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Abstract

How does the spatial distribution of income in cities vary with income per capita?

We address this question using new granular evidence from 127 cities in 26 developed

and less-developed countries. We document that household income levels decline

significantly more rapidly with distance to city centers in less-developed countries.

Urban neighborhoods with natural amenities—particularly hills and rivers—are poorer

than average in less-developed nations but richer than average in developed ones. We

evaluate potential explanations for these patterns using a quantitative spatial model

disciplined by commuting gravity equations that we estimate for each city. We find

that the spatial income patterns are largely explained by nonhomothetic preferences over

amenities, coupled with higher commuting costs and spatially more concentrated jobs

in less developed cities. Our model predicts unequal welfare gains across households as

citywide income increases.
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1. Introduction

More than half of the world’s population now lives in cities. The majority of these urbanites

– totaling an estimated 3.7 billion people – reside in less developed nations, in crowded

metropolises like Dhaka or Dar es Salaam (United Nations, 2022). For some people, cities

serve as the pathway out of poverty, providing reliable access to earning opportunities (Busso,

Carrillo, and Chauvin, 2023). Yet many others are stuck in slums, where jobs are few and

far away (Marx, Stoker, and Suri, 2013). A growing literature on the urban economics of

low- and middle-income countries has sought to better understand how cities can foster job

opportunities for wide swaths of the urban population and not just a selected few. However,

this research has typically focused on individual cities in the developing world, studying

the distributional implications of specific policy changes (see Bryan, Glaeser, and Tsivanidis,

2020; Bryan, Frye, and Morten, 2023, and the references therein). The literature still lacks a

more comprehensive picture on how cities vary across the development spectrum and how

economic development shapes the lives of the urban poor relative to the urban rich.

This paper contributes by building and analyzing a new dataset with granular information

covering 145,000 neighborhoods in 127 cities of all levels of income per capita. These data,

which we describe in detail below, come from a mix of commuting surveys and fine-grained

census data that allow us to document how residential locations, commuting patterns, and job

access vary by household income within cities at different levels of development. The data

cover a number of the world’s largest Asian and African cities, as well as middle-income mega

cities like Lima and Sao Paolo, and prominent examples from the developed world, like Los

Angeles, London, Paris, and Tokyo. Our broad goal is to use these data to understand how

residential and commuting decisions of richer and poorer households in cities differ across

the world income distribution.

We begin by documenting several prominent ways in which the income distribution within

cities varies between developed and developing countries. First, we show that in less

developed cities, average residential income decreases steadily with distance to city centers. In

developed-world cities, in contrast, income-distance gradients are generally flat or increasing.

Our focus on distance to the city center is motivated by the long tradition in urban economics

positing that more central locations have a higher concentration of jobs (e.g. Alonso, 1964).

In simple terms, our first fact says that in less developed economies, poorer city dwellers are

located farther from jobs on average than richer ones.

The second fact we document relates to how average incomes within urban areas vary with
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the presence of natural amenities. We focus on proximity to hills and waterways, which are

natural features of the landscape that are typically thought to improve the residential value of a

neighborhood. Our data show that in less developed cities, average incomes are significantly

lower than average in hilly neighborhoods or those in close proximity to waterways. The

opposite is true in developed cities, where average incomes are substantially higher in both

hilly areas and those near water. Thus, to the extent that richer households value residential

amenities more than poorer ones, less developed cities appear to get desired location outcomes

exactly backward, with poorer people placed systematically further from jobs but closer to

amenities that they likely value less than their richer counterparts.

What explains these starkly different patterns between cities in less-developed and developed

countries? We conduct a series of robustness exercises to provide evidence against a number

of appealing explanations related to sample, measurement, and potentially omitted variables.

We find that our patterns hold, for example, even when excluding the United States, in which

a majority of cities have positive income-distance gradients, or Brazil, with steeply downward

sloping income-distance gradients. The patterns also hold when restricting attention only to

cities of similar sizes in terms of population or square kilometers, or when capping the outer

boundaries of all cities at cutoffs like 15km or 20km. Our facts also cut across the old-world,

new-world divide (Henderson, Squires, Storeygard, and Weil, 2018), and are not driven by an

“east-side story” (Heblich, Trew, and Zylberberg, 2021). Having ruled out these alternative

explanations, we turn to theoretical mechanisms that could explain the patterns we observe.

Our analysis is based on a quantitative spatial model, which has become the gold standard

for understanding spatial patterns of economic activity at a fine level of disaggregation

(Redding and Rossi-Hansberg, 2017; Redding, 2023). We incorporate five basic potential

explanations into the model. The first is non-homothetic preference over amenities, such

that richer households care more about neighborhood amenities like those available in leafy

suburbs far from the city center, or the views from hilly areas or of water. The second is

the comparatively worse transportation infrastructure, and slower commuting speeds, of less

developed countries (Akbar, Couture, Duranton, and Storeygard, 2023a,b; Tsivanidis, 2023).

The third is more centralized jobs in developing countries (Baum-Snow, 2020; Davis and

Dingel, 2020), which we allow as a possibility in the model by having a steeper productivity

decline in distance from city center. The fourth is heterogeneity in commuting costs across

income groups (LeRoy and Sonstelie, 1983; Glaeser, Kahn, and Rappaport, 2008; Su, 2022), with

greater heterogeneity in less developed countries, where car ownership is more concentrated

among richer households. Finally, the model allows for the possibility that amenity gradients
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decline faster with distance from city center, or are relatively worse in hills and rivers, in

less developed cities. This can interact with non-homothetic preferences in ways that cause

higher-income households to prefer more central locations in developed countries and avoid

natural amenities in less developed ones.

In our model, ex-ante heterogeneous households with different earning potential decide

residential locations based on job access, housing costs, and neighborhood amenities. We posit

non-homothetic preferences over housing and amenities, using a tractable and parsimonious

formulation in which neighborhood amenities can be potentially more or less desired relative

to consumption and housing as household income rises. Our preferences imply that in

equilibrium, the high housing costs of “attractive” neighborhoods push out poorer residents.

What constitutes an “attractive” neighborhood fundamentally depends on the overall income

levels of residents. In cities with low average incomes, the primary consideration of

households is access to jobs. As income rises, residents place a higher value on neighborhood

amenities. Therefore, which neighborhoods are more attractive changes as the city’s overall

income level rises.

To quantify the relevance of these channels in explaining the gap in spatial income

distributions between developed and less developed cities, we begin by measuring the

commuting costs city by city through estimation of our model’s commuting gravity equation,

which predicts that commuting flows depend on bilateral commuting costs and destinations’

wages. Our data allow for these calculations in a large number of U.S. cities, using the

LODES data, Tokyo, and 26 cities in the developing world. These surveys come from the

Japan International Cooperation Agency (JICA), which commissioned them as part of urban

transportation projects in partner countries. The surveys report residential and workplace

locations for a comprehensive sample of on average 70,000 urban residents, along with

demographic, employment, and income characteristics.

Our estimates point to significant heterogeneity in commuting costs across cities at different

development levels. While the semi-elasticity of commuting with road distances (km) is only

0.07 in US cities and 0.11 in Tokyo, those in less developed cities are substantially higher,

ranging from 0.10 to 0.30. These differences lead to disproportionately lower commuting

access in suburban areas and those with natural amenities in less developed cities compared

to developed cities. Importantly, when estimating these commuting costs by income groups

within each city, we find that the heterogeneity in commuting costs is an order of magnitude

larger across cities than within cities across income groups, suggesting a modest quantitative

explanatory power of commuting cost heterogeneity by household income level within a city.
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The commuting gravity equations also help summarize the rich information in our data on

how concentrated job opportunities are in city centers, relative to more suburban locations,

and how that varies with development. Similarly, they are also informative about the relative

prevalence of jobs in areas with natural amenities. In particular, the destination fixed effects

from our gravity regressions capture the extent to which each neighborhood in each city

is a commuting destination, and hence an area with job opportunities. When comparing

suburban areas to city centers, we show that less developed cities have job opportunities that

aremodestlymore concentrated in city centers relative to cities in developed nations. In nearly

all cities in our database, areas with natural amenities have relatively low concentrations of

job opportunities.

We use the gravity regressions and various other moments of the data to estimate the full

equilibrium of our model and quantify how much each potential explanation can account for

the observed patterns of spatial income distribution. To do so, we first calibrate our model to

match data from U.S. cities. We then simulate the counterfactual effects of changing each of

the following to the level of a less developed city: (1) overall city income (productivity), which

is relevant because of the model’s non-homothetic preferences for amenities; (2) commuting

costs, and (3) the distribution of productivity across space. We also simulate the effects of

allowing for heterogeneity in commuting cost by income, but relegate this to an extension

section, since our empirical analysis suggests it explains very little. We leave differential

amenity gradients by development as an unexplained category due to lack of direct data on

amenities and their valuations by neighborhood and by city.

We find that when lowering the overall city income, the residential income premiums in

suburban areas and those with natural amenities decline substantially and approach zero.

The effect on the suburban premium is intuitive, as poorer households care more about job

access, and jobs are less common in suburban areas than central parts of the city. Our data

show that areas with natural amenities are also places with relatively poor job access, which

means that they also become less attractive residential locations when overall income levels

fall. Increasing commuting costs and changing the concentration further reduce the income

premiums and turn them negative, though these effects are smaller in magnitude than those of

lowering income alone. Together, these three forces account for three-quarters of the observed

gaps in income premiums in suburban, hilly, and river neighborhoods between the U.S. cities

and less-developed cities.

While lower incomes, higher commuting costs, and more spatially concentrated jobs explain

much of the observed gap in spatial income distributions between developed and less
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developed cities, some residual variation remains. These unexplained patterns likely reflect

differences in amenity gradients within cities by development status. Central cities could have

greater police protection than neighborhoods on the outskirts of town, or better provision

of residential infrastructure like plumbing or electricity. The same could be true of hilly

areas, where infrastructure is more expensive to provide (McCulloch, Schaelling, Turner,

and Kitagawa, 2025), and rivers in less developed cities are almost surely dirtier than their

counterparts in richer countries. We leave the task of measuring and quantifying the

importance of the channels to future work.

We conclude by examining how these patterns of spatial income distribution shape the

unequal welfare gains associated with overall city development. As city income rises,

high-earning-potential households tend to relocate from central urban areas to suburban

neighborhoods with better amenities. This relocation eases housing demand pressures in

city centers, moderating rent increases and making these areas more affordable. As a result,

residents in urban core areas experience relatively higher welfare gains than those outside.

Such heterogeneity does not emerge if we shut down nonhomothetic preferences, because

the uniform increase in labor productivity does not induce any changes in income sorting.

Hence, understanding how spatial income distributions vary with income levels and how

nonhomothetic preferences shape residential location choices is essential for understanding

the welfare implications of urban development across different household types.

Our paper contributes to a growing body of work studying how cities in developed

and developing countries systematically differ. Most cross-country comparisons of urban

economic activity either rely on city-level aggregate indicators (Chauvin, Glaeser, Ma, and

Tobio, 2017; Jedwab, Loungani, and Yezer, 2021; Lebrand and Kleineberg, 2024), or examine

aggregate spatial statistics such as population density gradients (Henderson and Turner, 2020),

building density gradients (Ahlfeldt, Baum-Snow, and Jedwab, 2023; Rosenthal-Kay, 2024), or

average road speeds (Akbar et al., 2023a,b). Much has been learned as well from detailed

analyses of individual cities in developing countries.
1
Our study is closely related to those

focused on cross-city comparisons of internal city structure in developing countries, such as

Harari (2024) and Adukia, Asher, Jha, Novosad, and Tan (2022), who study income segregation

1
See, for example, Tsivanidis (2023), Zárate (2024), Balboni, Bryan, Morten, and Siddiqi (2020), and Khanna,

Nyshadham, Ramos-Menchelli, Tamayo, and Tiew (2023) for transportation infrastructure in Bogota, Mexico

City, Dar es Salaam, and Medellin, respectively; Michaels, Nigmatulina, Rauch, Regan, Baruah, and Dahlstrand

(2021) for residential infrastructure inDar es Salaam; Franklin, Imbert, Abebe, andMejia-Mantilla (2024) for urban

public works program in Dar es Salaam, respectively; and Harari and Wong (2021) and Gechter and Tsivanidis

(2023) for slum upgrading interventions in Jakarta and Mumbai, respectively. Coeurdacier, Oswald, and Teignier

(2022) study the structural transformation of land use in French cities since 1870.
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and public access and public goods provision within Brazil and India, and Dingel, Miscio,

and Davis (2021) who use data from Brazil and China to show that residents living closer to

city centers are more skilled on average. To our knowledge, no prior paper has documented

how the spatial distribution of income and commuting patterns vary across cities over the

development spectrum.

We also contribute to the empirical and theoretical literature on the spatial distribution of

income within cities that has largely focused on developed countries, and in particular the

United States. This work has reconciled income sorting patterns within U.S. cities using non-

homotheticities in demand for housing or land (Alonso, 1964; Becker, 1965; Margo, 1992;

Hoelzlein, 2023; Finlay and Williams, 2022; Couture, Gaubert, Handbury, and Hurst, 2024),

transportation infrastructure (Glaeser et al., 2008; Su, 2022), and natural amenities (Lee and

Lin, 2018). Some authors study differences between USA and other developed countries and

seek the explanations in nonhomotheticity in amenities (Brueckner, Thisse, and Zenou (1999)

and Almagro and Domínguez-Iino (2024) for European cities and Tabuchi (2019) for Tokyo).

