industries
that are more exposed to offshoring in the three largest trading partners of the United States:
Mexico, Canada, and China. The effects for China are statistically significant at the 99
percent level, possibly reflecting the sharp increases in bilateral trade tensions between the
United States and China since 2016.

TABLE E.1. Trade policy uncertainty and import shares from different origins

(1) (2) (3) (4)
log(Mexico) log(Canada) log(China) log(Vietnam)

Initial Import Share x log(TPU) -1.494 -0.0613 -1.583*** -1.069

(1.128) (0.247) (0.301) (2.116)
log(1+Tariff) 4.889 -13.90 -2.597 42.88

(5.709) (8.236) (38.50) (66.50)
Industry fixed effect v v v v
Time fixed effect v v v v
Observations 308 308 308 299
R? 0.973 0.975 0.887 0.835
Years 1997:2018 1997:2018 1997:2018 1997:2018
No. of industries 14 14 14 14

Note: Each column reports the results of regressing the import share from a particular origin
on the interaction between TPU and initial exposure to offshoring. China import share, for
example, measures U.S. intermediate imports from China in a particular industry divided by
gross output in that industry. All regressions control for industry and time fixed effects as well
as industry-time-specific tariffs that the U.S. imposes on its imports. Standard errors clustered
at the industry level are shown in parentheses. The levels of statistical significance are denoted
by asterisks: *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.
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