2. Data

This section outlines howwe integrate diverse data sources to build a comprehensive database

on household income, neighborhood characteristics, and commuting flows for 127 cities across

26 countries.

2.1. Travel Surveys from Developing Countries

Our primary data source for developing countries is a collection of microdata from 30

household travel surveys conducted in 26 cities across 21 countries. These surveys, which

are central to urban and transportation planning, typically gather detailed information on

residential and workplace locations, demographic characteristics (e.g., age, household size),

income, employment status, and daily travel activities, including trip timing, geolocation,

purpose, and transportation mode. In developed countries, such surveys are usually carried

out at regular intervals in major metropolitan areas. In contrast, in developing countries, they

are often conducted by city governments on an ad hoc basis – typically in preparation for

major infrastructure projects or city master plans – and often with support from international

aid agencies.

We compile household-level travel surveys conducted or supervised by the Japan International

Cooperation Agency (JICA) as part of efforts to design urban transportation improvements.
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The resulting microdata covers 26 cities in 21 developing countries. Panel (a) of Table 1

provides a list of the cities included in this dataset. The coverage spans multiple continents,

including three cities in Latin America (Lima, Managua, and Belém), four cities in South Asia

(e.g., Dhaka and Karachi), 11 in East Asia (e.g., Hanoi and Vientiane), one in Eastern Europe

(Bucharest), two in the Middle East (Cairo and Damascus), and five in Africa (e.g., Nairobi and

Maputo). In four cities (Dhaka, Ho Chi Minh City, Nairobi, and Phnom Penh), we have access

to multiple survey waves conducted in different years.

The surveys were conducted between 1996 and 2018 and vary in terms of questionnaire

design, sampling strategy, and local implementation. Sample sizes range from 5,000 to 300,000

respondents, with an average of approximately 70,000 per city.

Our travel surveys are particularly well suited to our analysis due to their fine spatial

resolution. Each survey divides the city into a large number of neighborhoods, or “survey

zones,” and records respondents’ residential and workplace locations, as well as the origins

and destinations of daily trips, at this neighborhood level. In many cases, the survey zones

are only available in the form of non-georeferenced maps (i.e., image files). To address this,

we manually geo-coded the survey maps, as illustrated in Appendix Figure A.3. On average,

there are 193 survey zones per city, with each zone covering approximately 8 km
2
.

All surveys include household-level income information. In most cities, respondents report

their household’s total income, either as a continuous value or within finely disaggregated

bins. In three cities (Bucharest, Dhaka, and Managua), the surveys do not directly ask

household income, but instead collect individual income for each household member, which

we aggregate to construct household-level income..

Spatially disaggregated income data is rarely available for cities in developing countries. As

such, our dataset represents the first comprehensive effort to measure neighborhood-level

income across a broad set of cities in developing countries. Nevertheless, concerns may arise

regarding data accuracy, particularly since the travel surveys are based on surveys rather than

administrative data based on complete household enumeration. To assess the validity of our

income measures, we examine the case of Belém, Brazil, the only city in our sample for which

neighborhood-level income from a national census is publicly available (see Section 2.2). In

Appendix A.2, we show that the travel survey data closely aligns with the census data in both

the relative ranking of neighborhoods by income and the gradient of income with respect to

distance from the city center.

We also extract households’ commuting information from these travel surveys. For each
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Table 1: List of Cities Covered in Our Analysis

L. America Asia, E. Europe Africa, M.

East

Number of City-Years 3 19 8

Number of Cities 3 16 7

Number of Countries 3 12 6

Avg Number of Respondents 70469 69774 42873

Avg Number of Neighborhoods 190 206 166

List of Cities Belem (00), Lima

(03), Managua (98)

Bucharest (98), Cebu (14),

Chengdu (00), Colombo (13),

Da Nang (08), Dhaka (09),

Dhaka (14), Hanoi (05), Ho

Chi Minh (03), Ho Chi Minh

(14), Jakarta (18), Karachi

(11), Kuala Lumpur (99),

Lahore (10), Manila (96),

Phnom Penh (00), Phnom

Penh (12), Viang Chan (07),

Yangon (13)

Abidjan (13),

Cairo (01),

Damascus

(98), Dar es

Salaam (07),

Kinshasa (18),

Mombasa (15),

Nairobi (05),

Nairobi (13)

(a) Less developed cities surveyed by JICA, by continent

USA W. Europe,

Japan

L. America Asia, E. Europe Africa, M. East

Number of Cities 48 24 32 16 7

Number of City-Years 48 24 33 19 8

Number of Countries 1 4 3 12 6

Total Number of

Neighborhoods

27655 18027 94447 3930 1334

List of Countries United

States

France,

Japan, Spain,

United

Kingdom

Brazil,

Nicaragua,

Peru

Bangladesh,

Cambodia,

China,

Indonesia, Lao

People’s DR,

Malaysia,

Myanmar,

Pakistan,

Philippines,

Romania, Sri

Lanka, Viet

Nam

Côte d’Ivoire,

D.R. of the

Congo, Egypt,

Kenya, Syrian

Arab Republic,

U.R. of

Tanzania:

Mainland

(b) All cities in neighborhood-level income dataset, by continent

Note: List of cities included in our data set. See Appendix Table A.1, A.2, A.3 for the characteristics of each
city in our survey data, and Figure A.1 for a map.

respondent, the survey typically records whether the individual is employed (either as a wage

worker or self-employed) and, if so, their workplace location, coded at the survey zone level.
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In seven cities, the surveys do not directly ask about work locations. In those cases, we rely on

the travel activity module, which documents the time, location, and purpose of each trip. We

infer workplace locations by identifying trips made for the purpose of going to work. Using

these data, we construct origin-destination commuting flows between survey zones within

each city.

2.2. Additional Data on Income, Commuting Flows, and Rents

Residential Neighborhood Income from USA, France, Spain, UK, Brazil We collect

average residential neighborhood income from census and tax data for four developed

countries (USA, Spain, France, UK) and a less-developed country (Brazil). Information from the

United States stems from the 2008-2012 aggregated American Community Survey at the level

of census tract. For French cities, income is derived from tax returns at the level of “IRIS”, with

an average size one quarter that of a census block.
2
In the UK, average income from the Office

of Tax Statistics is available at the “Small Area” level, which is slightly larger than a census

block. In Spain, average neighborhood income derived from tax information is available at the

Sección-level. In Brazil, average neighborhood income from the 2010 census is available at the

Setores-level, with an average size one-tenth that of a US census block.

Travel Survey from Tokyo, Japan For Tokyo, Japan, we have access to the microdata of

2018 Tokyo Person Trip Survey (Tokyo Metropolitan Area Transportation Planning Council,

2018). The data shares a similar structure as the JICA surveys discussed above – an individual-

level survey reporting household income, demographic information, discrete neighborhoods,

home and work location, and trips throughout the day.

Commuting Flows in USA We obtain commuting flow information in the USA from

the Longitudinal Employer-Household Dynamics Origin Destination Employment Statistics

(LODES) dataset from the year 2015. The LODES data reports the aggregate number of

workers living and working in any given pair of census tracks, as well as living-working flows

disaggregated by a coarse measure of income: workers earning $0-$30k, $60-$90k, and $90+.

Housing Rents in USA We obtain median housing rents for U.S. cities from the 2008-2012

aggregated American Community Survey (ACS) at the level of census tract. We use this

information for calibrating our quantitative model in Section 6.

2
We use median neighborhood income, instead of mean income, for France, as the latter is not publicly

available.
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2.3. Additional Geographic Data and Definitions

City Boundaries To create a consistent definition of city boundaries for all cities and exclude

neighborhoods that lie in rural areas, we use theWorld Settlement Footprint’s “Built Up Areas”

data set (Florczyk et al., 2019). This data set uses satellite images to categorize land use at

a fine-grained spatial level and defines cities as large contiguous swaths of land which are

“built-up,” i.e. full of buildings, roads, and pavement, in contrast to agriculture or forest cover.

Each city is defined by a geographically contiguous built-up area. This definition of city puts

together different municipalities within a broad metropolitan area; for example, New York

extends New Brunswick to the south and White Plains to the north, and London extends out

to Heathrow Airport to the west. In our analysis, we include all cities with populations above

400,000 people.

City Centers and Suburban Areas We define city centers using coordinates from

OpenStreetMap (OSM), an open-source collaborative mapping platform of the world.

Contributors typically assign city center locations based on prominent landmarks such as city

halls or central plazas.
3
Although this approach is heuristic, it alignswell with intuitive notions

of a city center. As shown in Figure 1, these locations coincide with the highest net commuter

densities (in-commuters minus out-commuters per unit area) in cities like Los Angeles and

Lima. To address potential measurement error of the exact city center locations or the presence

of polycentric structures, we also analyze broader patterns between suburban areas and others,

defining suburban areas as the neighborhoods comprising 50 percent of the population living

farthest from the city center.

Bilateral Travel Distance To calculate the distance between pairs of neighborhoods in our

pairwise commuting flow data set, we use the Open Source Routing Machine, an open-source

algorithm for finding the shortest path between two locations along OSM’s road network

(Luxen and Vetter, 2011).

Hills We classify a neighborhood as hilly if its average slope exceeds 5 degrees, based on

30m×30m elevation data from Amazon Web Services Terrain Tiles (Larrick, Tian, Rogers,

Acosta, and Shen, 2020).
4

Rivers We identify river proximity using the HydroSHEDS dataset (Lehner and Grill, 2013),

whichmaps global water flows based on topography and rainfall. Neighborhoods are classified

3
For example, Cebu City’s center is defined at the city hall, while London’s is at Trafalgar Square.

4
Slope is calculated as the average change in elevation across four adjacent grid cells (Hijmans, 2024). While

Lee and Lin (2018) uses a 15-degree threshold, we adopt a lower cutoff to capture a broader set of moderately

sloped areas, reflecting the generally less steep terrain in many cities worldwide.
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Figure 1: Commuting and City Centers in Los Angeles and Lima

(a) Net commuter density (Los Angeles) (b) Net commuter density (Lima)

Note: The figures show the density of net commuters (total in-commutes minus out-commutes) for each
neighborhood in Los Angeles and Lima. Darker blue color indicates a higher net-commute density. Yellow
color (the bottom category) indicates negative values for net-commute. The circle indicates 2 kilometers
from the city center.

as near a river if any part lies within 100 meters of a riverbank, considering only rivers with

an average flow exceeding 1.3 cubic meters per second.

Development Status We define developed cities as those in the USA, Spain, France, UK, and

Japan. We define less-developed cities as those surveyed by JICA and Brazil. The poorest

country in our data is Kinshasa, Democratic Republic of the Congo, with a GDP per capita of

1,020 USD.

Neighborhood Population We construct a standardizedmeasure of population size for each

neighborhood using the 2015 LandScan population distributions (Bright, Rose, and Urban,

2016) for all cities that are based on travel surveys. Population estimates from the US, UK,

Spain, France, and Brazil are derived from the underlying administrative data source directly.

2.4. Final Data Sets

Our final neighborhood-level income dataset includes 145,000 neighborhoods across 127 cities

in 26 countries. 72 are classified as "developed" and 55 are classified as "less-developed". For

each neighborhood, we observe average household income, distance to the city center, and its
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geographic features. Panel (b) of Table 1 lists all the cities in our analysis. Appendix Figure A.1

shows a map of all cities in our data across the world.

Our final pairwise commuting flow dataset includes all 30 JICA cities, all 48 cities in the USA,

and Tokyo. For each home-work pair, we observe the proportion of the working population

living and working in that pair. We also disaggregate pairwise commuting flows by coarse

measures of income.

3. Spatial Distribution of Income

This section documents the distinctive patterns that characterize the spatial distribution of

income in developed versus less-developed cities.

3.1. A First Look from Examples: Los Angeles and Lima

Before turning to the full statistical analysis, we beginwith an illustrative comparison between

two cities: Los Angeles, USA, a developed city, and Lima, Peru, a less-developed city.

Figure 2 illustrates income distribution and geographic features for Los Angeles and Lima.

Panels (a) and (b) show the average residential income by neighborhood, measured as each

neighborhood’s percentile rank within the city, with lighter colors corresponding to higher

income levels. The red dot in each panel marks the city center. Panels (c) and (d) highlight

neighborhoods that are hilly or located near major waterways.

Focusing first on Panels (a) and (b), the two cities display starkly contrasting relationships

between average income and distance to the city center. In Los Angeles, lower-income

neighborhoods surround the city center, with the exception of a small cluster of higher-

income blocks at the core. Moving outward, particularly toward the north (Pasadena) and

west (Santa Monica), average income tends to rise. In contrast, Lima exhibits the opposite

pattern: neighborhoods near the city center are generally wealthier, and income declines with

distance from the center.

Panels (c) and (d) reveal similarly contrasting patterns between income and hilly areas. In Los

Angeles, hilly areas such as Laurel Canyon and Beverly Hills – located northwest of the city

center – are associated with high incomes. In Lima, by contrast, Los Olivos, a middle-income

area nestled in a valley northwest of the center, is surrounded by poorer hillside neighborhoods

on both sides.

In what follows, we show that these patterns reflect broader, systematic differences in
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Figure 2: Residential Income and Hilly Areas in Los Angeles and Lima

(a) Residential Income (Los Angeles) (b) Residential Income (Lima)

(c) Hills and Rivers (Los Angeles) (d) Hills and Rivers (Lima)

Note: Panels (a) and (b) show the average residential income by neighborhood, measured as each
neighborhood’s percentile rank within the city, with lighter colors corresponding to higher income levels.
Figures (c) and (d) show a binary measure for hilliness (blue is hilly) along with the path of waterways in
black. The red dot in each panel marks the city center. Neighborhoods further than 30km from the city
center are omitted.

spatial income distribution between developed and less-developed cities, extending beyond

the specific cases of Los Angeles and Lima.
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3.2. Residential Income and Distance to City Center

We first focus on the residential income and distance to the city center. Figure 3 shows

the relationship between distance from the city center and average neighborhood residential

income percentiles for developed cities (Panel a) and less-developed cities (Panel b) up to 25

kilometers from the city center. Each light line represents a single city, while averages are

highlighted in bold.

Figure 3: Residential Income and Distance from City Center

(a) Developed Cities (b) Less Developed Cities

Note: The figures show the relationships between distance from the city center and average neighborhood
residential income percentile for developed cities (Panel a) and less-developed cities (Panel b) up to 25
kilometers from the city center. Each light line represents a single city, and averages are highlighted in
bold. Appendix Figure B.1 shows the same figures for each continent. Appendix Figure B.2 shows the same
figures using normalized log income instead of income percentiles.

Panel (a) shows that in developed cities, income exhibits a modest U-shaped pattern with

respect to distance from the city center. On average, neighborhoods exactly at the city

center are relatively affluent, with income levels slightly above the 50th percentile. Income

declines sharply just outside the center, reaching a low point at around the 40th percentile at

approximately 5 kilometers from the city center. Beyond this point, income gradually increases

toward the urban periphery, approaching the 60th percentile. Overall, this pattern reflects a

positive income gradient from the inner suburbs to the outer edges of the city.

In contrast, Panel (b) reveals a strong, monotonic decline in income with distance from the

city center in less-developed cities. Central neighborhoods average around the 60th percentile

in income, but this steadily falls to approximately the 35th percentile at 25 kilometers from

the center, indicating a pronounced negative gradient.

Figure 4 further examines cross-city variation in the relationship between income and distance

14



Figure 4: Suburban-Urban Income Gap

(a) By Development Status (b) By Continents

Note: The figures display the difference in average income percentiles between suburban and urban core
neighborhoods for each city, where suburban areas are defined as the neighborhoods containing the 50
percent of the population located farthest from the city center, and urban core areas are defined as the rest.
Each dot represents a city. Panel (a) groups cities by development status, while Panel (b) groups them by
continent. In both panels, we also report the group averages and their 95 percent confidence intervals.
Appendix Figure B.3 shows the same set of figures using in log income instead of income percentiles.
Appendix Tables B.1 and B.2 report the values for each city and country, respectively.

to the city center. For each city, we compute the “suburban–urban income gap,” defined as the

difference in average income percentiles between suburban neighborhoods (neighborhoods

housing the 50 percent of the population farthest from the city center) and the remaining

neighborhoods.
5
Panel (a) groups cities by development status, while Panel (b) disaggregates

by continent. In both panels, each dot represents a city, and we plot group means along with

95 percent confidence intervals.

Panel (a) reveals a stark contrast between developed and less-developed cities. In developed

cities, the suburban–urban income gap is positive, averaging around 10 percentile points,

indicating that suburban areas tend to be richer than central areas. In contrast, less-developed

cities exhibit a negative gap of approximately 15 percentile points, with suburban areas

systematically poorer than their urban cores. While the gaps vary across cities, the average

difference between the two groups is both large and statistically significant.

Panel (b) highlights variation in these patterns across continents. Among developed regions,

the suburban–urban income gap is most pronounced in the United States (around 15 percentile

points), while it is close to zero inWestern Europe and Japan, suggesting relatively flat income

5
Results are robust to alternative definitions of suburban areas (e.g., using the outermost 25 percent of the

population) and to alternative distance measures; see Appendix Figure B.4 and Table B.5.
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gradients with respect to distance from the center (see Appendix Figure B.1 for detailed line

plots). Among less-developed regions, the gap is consistently negative across Latin America,

Asia, Eastern Europe, Africa, and the Middle East.

Appendix Tables B.1 and B.2 provide city- and country-level rankings of the suburban–urban

income gap. Of the 20 cities with the most negative gaps, 18 are in less-developed countries;

only Tokyo, Japan, and Seattle, USA, are from developed countries. Conversely, 19 of the 20

cities with the largest positive gaps are in developed countries – all in the United States – with

only one less-developed countries, Da Nang, Vietnam.

3.3. Residential Income and Hills/Rivers

We now turn to the relationship between residential income and natural geographic features,

specifically hills and rivers. In the United States, Lee and Lin (2018) show that such features are

important predictors of neighborhood affluence: areas near hills and rivers tend to bewealthier

than average. They interpret this pattern as reflecting the value households place on natural

amenities, such as scenic views from elevated terrain or proximity to water. However, little is

known about whether these patterns generalize to cities outside the U.S.

Figure 5 presents the difference in average income percentiles between neighborhoods located

in hilly or river-adjacent areas and those that are not, city by city. For simplicity, we combine

hilly and river neighborhoods in this figure. In the regression analysis that follows, we show

that the patterns remain qualitatively similar when hills and rivers are analyzed separately.

Panel (a) shows that, on average, neighborhoods located in hilly or river-adjacent areas are

approximately 10 percentile points richer than other neighborhoods in developed cities, and

about 5 percentile points poorer in less-developed cities. Both differences are statistically

significant. Panel (b) highlights heterogeneity within developed regions: the income gap is

largest in the United States, while in Western Europe and Japan, the average gap is smaller,

though still positive and marginally statistically significant. Unlike the suburban–urban

income gap documented in Figure 4, even Western Europe and Japan exhibit a modest income

premium in hilly or river-adjacent areas.

Among less-developed cities, the pattern is reversed. Hilly or river neighborhoods tend to

be significantly poorer, with negative income gaps across Latin America, Asia and Eastern

Europe, and Africa and the Middle East.

Appendix Tables B.3 and B.4 report these gaps at the city and country levels, respectively.

Of the 20 cities with the most negative income differences in hilly or river neighborhoods, 19
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Figure 5: Residential Income and Hills/Rivers: By City

(a) By Development Status (b) By Continents

Note: The figures show the difference in average income percentiles between neighborhoods that are hilly or
located near a river and those that are not. River neighborhoods are defined as areas within 100 meters of a
natural waterway, while hilly neighborhoods are those with an average slope greater than 5 degrees. Each
dot represents a city. Panel (a) groups cities by development status; Panel (b) groups them by continent. In
both panels, we report the group means along with 95 percent confidence intervals. Appendix Figures B.5
and B.6 show the same set of figures, separately for hills or rivers, respectively. Appendix Tables B.3 and
B.4 report the values for each city and country, respectively.

are located in less-developed countries, with only one from a developed country (Newcastle,

United Kingdom). Conversely, among the 20 cities with the largest positive gaps, 19 are in

developed countries, with Da Nang, Vietnam, as the sole exception from a less-developed

country.

3.4. Regression Results

We now assess whether the patterns documented in Section 3.2 (distance to the city center)

and Section 3.3 (hills and rivers) hold in a multiple regression framework that jointly accounts

for all geographic features. Specifically, we estimate the following regression:

Income𝑗 ,𝑐 = 𝛽′𝑋𝑗 ,𝑐 ×Developed𝑐 + 𝛾
′𝑋𝑗 ,𝑐 ×Less Developed𝑐 + 𝜈𝑐 + 𝜖𝑗 ,𝑐, (1)

where 𝑐 indexes city-year observation,6 𝑗 indexes neighborhoods, Income𝑗 ,𝑐 denotes the proxy

for residential neighborhood income (income percentiles and log residential income), and 𝑋𝑗 ,𝑐
includes indicators for suburban, hilly, and river-adjacent areas, as defined in Section 2. The

specification includes city-year fixed effects 𝜈𝑐, and the error term 𝜖𝑗 ,𝑐 captures idiosyncratic
6
Recall that we have four cities with multiple years of observations from our JICA travel survey.
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neighborhood-level variation. We weight observations by the inverse of the fraction of

residents in each neighborhood, such that the regression assigns equal weight to each city.

We cluster standard errors at the city-year level.

Table 2 presents the results. Columns (1) use income percentile rank as the outcome, while

Columns (2) use log average residential income. For each specification, the top panel reports

the estimated coefficients from Equation (1), and the bottom panel reports the differences in

coefficients between developed and less-developed cities.

Column (1) shows that the associations between income and suburban, hilly, and river

locations remain robust when these geographic features are jointly included. When

disaggregated between hilly and river areas, the coefficients for developed cities are larger

for hilly areas (14.6 percentile points) than for river areas (2.9 percentile points), with both

estimates statistically significant. In contrast, for less-developed cities, the coefficients are

similar and negative (−7.1 and −7.3 percentile points, respectively). In both cases, the

differences between developed and less-developed cities are statistically significant and sizable,

as reported in the bottom panel.

Column (2) shows that these patterns are robust when using log average income instead of

income percentiles as the dependent variable. They also indicate economically meaningful

magnitudes: for example, Column (2) shows that suburban areas are associated with incomes

that are 0.16 log points higher in developed cities, and 0.28 log points lower in less-developed

cities. Overall, the results indicate robust and statistically significant differences in income

premiums associated with suburban, hilly, and river neighborhoods between less developed

and developed cities.

Robustness In Table 3, we show that the main patterns remain robust across a variety

of alternative specifications. Row (1) replicates the baseline estimates from the bottom

panel of Column (2) in Table 1, confirming statistically significant differences in income

premiums associated with suburban, hilly, and river neighborhoods between less developed

and developed cities.

Rows (2) and (3) exclude neighborhoods located more than 15 km and 20 km from the city

center, respectively. While the estimated income percentile differentials become slightly

smaller, they remain statistically significant, indicating that our results are not driven by the

definition of city boundaries or differences in city size across development levels.

Rows (4) and (5) exclude cities in the USA and Brazil, respectively, which represent a large
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Table 2: Regression Results of Residential Income on Suburban, Hilly, and River Dummies

Dependent Variables: Income percentile (high is rich) Log average income

Model: (1) (2)

Variables
Developed𝑐 × Suburban𝑗 ,𝑐 10.2

∗∗∗
0.16

∗∗∗

(1.9) (0.03)

Less Developed𝑐 × Suburban𝑗 ,𝑐 -13.8
∗∗∗

-0.28
∗∗∗

(1.6) (0.04)

Developed𝑐 × Hilly𝑗 ,𝑐 14.6
∗∗∗

0.20
∗∗∗

(3.1) (0.04)

Less Developed𝑐 × Hilly𝑗 ,𝑐 -7.1
∗∗∗

-0.17
∗∗∗

(1.7) (0.04)

Developed𝑐 × River𝑗 ,𝑐 2.9
∗∗

0.06
∗∗∗

(1.1) (0.02)

Less Developed𝑐 × River𝑗 ,𝑐 -7.3
∗∗∗

-0.07
∗∗

(1.8) (0.03)

Difference: Less Developed𝑐 vs Developed𝑐
Suburban𝑗 ,𝑐 -24.0

∗∗∗
-0.44

∗∗∗

(2.5) (0.04)

Hilly𝑗 ,𝑐 -21.7
∗∗∗

-0.36
∗∗∗

(3.5) (0.06)

River𝑗 ,𝑐 -10.2
∗∗∗

-0.13
∗∗∗

(2.1) (0.03)

Observations 145,377 145,357

Unique City-Years 132 132

City-Year FE ✔ ✔
Weight by neighborhood pop within city ✔ ✔

Note: Top panel reports the results of the regression (1). Bottom panel reports the results of the regression
where we replace 𝑋𝑗 ,𝑐 ×Developed𝑐 with 𝑋𝑗 ,𝑐 in the regression (1) to assess the differences in the coefficients
between developed and less-developed cities. Unit of observation is a neighborhood. We weight observations
by the inverse of the fraction of residents in each neighborhood, such that the regression assigns equal weight
to each city. Standard errors are clustered at city-year level. ∗∗∗, ∗∗ and ∗ indicate statistical significance at
the 1-percent, 5-percent and 10-percent levels.

share of our sample (48 and 24 cities, respectively). Excluding the USA – where the income

premiums in suburban, hilly, and river areas are the greatest – reduces the magnitude of

the differences somewhat, but the estimates remain statistically significant. Similarly, the
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Table 3: Robustness: Differences in Income Premiums in Suburban, Hilly, and River

Neighborhoods between Less Developed versus Developed Cities

Difference: Less Developed vs. Developed

Specification Suburban Hilly River

1 Baseline -24.0 (2.5)
∗∗∗

-21.7 (3.5)
∗∗∗

-10.2 (2.1)
∗∗∗

2 Exclude neighborhoods ≥ 15km of center -18.7 (2.5)
∗∗∗

-19.0 (4.1)
∗∗∗

-8.7 (2.3)
∗∗∗

3 Exclude neighborhoods ≥ 20km of center -22.6 (2.5)
∗∗∗

-20.3 (3.9)
∗∗∗

-9.0 (2.3)
∗∗∗

4 Exclude USA cities -12.2 (2.9)
∗∗∗

-15.4 (4.9)
∗∗∗

-7.3 (2.8)
∗∗∗

5 Exclude Brazil cities -22.9 (3.2)
∗∗∗

-17.0 (5.8)
∗∗∗

-10.4 (2.4)
∗∗∗

6 New World cities -31.4 (2.8)
∗∗∗

-29.9 (3.4)
∗∗∗

-12.4 (2.4)
∗∗∗

7 Old World cities -10.6 (3.7)
∗∗∗

-6.0 (6.2) -7.5 (3.1)
∗∗

8 Control for neighborhood log area -21.7 (2.4)
∗∗∗

-22.2 (3.5)
∗∗∗

-6.4 (1.8)
∗∗∗

9 Control for neighborhood quadrant to center -24.3 (2.5)
∗∗∗

-20.2 (3.6)
∗∗∗

-10.1 (2.1)
∗∗∗

10 Control for city population -23.3 (2.7)
∗∗∗

-21.6 (3.5)
∗∗∗

-9.9 (2.4)
∗∗∗

11 Control for city area -23.5 (2.9)
∗∗∗

-18.8 (3.9)
∗∗∗

-10.4 (2.4)
∗∗∗

Note: This table presents robustness checks for the bottom panel of Column (2) in Table 1, which reports
differences in the coefficients on suburban, hilly, and river dummies between less developed and developed
cities, estimated using regression (1). Row (1) reproduces the baseline results from the bottom panel of
Column (2) in Table 1. Rows (2) and (3) exclude neighborhoods located more than 15 km and 20 km from
the city center, respectively. Rows (4) and (5) exclude cities in the United States and Brazil, respectively.
Rows (6) and (7) restrict the sample to “NewWorld” cities (North and Latin America) and “OldWorld” cities
(all others), respectively. Rows (8) and (9) augment regression (1) by adding controls for neighborhood log
area and for the quadrant relative to the city center (north, south, east, or west) interacted with city fixed
effects, respectively. Rows (10) and (11) augment regression (1) by adding controls for log city population
and geographic area, interacted with suburban, hilly, and river dummies, respectively. All regressions
cluster standard errors at the city-year level. ∗∗∗, ∗∗ and ∗ indicate statistical significance at the 1-percent,
5-percent and 10-percent levels. Appendix Table B.5 reports additional robustness, such as using alternative
proxies for distance to city center or controlling for city-level characteristics, such as ethnic diversity.

exclusion of Brazil slightly attenuates the results, while the results on the differences between

less developed and developed cities hold robustly.

Rows (6) and (7) restrict the sample to “NewWorld” cities (North and Latin America) and “Old

World” cities (all others), respectively. While the patterns are stronger among New World

cities, they remain statistically significant in Old World cities as well, with the exception of

hilly coefficients. This suggests that our findings are not merely driven by the New World vs.

Old World distinction, which has been noted as a key factor shaping subnational economic

geography (Henderson et al., 2018).
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Row (8) adds controls for neighborhood log area, interacted with city fixed effects, to address

concerns that differences in neighborhood definitions or geographic boundaries might bias

the results. Row (9) includes controls for quadrant location within the city (north, south, east,

or west), interacted with city fixed effects, given prior evidence that neighborhood orientation

influences income patterns (Heblich et al., 2021). In both cases, the main results are unaffected.

Finally, Rows (10) and (11) augment regression (1) by including interactions between the

suburban, hilly, and river dummies and log city population or geographic area. The results

remain robust, suggesting that differences in city size, either in population or land area, do

not explain the observed income patterns across development levels.

4. Quantitative Urban Model

In this section, we develop a quantitative framework that we use to assess various potential

mechanisms in explaining the gap of spatial income distribution between cities in less-

developed and developed countries. Our analysis is based on a quantitative urban model

(Redding and Rossi-Hansberg, 2017; Redding, 2023), which explicitly model each city as a

collection of neighborhoods with flexible heterogeneity in geographic features. This approach

enables us to fit our model to neighborhood-level data for each city, disentangle the key forces

shaping spatial income patterns, and compare systematic differences between less-developed

and developed cities beyond city-specific idiosyncraticies.

Our baseline model features four basic potential explanations of the gap. The first is

non-homothetic preference over amenities, such that richer households care more about

neighborhood amenities like those available in leafy suburbs far from the city center, or the

views from hilly areas or of water. The second is the comparatively worse transportation

infrastructure and higher commuting costs in less developed countries. The third is more

centralized jobs in developing countries, whichwe allow as a possibility in themodel by having

a steeper productivity decline in distance from city center. The fourth is the possibility that

amenity gradients decline faster with distance from city center, or are relatively worse in hills

and rivers, in less developed cities. We relegate another potential explanation based on the

heterogeneity in commuting costs across income groups to Section 6.3.

4.1. Environment

Consider a city 𝑐 that consists of 𝑗 ∈ 𝑐 neighborhoods. Each neighborhood 𝑗 is endowed with
exogenous amenity 𝐵𝑗 ,𝑐, the productivity of final goods 𝐴𝑗 ,𝑐, and the supply shifter of housing
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𝑆𝑗 ,𝑐. Furthermore, each pair of locations 𝑗 ,𝑛 ∈ 𝑐 is endowed with commuting costs 𝜏𝑗𝑛,𝑐. For
notational brevity, we omit subscripts 𝑐 in this section and reintroduce them in the next section

for the quantitative analysis.

There is a unit measure of households 𝜔. Households are heterogeneous with respect to

idiosyncratic preferences for residential location choice 𝜖 (𝜔) ≡ {𝜖𝑗 (𝜔)}𝑗 and with respect to

efficiency unit of labor 𝑠 (𝜔), which we call “earning potential” for short. Each household

decides sequentially where to reside, where and how much to supply labor, and how much to

consume housing and freely traded final goods (numéraire).

4.2. Households’ Preferences and Residential Location Decisions

We specify households’ preferences over final goods and housing using non-homothetic

constant elasticity of demand (NH-CES) preferences (Albouy, Ehrlich, and Liu, 2016; Comin,

Lashkari, and Mestieri, 2021; Finlay and Williams, 2022; Hoelzlein, 2023). Non-homotheticity

in housing is a robust empirical regularity and it has been pointed out as a force for

gentrification and income sorting in the United States (Couture et al., 2024). Specifically,

given the consumption amount of final goods 𝑦 and housing ℎ, the sub-utility of households

𝑈𝑗 derived from the consumption of final goods and housing is implicitly determined by the

following equation:

1 =(
𝑦
𝑈𝑗)

𝜎−1
𝜎
+𝜒

1
𝜎
(

ℎ
𝑈 𝜀𝑗 )

𝜎−1
𝜎

(2)

Here, 𝜎 determines the elasticity of substitution between housing and final goods. 𝜒 regulates

the relative demand for housing. 𝜀(> 0) is the parameter that governs the degree of non-

homotheticity in housing. When 𝜀 = 1, Equation (2) reduces to standard CES preferences.

In the parameter range 0 < 𝜎 < 1, where housing and final goods are complements (as

documented by Finlay andWilliams, 2022), housing is a subsistence good if and only if 0< 𝜀 < 1
(i.e., its expenditure share declines with income, holding prices fixed). The NH-CES preference

class provides well-defined demand functions over any positive value of income and prices,

and hence suitable for our applications that involve large dispersion of income and prices

within and across cities.
7

7
Alternative classes of non-homothetic preferences commonly used in studies of individual cities or

countries, such as Stone-Geary preferences (Tsivanidis, 2023) or unit-demand preferences (Couture et al., 2024),

are not well suited for our application. Utilities under these formulations are not well-defined over certain ranges

of income and prices, and cannot accommodate large income differences across cities, as we consider here.
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Given this sub-utility from consumption 𝑈𝑗 , household 𝜔’s overall utility by residing in 𝑗 is
given by:

log(𝑈
𝜌
𝑗 +𝐵

𝜌
𝑗 )

1
𝜌 + 𝜖𝑗 (𝜔) (3)

where 𝐵𝑗 is an exogenous amenity in location 𝑗 , capturing factors such as the natural amenities

available in hills or rivers or the open space available in suburban areas. 𝜌 regulates the

non-homotheticity of residential location choice with respect to 𝐵𝑗 . To see why, if 𝜌 < 0,
𝜕
𝜕𝐵𝑗

𝜕
𝜕 log𝑈𝑗 log(𝑈

𝜌
𝑗 +𝐵

𝜌
𝑗 )

1
𝜌 > 0, i.e., the elasticity of overall utility with respect to consumption

subutility 𝑈𝑗 increases in amenity 𝐵𝑗 . Therefore, individuals with a higher earning potential,

and hence 𝑈𝑗 , tend to value an increase in amenity 𝐵𝑗 more. If 𝜌 < 0, the opposite is true.

In the limit as 𝜌 → 0, the utility function converges to an additive form: log(𝑈
𝜌
𝑗 +𝐵

𝜌
𝑗 )

1
𝜌 →

log𝑈𝑗 + log𝐵𝑗 , as in Tsivanidis (2023); Finlay and Williams (2022); Couture et al. (2024).

We revisit how this property shapes the patterns of residential location choices in the next

subsection.

We now describe households’ decisions. First, conditional on residential locations, they decide

how much to consume housing ℎ and final goods 𝑦 subject to the budget constraint:

𝑈𝑗 (𝑠(𝜔)) ≡ argmax
{ℎ,𝑦}

𝑈𝑗 (4)

s.t. 𝑃𝑗ℎ+𝑦 ≤ 𝑤𝑗 𝑠 (𝜔) and Equation (2)

where 𝑃𝑗 is the housing rent; 𝑠(𝜔) is the earning potential of household 𝜔; and 𝑤𝑗 is the wage
rate per efficiency unit of labor for residents in 𝑗 , which is determined by the labor supply

decision as we discuss in Section 4.4.

Anticipating this decision, household 𝜔 chooses the residential location that maximizes the

utility (3)

𝑗 (𝜔) ≡ argmax
𝑗
𝑉𝑗 (𝑠(𝜔))+ 𝜖𝑗 (𝜔), 𝑉𝑗 (𝑠) ≡ log(𝑈𝑗 (𝑠)𝜌 +𝐵

𝜌
𝑗 )

1
𝜌

(5)

Following the literature, we assume that 𝜖𝑗 (𝜔) is independently drawn from the Gumbel

distribution with scale parameter 𝜈. Then, the probability that households with earning

potential 𝑠 reside in location 𝑗 is given by

𝜋𝑗 (𝑠) =
exp(𝜈𝑉𝑗 (𝑠))

∑𝓁 exp(𝜈𝑉𝓁 (𝑠))
(6)
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4.3. Non-homotheticity in Residential Location Choice

The residential location choice probability 𝜋𝑗 (𝑠) depends on the individual’s earning

potential 𝑠 because of the non-homothetic preferences with housing and amenity. To illustrate

this point, in Figure 6, we plot the indifference curves between the wage rate 𝑤𝑗 and amenity

𝐵𝑗 . Specifically, assuming 𝜌 < 0, the figure shows the combinations of {𝑤𝑗 ,𝐵𝑗 } that deliver the
same level of overall utility 𝑉𝑗 ∈ {𝑉𝐻𝑖𝑔ℎ, 𝑉 𝐿𝑜𝑤}, holding housing rents 𝑃𝑗 fixed. Although the

indifference curve for 𝑉𝐻𝑖𝑔ℎ lies above that for 𝑉 𝐿𝑜𝑤(< 𝑉𝐻𝑖𝑔ℎ), we normalize the vertical axis

for each curve for ease of exposition.

Figure 6: Indifference Curves between 𝑤𝑗 and 𝐵𝑗 with 𝜌 < 0

Note: The figures show the combinations of {𝑤𝑗 ,𝐵𝑗 } that deliver the same level of utility (excluding
idiosyncratic taste shocks) corresponding to 𝑉𝑗 ∈ 𝑉𝐻𝑖𝑔ℎ, 𝑉 𝐿𝑜𝑤, where 𝑉𝐻𝑖𝑔ℎ > 𝑉 𝐿𝑜𝑤, holding housing rents
𝑃𝑗 fixed, for the case with 𝜌 < 0.

The figure demonstrates that the trade-off between wages 𝑤𝑗 and amenities 𝐵𝑗 varies

with the overall utility level. When the overall utility is low, the indifference curve is

relatively flat, indicating that agents are more responsive to wages than to amenities in their

residential choice. Conversely, when utility is high, the indifference curve becomes steeper,

suggesting a greater sensitivity to amenities. This pattern reflects the non-homothetic nature

of preferences: with 𝜌 < 0, 𝐵𝑗 behaves like a “luxury” good in location choice, valued more by
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higher-utility (or higher-income) individuals. When 𝜌 > 0, the reverse holds.8

The “luxury” feature of amenity (𝜌 < 0) offers a potential explanation for why the spatial

income distribution within cities varies depending on overall income levels. If the city’s

overall income level is sufficiently high, householdswith greater earning potential place higher

value on amenity-rich locations, while those with lower earning potential sort into areas

with amenity-scarce, higher-wage locations. In contrast, if the city’s overall income level is

sufficiently low, households place limited value on amenities and base their residential choices

primarily on wages, regardless of their earning potentials.

Furthermore, in the equilibrium, housing rents 𝑃𝑗 are endogenously determined by supply and

demand in the housingmarket, and hence neighborhoods with higher residential demand tend

to exhibit higher housing rents, as we further describe below. When housing is a subsistence

good (1 > 𝜖 > 0), as robustly documented in prior work, this creates an additional force toward

gentrification. Households with lower earning potential 𝑠 are more sensitive to housing costs

due to their higher expenditure share on housing (Couture et al., 2024; Finlay and Williams,

2022).

4.4. Commuting (Labor Supply) Decisions

Each household 𝜔 consists of a continuum of members of unit measure, each endowed with

𝑠(𝜔) efficiency units of labor. Members independently choose their work location. If member

𝜐 decides to commute to work location 𝑛 = 𝑛 (𝜐), she earns income at wage rate 𝑤𝑛�̃�𝑛 (𝜐) per
efficiency unit of labor, where �̃�𝑛 (𝜐) captures idiosyncratic productivity at that workplace.

She also incurs commuting costs in the form of iceberg earnings losses, 𝜏𝑗𝑛 ≥ 1, where 𝑗
denotes the household’s residential location. These costs reflect both distance and variation in

transportation infrastructure – such as road quality in suburban, hilly, or river-adjacent areas.

Together, the labor supply decision of a member 𝜐 is given by

𝑛 (𝜐) = argmax
𝑛
𝜏−1𝑗𝑛 𝑤𝑛�̃�𝑛 (𝜐) . (7)

We assume that �̃�𝑛 (𝜐) is drawn from an i.i.d. Frechet distribution with shape parameter 𝜃.
Then, the probability that a household member residing in location 𝑗 commuting to location

8
At first glance, it may seem puzzling that the constant-elasticity-of-substitution specification with 𝐵𝑗

(Equation 3) gives rise to non-homotheticity. This arises because 𝐵𝑗 is fixed at the location level and does not

require spending out of the household’s budget, allowing individuals of any income level to access it conditional

on residing there.
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𝑛 is given by

𝜆𝑗𝑛 =
(𝜏−1𝑗𝑛 𝑤𝑛)

𝜃

∑𝓁 (𝜏−1𝑗𝓁 𝑤𝓁)
𝜃 . (8)

Furthermore, applying the law of large numbers, the wage rate per efficiency unit of labor for

residents in 𝑗 is given by

𝑤𝑗 = 𝜚∑
𝓁
(𝜏−1𝑗𝓁 𝑤𝓁)

𝜃 , (9)

where 𝜚 ≡ Γ(𝜃−1𝜃 ), where Γ(⋅) is the Gamma function. Equation (9) indicates that the wage

rates per efficiency unit of labor for residents in neighborhood 𝑗 is proportional to the

geometric average of the wage rates at various work destinations weighted by the commuting

cost, often called “commuting access” in the literature (e.g., Tsivanidis, 2023).
9

4.5. Production, Market Clearing, and Equilibrium

Final goods are produced in each location 𝑛 by perfectly competitive firms with linear

production technology using labor with productivity 𝐴𝑛. Perfect competition implies that

𝑤𝑛 = 𝐴𝑛. (10)

Housing is supplied by perfectly competitive developers using land, owned by the absentee

landlord, and the final goods. Furthermore, the efficiency of housing supply 𝑆𝑗 may vary

across neighborhoods, reflecting differences in development costs driven by local geographic

features, such as hills or proximity to rivers (Saiz, 2010). We assume that the inverse supply

function of housing is given by

𝑃𝑗 =
1
𝑆𝑗
𝐻𝜇
𝑗 , (11)

where 𝐻𝑗 is the aggregate supply of housing.

The market clearing of housing in location 𝑗 is given by

𝐻𝑗 = ∫
𝑠
ℎ (𝑠)𝜋𝑗 (𝑠)𝑑𝐺(𝑠), (12)

where 𝐺(⋅) is the cumulative distribution function of earning potential 𝑠(𝜔) across households.

The equilibrium is defined by households’ consumption {ℎ (𝑠) , 𝑦 (𝑠)}, residential choice

9
We assume a continuum of households, instead of a discrete number, to eliminate ex-post heterogeneity

in wage rates conditional on residential location. Although this assumption can be relaxed without difficulty, it

serves to simplify the exposition of residential location decisions in Section 4.2.
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probabilities {𝜋𝑗 (𝑠)}, labor supply probabilities {𝜆𝑗𝑛}, wages {𝑤𝑗 }, and house prices {𝑃𝑗 }, that
satisfy households’ optimal consumption decision (4), residential location decision (5) and (6),

labor supply decision (7) and (8), final goods producers’ optimality condition (10), and housing

supply and market clearing conditions (11) and (12).

The average residential income in neighborhood 𝑗 is given by

𝐼𝑗 = 𝑤𝑗
∫𝑠 𝑠𝜋𝑗 (𝑠)𝑑𝐺(𝑠)
∫𝑠 𝜋𝑗 (𝑠)𝑑𝐺(𝑠)

, (13)

Therefore, the equilibrium residential income in neighborhood 𝑗 is affected by two

components. First, it depends on the wage rates per efficiency unit of labor in residential

location 𝑤𝑗 , determined by Equation (9). This term is higher if neighborhood 𝑗 is surrounded
by neighborhoods that offer higherwages, or equivalently, higher productivity𝑤𝑛 =𝐴𝑛. Notice
that the variation of 𝑤𝑗 is lower for cities with lower commuting costs on average {𝜏𝑗𝑛}. In an

extreme case, if 𝜏𝑗𝑛 = 1 for all 𝑗 ,𝑛, then 𝑤𝑗 does not vary across locations.

Second, the residential income is affected by the average earning potential of households

residing in the neighborhood 𝑗 , ∫𝑠 𝑠𝜋𝑗 (𝑠)𝑑𝐺(𝑠)/∫𝑠 𝜋𝑗 (𝑠)𝑑𝐺(𝑠). This component is shaped by

the non-homotheticity in residential location choice, as discussed in Section 4.3.

5. Measuring Commuting Costs and Access to Jobs for Each City

We now combine the framework developed in Section 4 with our data to quantify the

contributions of different mechanisms to the observed gap in spatial income distributions

between developed and less-developed cities. In this section, we estimate city-level commuting

costs using the model-implied commuting gravity equations. In the next section, we

employ the full general equilibrium model to conduct counterfactual analyses and assess the

underlying drivers of the spatial income distribution gap.

5.1. Estimating Commuting Gravity Equations for Each City

We use our model’s commuting (labor supply) decisions in Section 4.4 to quantify the

commuting costs for each city. Adding the city subscripts 𝑐 for all of our model variables, our

model predicts the probability of commuting by residents (household members) in residential
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location 𝑗 to workplace location 𝑛 by

𝜆𝑗𝑛,𝑐 =
(𝜏−1𝑗𝑛,𝑐𝑤𝑛,𝑐)

𝜃

∑𝓁 (𝜏−1𝑗𝓁,𝑐𝑤𝓁,𝑐)
𝜃 , (14)

where 𝑐 indicates a city. We introduce a parametric assumption that the commuting cost 𝜏𝑗𝑛,𝑐
is a power function of road distance between neighborhoods 𝑗 to 𝑛 such that

log𝜏𝑗𝑛,𝑐 = 𝜅𝑐RoadDistance𝑗𝑛,𝑐, (15)

where we allow 𝜅𝑐 to vary by city, and 𝜖𝑗𝑛,𝑐 is additional idiosyncratic travel costs for a pair of
neighborhoods that are not captured by road distance.

Combining the two equations and taking logs,

log𝜆𝑗𝑛,𝑐 = 𝜃 log𝑤𝑛,𝑐 −𝜅𝑐𝜃RoadDistance𝑗𝑛,𝑐 − log∑
𝓁
(𝜏−1𝑗𝓁,𝑐𝑤𝓁,𝑐)

𝜃 . (16)

We estimate an empirical analog of this equation using a Pseudo-PoissonMaximumLikelihood

(PPML) estimator to handle the presence of many pairs of zero commuters. Specifically, we

estimate the following two-way fixed model

log𝔼[𝜆𝑗𝑛,𝑐] = 𝜓𝑛,𝑐 − �̃�𝑐RoadDistance𝑗𝑛,𝑐 + 𝜂𝑗 ,𝑐, (17)

where 𝜓𝑛,𝑐 ≡ 𝜃 log𝑤𝑛,𝑐 is the workplace fixed effects, �̃�𝑐 ≡ 𝜅𝑐𝜃, and 𝜂𝑗 ,𝑐 ≡ −log∑𝓁 (𝜏−1𝑗𝓁,𝑐𝑤𝓁,𝑐)
𝜃
is

the origin fixed effects.

The estimates from Equation (17) yield three key insights into the structure of commuting

costs within each city. First, the estimated commuting semi-elasticity with respect to road

distance, �̃�𝑐, captures the intensity of commuting costs and allows for comparisons across

cities. Second, given an assumed value of 𝜃, the estimated workplace fixed effects 𝜓𝑛,𝑐 can
be interpreted as proportional to the wage rates (or productivity) at each workplace location,

since 𝑤𝑛,𝑐 = 𝐴𝑛,𝑐 ∝ exp(𝜓𝑛,𝑐/𝜃) (Kreindler and Miyauchi, 2023). Third, the origin fixed effects

𝜂𝑛,𝑐 are proportional to wage rates at residential locations, following 𝑤𝑗 ,𝑐 ∝ exp(−𝜂𝑛,𝑐/𝜃)
(Equation 9).

10
This last component is particularly important, as it directly enters the

determination of equilibrium residential income via Equation (13).

10
Under the PPML specification, the estimated origin fixed effects �̂�𝑗 ,𝑐 are numerically equivalent (up

to scale) to the geometric sum of the workplace fixed effects and the distance-related commuting costs:

∑𝓁 exp(
̂̃𝜅𝑐RoadDistance𝑗𝓁,𝑐 + �̂�𝓁,𝑐) (Fally, 2015).
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5.2. Estimation Results

In Panel (a) of Figure 7, we present the point estimates of �̃�𝑐 ≡ 𝜅𝑐𝜃 from estimating equation (17)

for each city. We estimate these equations for the U.S. cities, Tokyo, and less-developed cities

from the JICA travel survey data. We exclude cities from the UK, France, Spain, and Brazil,

where we do not have bilateral commuting flow data.

The figure highlights the striking heterogeneity in commuting costs across cities. For U.S.

cities, the mean of the estimated semi-elasticities is approximately 0.07, implying that a

one-kilometer increase in commuting distance leads to a 7% reduction in commuting flows,

conditional on origin and workplace fixed effects. In Tokyo, the corresponding estimate is

approximately 0.11. This difference between the U.S. and Japan (Tokyo) may reflect variation

in typical commuting modes: in the U.S., private cars are the predominant mode of transport,

whereas in Tokyo, public transit is more common.

In contrast to these developed cities, the semi-elasticity of commuting is significantly more

negative and larger in magnitude in less-developed settings. For Latin American cities, the

mean estimate is 0.14; for cities in Asia and Eastern Europe, it rises to 0.24; and for cities

in Africa and the Middle East, it is 0.18. These higher values may reflect limited access to

private vehicles, less developed road infrastructure, and the absence of efficient public transit

systems.
11

Panel (b) of Figure 7 plots the estimated commuting semi-elasticities against the negative

speed index from Akbar et al. (2023b), which measures log-point differences in average road

speed across cities. We observe a statistically significant positive relationship: in cities

with slower average road speeds (higher values on the horizontal axis), commuting semi-

elasticities tend to be higher (higher values on the vertical axis). The estimated slope is 1.47

and significantly greater than one, suggesting that commuting frictions increase more than

proportionally as road speeds decline. This pattern is consistent with the interpretation that

in faster (typically richer) cities, residents are more likely to rely on efficient transportation

modes such as private vehicles, whereas in slower cities, individuals may be constrained to

slower options like walking. Furthermore, the relationship exhibits considerable dispersion,

suggesting that other factors may also influence commuting behavior, potentially including

road safety or cultural norms.

We next focus on our estimates of productivity at workplaces 𝐴𝑛,𝑐 ∝ exp(𝜓𝑛,𝑐/𝜃) and wage

11
Our estimated semi-elasticities align with existing city-specific estimates reported by Tsivanidis (2023);

Zárate (2024); Khanna et al. (2023), who find values in the range of 0.02 to 0.05 with respect to minutes instead
of kilometers, based on assumed mode-specific travel speeds for each city.
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Figure 7: Estimated Semi-Elasticity of Commuting to Road Distance (�̃�𝑐)

(a) By Continents

(b) Relationship with Speed on Roads

Note: Results of the estimated coefficients of road distance using equation (17) for each city. In Panel (a),
each dot corresponds to an estimate from each city. We also report the group means of the point estimates
along with 95 percent confidence intervals of these point estimates across cities. In Panel (b), the horizontal
axis displays the negative speed index from Akbar et al. (2023b), which measures the log-point difference
in average road speed in each city. See Appendix Table C.1 for the estimates for each city in less developed
countries.
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rates at residential location 𝑤𝑗 ,𝑐 ∝ exp(𝜂𝑛,𝑐/𝜃). To estimate workplace productivity, we adjust

the workplace fixed effects 𝜓𝑛,𝑐 by subtracting the log area size, addressing themechanical one-

to-one relationship between area and fixed effects noted in Kreindler and Miyauchi (2023).
12

In Table 4, we present how these variables relate to the geographic features highlighted in

Section 3. Specifically, we run the same regression (1), where we regress these estimates

on the suburban, hilly, and river dummies interacted with developed and less-developed city

dummies. As before, top panel reports the results of regression (1), and the bottom panel

reports the differences in the coefficients between less developed versus developed cities. We

set 𝜃 = 5, consistent with median estimates reported in the literature for both developed and

less-developed cities.
13

In Column (1), we find that workplace productivity is significantly lower in suburban, hilly,

and river areas in both developed and less-developed cities. This is consistent with the

interpretation that productivity tends to be higher near city centers. However, the magnitudes

of these effects differ notably across development levels. In particular, the productivity

disadvantage in suburban and river areas is substantially larger in less-developed cities

compared to developed ones. Interestingly, the productivity disadvantage in hills are smaller

in less-developed cities compared to developed ones. This pattern perhaps reflect the fact that

in developed cities, hilly areas specialize in residential purposes, and residents there simply

work to some other neighborhoods.

In Column (2), we turn to the wage rates at residential locations, which reflect commuting

access. These rates also tend to be lower in suburban, hilly, and river areas in both developed

and less-developed cities. This pattern supports the interpretation that areas farther from city

centers have lower access to jobs, and that commuting costs transmit these spatial differences

into residential wage rates. Once again, the magnitude of these effects is more pronounced

in less-developed cities. In the bottom panel, the wage penalty in suburban areas is 0.10 log

points larger in less-developed cities, while the penalty around rivers is 0.05 log points larger.

For hilly areas, the estimated penalty is slightly positive at 0.02 log points, though statistically

insignificant.

In Figure 8, we examine the relationship between observed residential income and the

estimated commuting access. Specifically, for both less-developed and developed cities, we

compute the average commuting access (the negative estimated destination fixed effects from

12
This adjustment can be microfounded by assuming that workers draw idiosyncratic productivity shocks per

unit of geographic area (see Kreindler and Miyauchi (2023) for details).

13
The estimates from the prior research range from 2.2 to 8.3 (e.g., Ahlfeldt, Redding, Sturm, and Wolf, 2015;

Kreindler and Miyauchi, 2023; Severen, 2023; Tsivanidis, 2023).
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Table 4: Regression Results of Estimated 𝐴𝑗 and 𝑤𝑗 on Suburban, Hilly, and River Dummies

Dependent Variables: log𝐴𝑗 ,𝑐(= [𝜓𝑗 ,𝑐 − log𝐴𝑟𝑒𝑎𝑗 ,𝑐]/𝜃) log𝑤𝑗 ,𝑐(= −𝜂𝑗 ,𝑐/𝜃)
Model: (1) (2)

Variables
Developed𝑐 × Suburban𝑗 ,𝑐 -0.11

∗∗∗
-0.09

∗∗∗

(0.01) (0.008)

Less Developed𝑐 × Suburban𝑗 ,𝑐 -0.27
∗∗∗

-0.19
∗∗∗

(0.02) (0.02)

Developed𝑐 × Hilly𝑗 ,𝑐 -0.26
∗∗∗

-0.03
∗∗∗

(0.03) (0.01)

Less Developed𝑐 × Hilly𝑗 ,𝑐 -0.14
∗∗∗

-0.05
∗

(0.03) (0.03)

Developed𝑐 × River𝑗 ,𝑐 -0.05
∗∗∗

-0.02
∗∗∗

(0.009) (0.004)

Less Developed𝑐 × River𝑗 ,𝑐 -0.16
∗∗∗

-0.07
∗∗∗

(0.02) (0.02)

Difference: Less Developed𝑐 vs Developed𝑐
Suburban𝑗 ,𝑐 -0.16

∗∗∗
-0.10

∗∗∗

(0.02) (0.02)

Hilly𝑗 ,𝑐 0.12
∗∗∗

-0.02

(0.04) (0.03)

River𝑗 ,𝑐 -0.11
∗∗∗

-0.05
∗∗∗

(0.02) (0.02)

Observations 33,279 31,253

City-Year FE ✔ ✔
Unique City-Years 79 71

Weight neghborhoods equally within city ✔ ✔
USA, Tokyo, JICA Cities ✔ ✔

Note: Top panel reports results from regression (1) using an alternative dependent variable. Bottom panel
reports the results of the regression where we replace 𝑋𝑛,𝑐 ×Developed𝑐 with 𝑋𝑛,𝑐 in the regression (17) to
assess the differences in the coefficients between developed and less-developed cities. In Column (1), the
dependent variable is the estimated destination fixed effect from the commuting gravity equation (17), net
of log area and scaled by 𝜃 = 5. Column (2) uses the estimated origin fixed effects from the same equation
as the dependent variable.

the commuting gravity equation 17), and plot them against observed residential income. Given

that most of our developed-country commuting data comes from the United States, we restrict

the developed group to U.S. cities and exclude Tokyo, the only other developed-country city
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with such data.

Figure 8: Estimated Commuting Access and Residential Income

Note: For both less-developed and developed (U.S.) cities, neighborhoods are divided into city-specific income
deciles. For each decile, we compute the mean of the negative estimated destination fixed effects from
the commuting gravity equation (17). Each dot represents the average value for a given income decile,
aggregated across all cities within each group (left: less-developed cities; right: developed (U.S.) cities).

The figure reveals a striking contrast between less-developed and developed cities. In less-

developed cities (left panel), there is a clear, monotonic positive relationship: neighborhoods

with higher residential income also enjoy better commuting access. In contrast, U.S. cities

(right panel) exhibit a monotonic negative relationship: higher-income neighborhoods are

associated with lower commuting access. This pattern suggests that, in the U.S., households

with higher earning potential tend to sort into neighborhoods with lower commuting access –

such as leafy suburbs or areas with scenic amenities like hills or waterfronts. In less-developed

cities, similar sorting may occur but appears too weak to overturn the strong positive

relationship between commuting access and residential income. Therefore, neighborhoods

with lower commuting access – in particular, suburban, hilly, or river areas, which are less

well-connected by transportation infrastructure – tend to have lower residential income.
14

In

14
This observation echoes the findings of Kreindler and Miyauchi (2023), who show that commuting access is

a strong predictor of income in Dhaka, Bangladesh, and Colombo, Sri Lanka – two less-developed cities included

in our dataset. In contrast, our results suggest that this relationship may not hold in developed-country cities.
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the next section, we quantify how these patterns jointly determine the equilibrium residential

location choice and spatial income distribution.

6. Quantifying the Gap in Equilibrium Spatial Income Distribution

In this section, we use the full general equilibrium model to conduct counterfactual

simulations that identify the key drivers of the spatial income distribution gap between

developed and less-developed cities. We begin by calibrating the model to U.S. cities as a

benchmark for developed economies, then implement a series of counterfactual exercises

to disentangle the mechanisms underlying the observed disparities. We also discuss the

distributional impacts of a city’s overall productivity growth across households.

6.1. Calibrating the Model to U.S. cities

We begin by introducing additional parametric assumptions for the amenity term 𝐵𝑗 ,𝑐,
modeling it as a function of observable geographic features:

log𝐵𝑗 ,𝑐 = 𝛽0+𝛽1Suburban𝑗 ,𝑐 +𝛽2Hills𝑗 ,𝑐 +𝛽3Rivers𝑗 ,𝑐, (18)

where Suburban𝑗 ,𝑐, Hills𝑗 ,𝑐, and Rivers𝑗 ,𝑐 indicate the dummies for the suburban, hilly, and

river, as defined for our income regression equation (1). We assume {𝛽0,𝛽1,𝛽2,𝛽3} as common

preference parameters across across all cities.
15

In the previous section, we calibrated the shape parameter for productivity shocks 𝜃 as well
as productivity {𝐴𝑗 ,𝑐}𝑗 and commuting costs {𝜏𝑗𝑛,𝑐}𝑗 ,𝑛 for each city and neighborhood pairs.

16

We now turn to the calibration of the remaining parameters, as summarized in Table 5.

We calibrate the elasticity of substitution between housing and final goods to 𝜎 = 0.52, and the
elasticity of nonhomotheticity in housing demand to 𝜀 = 0.36, based on Finlay and Williams

(2022), who estimate these parameters from the Panel Study of Income Dynamics (PSID) for

U.S. cities. A value of 0 < 𝜎 < 1 implies that housing and final goods are complements, while

0< 𝜀 < 1 indicates that housing behaves as a subsistence good, consistent with robust empirical

15
We take the approach of parameterizing amenity 𝐵𝑗 ,𝑐 , rather than inferring them directly from residential

location choices, as often implemented in the literature of quantitative spatial models (e.g., Redding, 2023). This

choice reflects a data limitation: we do not observe residential location choice for each value of earning potential 𝑠,
but only the average income at each location. While this choice implies that our model does not exactly match

the observed residential income distribution, we estimate the key parameters to rationalize the key moments,

such as the relative incomes in suburban, hilly, and river areas.

16
The procedure in the previous section only reveals the relative {𝐴𝑗 ,𝑐}𝑗 within the city, but not its scale. We

set the scale to replicate the observed mean income of U.S. cities.
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Table 5: Calibrated Parameters Targeting U.S. cities

Value Description Source

𝜃 5 Dispersion of idiosyncratic productivity shock Literature

𝜎 0.52 Elasticity of substitution for housing Finlay and Williams (2022)

𝜀 0.36 Elasticity of nonhomotheticity in housing Finlay and Williams (2022)

𝐺(⋅) {3,1} wp 0.5 Earning potential distribution Variance of income distribution

𝜒 0.063 Preference shifter for housing GMM

𝜈 11.8 Residential location choice elasticity GMM

𝜌 -0.43 Elasticity of nonhomotheticity in amenity GMM

𝛽0 9.25 Amenity level GMM

𝛽1 0.55 Amenity for suburban areas GMM

𝛽2 0.85 Amenity for hilly areas GMM

𝛽3 0.18 Amenity for river areas GMM

𝜇 0.5 Inverse housing supply elasticity Literature

Note: Calibrated parameters and their sources. See the main text for the GMM procedure.

patterns observed in the United States and many other countries.

We assume that the distribution of earning potential 𝐺(⋅) follows a bimodal structure, with

twomass points at 1 and 3 (normalized), each occurring with probability 0.5. This specification

generates a degree of income variance comparable to that observed in the U.S. economy, as

reported by Heathcote, Perri, and Violante (2010).

We estimate the nonhomotheticity in amenity preferences 𝜌, the amenity parameters

{𝛽0,𝛽1,𝛽2,𝛽3}, the elasticity of residential location choice 𝜈, and the housing preference shifter
𝜒 , using a generalized method of moments (GMM) procedure. Specifically, using observed

median rents {𝑃𝑗 ,𝑐} from ACS and the estimated wage rates at residential locations {𝑤𝑗 ,𝑐} in
Section 5, we solve for the equilibrium residential location choice {𝜋𝑗 ,𝑐(𝑠)} for each earning

potential 𝑠 given a candidate parameter vector Θ ≡ {𝛽0,𝛽1,𝛽2,𝛽3,𝜌,𝜈,𝜒 }. We then construct

a set of moments 𝑔𝑗 ,𝑐(Θ), defined as the difference between model-implied and empirically

observed values for key location-specific statistics, given below:

1. Log average residential income in location 𝑗 , log 𝐼𝑗 (Equation 13), as well as its interaction
with suburban, hilly, and river dummies.

2. The interaction of log average residential income and the commuting access log𝑤𝑗 ∝
1
𝜃 log∑𝓁 (𝜏−1𝑗𝓁,𝑐𝑤𝓁,𝑐)

𝜃
, as estimated in Section 5.1. To address concerns that the

placement of roads may be endogenously correlated with unobserved residential

amenities, we modify our measure of commuting access by replacing actual road

distances for the estimation of Equation (17) with bilateral straight-line distances.
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This alternative specification helps mitigate potential endogeneity arising from the

endogenous assignment of road infrastructure.

3. The interaction of the moments described in point 2 above and the dummies of hills and

rivers.

4. Average housing expenditure share of residents in location 𝑗 .

5. Implied residential location choice elasticity with respect to wage rates at residences

(commuting access). In themodel, it is defined by
𝜕 ln𝜋𝑗 (𝑠)
𝜕 ln𝑤𝑗 = 𝜈 𝑈 𝜌𝑗

𝑈 𝜌𝑗 +𝐵
𝜌
𝑗
(1−𝜋𝑗 (𝑠))

𝜕 ln𝑈𝑗
𝜕 ln𝑤𝑗 . In the

data, we target this elasticity to 2.2 (averaged across earning potential 𝑠), consistent with
estimates from prior studies examining residential responses to transportation network

expansions (Tsivanidis, 2023; Severen, 2023).

Finally, we choose the value that minimizes the GMM objective function:

Θ̂ = min
Θ

{

(
1
𝑁

∑
𝑛,𝑐
𝑔𝑗 ,𝑐(Θ))

′

𝐖
(

1
𝑁

∑
𝑛,𝑐
𝑔𝑗 ,𝑐(Θ))

}

, (19)

where 𝐖 is the weighting matrix.

We now describe how each parameter Θ ≡ {𝛽0,𝛽1,𝛽2,𝛽3,𝜌,𝜈,𝜒 } is identified from these

moments. While the GMM procedure jointly determines all parameters using all moments,

specific moments are particularly informative about certain parameters. The first set of

moments is particularly informative about the value for {𝛽0,𝛽1,𝛽2,𝛽3}, as higher values of

these parameters imply that households with higher earning potential 𝑠 are more likely to sort

into suburban areas, hills, and river-adjacent neighborhoods, holding other factors constant

(given 𝜌 < 0). The second moments are informative about the value for 𝜌, since a more

negative 𝜌 implies that households with lower earning potential are disproportionately more

responsive to commuting access. The third set of moments are informative about the value

of 𝛽0, as its level determines how the relationship between commuting access and earning

potential varies systematically across different amenity neighborhoods. The fourth moment

is informative about the preference shifter for housing 𝜒 . The fifth moment is informative

about the residential location choice elasticity 𝜈.

Table 6 demonstrates that the estimated model closely replicates key patterns in the spatial

distribution of income across U.S. cities. The table presents a version of regression (1), where

the odd-numbered columns report results using model-predicted log residential income, and

the even-numbered columns use observed income data. In the independent variable, 𝑤𝑗 ,𝑐 is
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as estimated in Section 5. We instrument 𝑤𝑗 ,𝑐, 𝑤𝑗 ,𝑐 × Hilly𝑗 ,𝑐 and 𝑤𝑗 ,𝑐 × River𝑗 ,𝑐 by �̃�𝑗 ,𝑐, �̃�𝑗 ,𝑐 ×
Hilly𝑗 ,𝑐, and �̃�𝑗 ,𝑐 × River𝑗 ,𝑐, where �̃�𝑗 ,𝑐 is constructed analogously as in Section 5, except we

replace actual road distances for the estimation of Equation (17) with bilateral straight-line

distances, consistent with the moment condition used above.

Table 6: Model Fit to U.S. cities

log Residential Income𝑗 ,𝑐

Model Data Model Data Model Data Model Data

(1) (2) (3) (4) (5) (6) (7) (8)

Suburban𝑗 ,𝑐 0.23 0.23 0.27 0.27 0.27 0.27

(0.01) (0.03) (0.01) (0.04) (0.01) (0.04)

Hilly𝑗 ,𝑐 0.29 0.29 0.30 0.30 0.31 0.31

(0.01) (0.05) (0.01) (0.06) (0.01) (0.06)

River𝑗 ,𝑐 0.06 0.07 0.07 0.07 0.07 0.08

(0.004) (0.02) (0.004) (0.02) (0.003) (0.02)

𝑤𝑗 ,𝑐 −0.79 −0.79 0.44 0.44 0.31 0.36

(0.11) (0.23) (0.08) (0.29) (0.08) (0.28)

𝑤𝑗 ,𝑐 × Hilly𝑗 ,𝑐 0.71 0.49

(0.12) (0.46)

𝑤𝑗 ,𝑐 × River𝑗 ,𝑐 0.29 0.16

(0.05) (0.24)

City Fixed Effects X X X X X X X X

Unique Cities 48 48 48 48 48 48 48 48

Observations 27,117 27,117 27,117 27,117 27,117 27,117 27,117 27,117

Note: A version of regression (1), with model-predicted log residential income in odd columns, and actual
data in even columns. In the independent variable, 𝑤𝑗 ,𝑐 is as estimated in Section 5, using the value of
𝜃 = 5. We instrument 𝑤𝑗 ,𝑐 , 𝑤𝑗 ,𝑐 × Hilly𝑗 ,𝑐 and 𝑤𝑗 ,𝑐 × River𝑗 ,𝑐 by �̃�𝑗 ,𝑐 , �̃�𝑗 ,𝑐 × Hilly𝑗 ,𝑐 , and �̃�𝑗 ,𝑐 × River𝑗 ,𝑐 , where
�̃�𝑗 ,𝑐 is constructed analogously as in Section 5, except we replace actual road distances for the estimation
of Equation (17) with bilateral straight-line distances. Standard errors are clusterred at the city level.

Columns (1) and (2) show that the model successfully replicates the elevated average
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residential income in suburban, hilly, and river-adjacent neighborhoods. Columns (3) and (4)

capture the unconditional negative relationship between residential income and commuting

access, consistent with the pattern illustrated in Figure 8. In Columns (5) and (6), once we

condition on suburban, hilly, and river dummies, both the model and the data exhibit a

positive association between residential income and commuting access, both in the model

and data. Finally, Columns (7) and (8) show that the interaction between commuting access

and geographic features is negative in both the model and the data. While the model’s

regression coefficients do not exactlymatch those from the data—due in part to overidentifying

restrictions in the GMM estimation—the overall patterns are well aligned. We therefore

use this estimated model as our baseline for U.S. cities in the subsequent counterfactual

simulations.

Finally, we calibrate the housing supply elasticity 𝜇 = 0.5 based on a typical value estimated

in the literature (e.g., Saiz, 2010). We also set the housing supply shifter 𝑆𝑗 ,𝑐 for each location

to be consistent with the observed rents 𝑃𝑗 ,𝑐.

6.2. Counterfactuals

We now use our calibrated model for U.S. cities to conduct a series of counterfactual

simulations. Specifically, we implement three sets of counterfactuals (as well as their

combinations): (i) lowering the overall city productivity ({𝐴𝑗 ,𝑐}) to match the average income

levels observed in less-developed cities; (ii) increasing commuting costs (�̃�𝑐) to the levels

estimated for less-developed cities in Section 5; and (iii) adjusting the relative productivity

penalty of neighborhoods in suburban, hilly, and river areas ({𝐴𝑗 ,𝑐}) to reflect the patterns

observed in less-developed cities, as reported in Table 4.

Figure 9 presents the results. In each column, we report the results of the estimated coefficients

on suburban, hilly, and river dummies on residential income using regression specification (1).

Column (1) reports the patterns using our calibratedmodel to U.S. cities, as reported in Column

(1) of Table 6. Columns (2)-(4) report the regressions using U.S. cities under counterfactual

equilibrium under alternative scenarios, as we further decsribe below. Column (5) report

the regression coefficients for less developed cities using our data, as reported in Table 2.

Consistent with the findings so far, Column (1) exhibit positive income premiums in suburban,

hills, and rivers for the U.S. cities, and Column (5) exhibit negative income premiums in those

areas. We explore whether and what type of counterfactual close this observed spatial income

gap.

In Column (2), we present results from a counterfactual in which average productivity
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Figure 9: Spatial Residential Income Distribution of U.S. Cities under Counterfactual Scenarios

Note: This figure displays the estimated coefficients on the suburban, hilly, and river indicators from
regression specification (1). Column (1) presents the baseline results from our model calibrated to U.S.
cities, corresponding to Column (1) of Table 6. Column (2) shows the regression coefficients under a
counterfactual in which average productivity levels {𝐴𝑗 ,𝑐}𝑗 are uniformly reduced by 2.0 log points across
all neighborhoods and cities—approximately 14% of their baseline values. Column (3) reports coefficients
from a counterfactual equilibrium in which we further increase the commuting semi-elasticity �̃�𝑐 by 0.14,
reflecting the average gap between U.S. and less-developed cities as shown in Figure 7. Column (4) presents
results from a counterfactual in which we further adjust the relative productivity of suburban, hilly, and
river neighborhoods to match the patterns observed in less-developed cities, as documented in Table 4.
Finally, Column (5) displays the corresponding estimates for less-developed cities based on observed data,
as reported in Table 2.

levels {𝐴𝑗 ,𝑐}𝑗 are uniformly reduced by 2.0 log points across all neighborhoods and cities —

approximately 14% of the baseline values. This magnitude corresponds to the mean income

gap between U.S. and less-developed cities in our sample.
17

Under this scenario, the regression

coefficients on the suburban, hilly, and river indicators decline substantially and approach zero.

This result is consistent with the interpretation that when overall income levels are low, even

households with higher earning potential place less value on amenities, leading to weaker

17
Due to endogenous adjustments in residential and commuting choices, this counterfactual leads to an

average income reduction of about 18% relative to the baseline, slightly greater than the assumed 14% decline in

productivity.
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sorting into amenity-rich areas.

In Column (3), we run a counterfactual to additionally increase the commuting semi-elasticity

�̃�𝑐 by 0.14, matching the average difference in estimated �̃�𝑐 between U.S. and less-developed

cities (Figure 7). Under this scenario, the regression coefficients for suburban, hilly, and river

areas become negative, consistent with the observation that higher commuting frictions in less

developed cities are contributing disproportionately worse commuting access in those areas.
18

Column (4) reports results from a counterfactual in which we additionally adjust the relative

productivity of suburban, hilly, and river neighborhoods to match the patterns observed in

less-developed cities, as documented in Table 4. We find that the negative income premiums in

suburban and river areas becomemore pronounced. In contrast, the negative income premium

in hilly areas diminishes somewhat, reflecting the smaller productivity penalty associated with

hilly neighborhoods in less-developed cities, as shown in Table 4.

Figure 9 shows that the differences in overall income levels, commuting costs, and to a

lesser extent, spatial productivity distributions, explain the major gap in observed spatial

income distribution between developed and less-developed cities. However, there remains

a residual gap compared to the patterns observed in less-developed cities. What accounts

for this remaining discrepancy? One potential explanation is heterogeneity in commuting

costs across income groups (Glaeser et al., 2008; Su, 2022). However, as discussed in Section

6.3, this mechanism appears unlikely to play a major role. Another plausible explanation

is lower amenity valuations in suburban, hilly, or river-adjacent areas in less-developed

cities. In contrast to developed cities, these areas may be perceived as less desirable due to

environmental and infrastructural shortcomings—such as polluted rivers or the absence of

sewage systems in suburban or hilly neighborhoods (McCulloch et al., 2025).
19

To quantify the potential role of amenities, we ask: Howmuchmust the coefficients {𝛽1,𝛽2,𝛽3}
decline to account for the gap between Columns (4) and (5)? Table 7 shows that reducing

these coefficients from the baseline values of {0.55,0.85,0.18} to lower but positive values of

{0.29,0.36,0.12}would bridge the observed gap. While these coefficients lack natural units and

should be interpreted cautiously, the findings suggest that differences in amenity valuations

may indeed contribute to the residual spatial income gaps. Importantly, we do not need to

18
Appendix Figure C.1 presents the results of a counterfactual exercise in which we implement the scenarios

in Columns (2)–(4) individually, rather than cumulatively. We find that all of these counterfactuals tend to

reduce income premiums, while the counterfactual to lower income has the largest effects, followed by increasing

commuting costs, then changing productivity distribution.

19
Another part of the gap between Columns (5) and (6) may arise from differences in the geographic structure

of cities beyond commuting cost disparities between U.S. and less-developed cities; for example, the specific

location of rivers and hills within the cities.
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assume negative amenity valuations for suburbs, hills, or rivers; rather, much of the observed

gap is already explained by differences in income levels and commuting costs.

Table 7: Estimated {𝛽1,𝛽2,𝛽3} to Rationalize the Income Distribution in Less-Developed Cities

Model Suburban (𝛽1) Hilly (𝛽2) River (𝛽3)
Baseline Estimates (USA) 0.55 0.85 0.18

Estimates to Fully Rationalize Less Developed Cities 0.29 0.36 0.12

Note: First row reports the estimated {𝛽1,𝛽2,𝛽3} using U.S. cities as reported in Table 5. Second row reports
the estimated {𝛽1,𝛽2,𝛽3} to fully rationalize the differences in the income premiums of suburban, hilly, and
river neighborhoods, after accounting for the overall productivity differences, commuting cost differences,
and differences in productivity premiums in those areas, as described further in Section 6.2.

6.3. Heterogeneity of Commuting Costs by Income Groups

In our baseline analysis, we abstracted from income-related heterogeneity in commuting

costs and wage distributions. However, in U.S. cities, disparities in transportation modes

and commuting costs across income groups have been identified as one potential driver of

residential sorting by income (Glaeser et al., 2008; Su, 2022). In this subsection, we assess the

quantitative relevance of this channel.

To do so, we extend our model from Section 4 to allow commuting costs and wages to

depend on individuals’ earning potential 𝑠. Specifically, we now let commuting costs 𝜏𝑗𝑛,𝑐(𝑠)
and wages 𝑤𝑛,𝑐(𝑠) vary with 𝑠. We retain the assumption that idiosyncratic preferences over

work locations are drawn from an i.i.d. Fréchet distribution with shape parameter 𝜃, which is

common across 𝑠. Under this setting, the probability that a worker with earning potential 𝑠
living in neighborhood 𝑗 commutes to job location 𝑛 is given by:

𝜆𝑗𝑛,𝑐(𝑠) =
(𝜏𝑗𝑛,𝑐(𝑠)−1𝑤𝑛,𝑐(𝑠))

𝜃

∑𝓁 (𝜏𝑗𝓁,𝑐(𝑠)−1𝑤𝓁,𝑐(𝑠))
𝜃 . (20)

We also follow Section 5 that the commuting cost 𝜏𝑗𝑛,𝑐 is a power function of road distance

between neighborhoods 𝑗 to 𝑛 such that log𝜏𝑗𝑛,𝑐(𝑠) = 𝜅𝑐(𝑠) ×RoadDistance𝑗𝑛,𝑐, where 𝜅𝑐(𝑠) can
depend on 𝑠. Under this assumption, the commuting gravity equation (16) holds separately for

each earning potential 𝑠:

log𝜆𝑗𝑛,𝑐(𝑠) = 𝜃 log𝑤𝑛,𝑐(𝑠)−𝜅𝑐(𝑠)𝜃 ×RoadDistance𝑗𝑛,𝑐 − log∑
𝓁
(𝜏𝑗𝓁,𝑐(𝑠)−1𝑤𝓁,𝑐(𝑠))

𝜃 . (21)
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If we observe the commuting flows by earning potential 𝑠, we can estimate the empirical

analog of this equation using a PPML estimator for each earning potential 𝑠, analogously as

Equation (17):

log𝔼[𝜆𝑗𝑛,𝑐(𝑠)] = 𝜓𝑛,𝑐 − �̃�𝑐(𝑠)RoadDistance𝑗𝑛,𝑐 + 𝜂𝑗 ,𝑐(𝑠), (22)

where 𝜓𝑛,𝑐(𝑠) ≡ 𝜃 log𝑤𝑛,𝑐(𝑠) is the workplace fixed effects, �̃�𝑐(𝑠) ≡ 𝜅𝑐(𝑠)𝜃, and 𝜂𝑗 ,𝑐(𝑠) ≡
−log∑𝓁 (𝜏𝑗𝓁,𝑐(𝑠)−1𝑤𝓁,𝑐(𝑠))

𝜃
is the origin fixed effects.

A challenge in estimating this equation is that we do not directly observe earning potentials 𝑠
in our data. While some travel survey data provide information about variables such as

education, it is not comprehensive, and it is also difficult to create a proxy that is consistent

across countries. To deal with this issue, we divide our samples based on the realized income.

Through the lens of our model, realized income is a product of earning potential 𝑠 and the

expected wage rates at the residential location 𝑤𝑗 ,𝑐. Therefore, if the variance of earning

potential 𝑠 is much larger than the spatial variation of wage rates 𝑤𝑗 ,𝑐, this strategy effectively
splits the samples with high- and low-earning-potential households within each city.

Figure 10 presents the estimated commuting semi-elasticities based on Equation (22). The

left column shows the mean estimates and 95% confidence intervals separately for high-

and low-income households—defined as above or below the city-specific median income—in

developed cities (U.S. cities and Tokyo), and the right column shows those estimates in less-

developed cities. In both groups of cities, low-income households exhibit higher commuting

semi-elasticities than high-income households. This pattern is consistent with the notion that

higher-income households have better access to more efficient modes of transportation, such

as private vehicles (Glaeser et al., 2008; Tsivanidis, 2023). At the same time, the differences

in semi-elasticities between developed and less-developed cities are significantly larger than

within-city across-income-group variations.
20

What are the implications of these heterogeneity in commuting costs for the spatial

distribution of income? To explore this question, we conduct the following counterfactual

exercise. First, we calibrate our extended model to U.S. cities using the same parameters as in

our baseline specification (Table 5). To incorporate heterogeneity in commuting access, we use

the estimated wage rates at residential locations for high- and low-earning-potential groups,

𝑤𝑗 ,𝑐(𝑠) for 𝑠 ∈ {𝐻,𝐿}, obtained from the gravity equation (22). Second, we simulate a scenario

in which this heterogeneity is eliminated by setting 𝑤𝑗 ,𝑐(𝐿) = 𝑤𝑗 ,𝑐(𝐻 ). That is, we assume that

low- and high-earning-potential groups face the same commuting access. We then assess how

20
Appendix Table C.2 reports the patterns of estimated destination and origin fixed effects.
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Figure 10: Semi-Elasticity of Commuting by Income Groups

Note: This figure presents the estimated commuting semi-elasticities based on Equation (22). The left
column shows the mean estimates and 95% confidence intervals separately for high- and low-income
households—defined as above or below the city-specific median income—in developed cities (U.S. cities and
Tokyo), and the right column shows those estimates in less-developed cities.

this counterfactual affects the income premiums observed in suburban, hilly, and river areas

in U.S. cities.

Figure 11 presents the results of this counterfactual exercise. Following the format of Figure 9,

we plot the estimated coefficients on the suburban, hilly, and river indicators from the

regression specification in Equation (1). Column (1) shows the results using our extended

model calibrated to U.S. cities. The baseline model replicates the empirical pattern that income

tends to be higher in suburban, hilly, and river areas. When we eliminate heterogeneity

in commuting costs and job access across income groups in Column (2), we find that these

regression coefficients change only marginally. This result suggests that within-city variation

in commuting costs and access to jobs across income groups plays a limited role in shaping the

spatial distribution of residential income, and thus cannot account for the observed differences

between developed and less-developed cities.

One may wonder whether our findings are consistent with those of Glaeser et al. (2008), who

argue that within-city variation in commuting costs across income groups is a key driver
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Figure 11: Counterfactual Simulation to Shut Down Heterogeneous Commuting Costs and

Wages by Earning Potential

Note: This figure displays the estimated coefficients on the suburban, hilly, and river indicators from
regression specification (1). Column (1) presents the baseline results from our model calibrated to U.S.
cities with heterogeneous commuting costs and wage rates. Column (2) reports the results where this
heterogeneity is eliminated by setting 𝑤𝑗 ,𝑐(𝐿) = 𝑤𝑗 ,𝑐(𝐻 ), i.e., we assume that low- and high-earning-
potential groups face the same commuting access.

of the concentration of lower-income residents in central areas. They argue so by using

a stylized monocentric city model, where all households are assumed to work at the city

center. They also assume that the households differ only in terms of income, but not in

terms of preference shocks, leading to an infinite elasticity of residential location choice. By

contrast, our quantitative urban model incorporates two key departures from this setup. First,

work locations are not fixed at the city center; instead, households choose among multiple

employment locations, subject to commuting frictions. Second, households face idiosyncratic

preference shocks over residential locations, which introduces a finite elasticity in location

choice. These two features imply a more muted role for commuting-cost heterogeneity in

shaping the spatial distribution of income—compared to overall income levels or commuting

costs as highlighted in the previous section.
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6.4. Distributional Impacts of Development

So far, we have focused on explaining the observed gap in spatial income distributions between

developed and less developed cities. In this section, we show that these patterns also shape

the unequal welfare gains associated with overall city development.

Specifically, using our model calibrated to U.S. cities, we compute welfare gains from a

uniform increase in productivity – from the levels observed in less developed cities to the

U.S. level, corresponding to a 2.0 log-point rise – as analyzed in Section 6.2. We examine

how this aggregate productivity improvement translates into welfare gains across households,

disaggregated by earning potential and residential location. We measure these gains using an

equivalent variation (EV) metric that asks: “Given the existing U.S. distribution of population

and housing prices, how much income would a household be willing to give up to avoid a

citywide drop in productivity to the level of low-income cities, assuming no change in their

residential location choice?” Following Baqaee and Burstein (2023), it is composed of two

additive terms: (i) uniform changes in labor income across locations and household types, and

(ii) location- and type-specific changes in expenditure-adjusted housing costs.

Our model predicts that this welfare measure varies across households due to nonhomothetic

preferences, which induce shifts in spatial population distribution and generate uneven

changes in housing costs. In a special case where we shut down nonhomotheticity (i.e.,

𝜖 = 1 and 𝜌 → 0), the welfare effects are homogeneous within earning potential types: the

productivity increase uniformly raises both wages and housing costs across locations.

Figure 12 shows the distribution of equivalent variation (EV), in log points, across households

by residential location and earning potential. The average EV is approximately 1.84 log points.

This value is somewhat below the assumed 2.0 log point increase in overall productivity. This

gap reflects the fact that rising housing costs partially offset the benefits of higher productivity,

abstracting from income gains to landowners.

We also find substantial dispersion in EVs across residential locations within each earning

potential group, indicating significant spatial variation in housing cost changes, as we

elaborate further below. Across earning potential groups, high-earning-potential households

experience slightly larger averagewelfare gains than their low-earning-potential counterparts.

This difference reflects the interplay of two opposing forces: (i) low-earning-potential

households devote a larger share of income to housing, which tends to lower their EV, and

(ii) they are more likely to reside in central urban areas with better job access in high-income

(U.S.) cities, where housing costs rise less in response to a uniform productivity increase. The
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latter occurs because high-earning households increasingly sort into amenity-rich suburban

areas as income rises, easing price pressure in urban cores. Our results suggest that the first

force (i) modestly outweighs the second (ii), resulting in slightly lower welfare gains for lower-

income households.

Figure 12: Equivalent Variations (EV) from Uniform Productivity Increase

Note: The distribution of EVs, in log points, across households by residential location and earning potential,
to increase the overall productivity from low-income-city level to high-income-city level (as observed in the
U.S. cities).

Table 8 reports how the EVs correlate with residential location characteristics, separately for

high-earning-potential households (Columns 1 and 2) and low-earning-potential households

(Columns 3 and 4). Columns 1 and 3 include only constant terms and therefore report average

EVs, which are slightly higher for high-earning-potential households, consistent with the

earlier discussion.

Across both groups, we find that EVs tend to be lower in suburban, hilly, and river-adjacent

areas, and higher in neighborhoods with high job accessibility. This pattern aligns with

the interpretation that, as overall city productivity rises, high-earning-potential households

relocate from central neighborhoods to amenity-rich suburban areas. This reallocation reduces

relative housing demand, and hence equilibrium housing costs, increases in the former areas,

and decreases in the latter.
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Table 8: Spatial Variations of Equivalent Variations (EV) from Uniform Productivity Increase

Dependent variable:

EV (High Earning Potential) EV (Low Earning Potential)

(1) (2) (3) (4)

Suburban −0.043∗∗∗ −0.059∗∗∗

(0.003) (0.003)

Hilly −0.044∗∗∗ −0.040∗

(0.014) (0.021)

River −0.007∗∗∗ −0.012∗∗∗

(0.002) (0.002)

High Work Access 0.019
∗∗∗

0.019
∗∗∗

(0.003) (0.003)

Constant 1.841
∗∗∗

1.868
∗∗∗

1.834
∗∗∗

1.846
∗∗∗

(0.002) (0.004) (0.002) (0.004)

Number of cities 48 48 48 48

Observations 27,117 27,117 27,117 27,117

R
2

0.000 0.411 0.000 0.453

Note: The Regression of EVs, in log points, across households by residential location and earning potential,
to increase the overall productivity from low-income-city level to high-income-city level (as observed in the
U.S. cities). “High Work Access” proxies the neighborhoods with above-median work access for each city.

Taken together, these findings highlight that the evolution of spatial income distribution

during economic development has important implications for the distribution of welfare gains

across households.

7. Conclusion

We draw on new granular data from 127 cities in 26 countries to study how the spatial

distribution of income within cities varies with economic development. We document

that in less-developed countries, average incomes of urban residents decline monotonically

in distance to the city center, whereas income-distance gradients are flat or increasing
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in developed economies. Neighborhoods with natural amenities – in particular hills and

proximity to a river – are poorer than average in less-developed countries and richer than

average in developed ones.

We develop a quantitative spatial model to evaluate potential explanations for these patterns,

focusing on non-homothetic preferences over amenities, higher commuting costs or more

centralized jobs in less-developed countries, and heterogeneity in commuting costs by

household income level. We help discipline the importance of these channels by estimating

commuting gravity equations in cities across the development spectrum.

Using the model calibrated to U.S. cities, we find that the differences in overall income

levels and nonhomothetic preferences account for nearly half of the observed gaps in income

premiums in suburban, hilly, and river neighborhoods between the U.S. cities and less-

developed cities. Increasing commuting costs and changing the concentration further reduce

the income premiums and turn them negative, though these effects are smaller in magnitude

than those of lowering income alone. The remaining gap, which we leave as residuals, can be

explained by lower amenity values and fewer public utilities in peripheral areas.

We also examine the distributional implications of overall city development. As city income

rises, high-earning-potential households tend to relocate from central urban areas to suburban

neighborhoods with better amenities. This relocation eases housing demand pressures in

city centers, moderating rent increases and making these areas more affordable. As a result,

residents in urban core areas experience relatively higher welfare gains than those outside.

Such heterogeneity does not emerge if we shut down nonhomothetic preferences, because

the uniform increase in labor productivity does not induce any changes in income sorting.

Hence, understanding how spatial income distributions vary with income levels and how

nonhomothetic preferences shape residential location choices is essential for understanding

the welfare implications of urban development across households.
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A. Data Appendix

A.1. Additional Figures and Tables for Data

Table A.1: List of Cities From JICA Surveys (L. America)

City Name Year Country Number

of

respondents

Number

of

survey

zones

Total

geographic

area

(km
2
)

Maximum

distance

to city

center

(km)

Belem 2000 Brazil 29835 91 420.1 21.8

Lima 2003 Peru 144490 388 2101.0 40.6

Managua 1998 Nicaragua 37082 92 257.6 13.8

Table A.2: List of Cities From JICA Surveys (Africa, M. East)

City Name Year Country Number

of

respondents

Number

of

survey

zones

Total

geographic

area

(km
2
)

Maximum

distance

to city

center

(km)

Abidjan 2013 Côte d’Ivoire 50619 129 873.5 25.7

Cairo 2001 Egypt 137513 429 2111.8 36.5

Damascus 1998 Syrian Arab

Republic

38280 74 1941.1 22.8

Dar es

Salaam

2007 U.R. of

Tanzania:

Mainland

26687 159 1176.7 29.0

Kinshasa 2018 D.R. of the

Congo

42031 321 545.6 21.4

Mombasa 2015 Kenya 10868 32 190.2 10.5

Nairobi 2005 Kenya 20199 88 564.3 20.4

Nairobi 2013 Kenya 16794 102 594.9 20.1
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Table A.3: List of Cities From JICA Surveys (Asia, E. Europe)

City Name Year Country Number

of

respondents

Number

of

survey

zones

Total

geographic

area

(km
2
)

Maximum

distance

to city

center

(km)

Bucharest 1998 Romania 92784 75 1110.4 13.1

Cebu 2014 Philippines 28806 229 465.5 38.7

Chengdu 2000 China 31130 125 800.0 17.0

Colombo 2013 Sri Lanka 124673 376 1718.0 59.4

Da Nang 2008 Viet Nam 18171 50 401.1 14.3

Dhaka 2009 Bangladesh 70456 86 1090.2 22.4

Dhaka 2014 Bangladesh 118026 140 1844.5 29.7

Hanoi 2005 Viet Nam 63716 250 1131.0 31.9

Ho Chi

Minh

2003 Viet Nam 102407 247 3967.2 40.5

Ho Chi

Minh

2014 Viet Nam 42908 210 1877.5 35.5

Jakarta 2018 Indonesia 5000 534 1975.9 65.5

Karachi 2011 Pakistan 96507 170 1673.5 30.3

Kuala

Lumpur

1999 Malaysia 80545 222 2562.2 46.9

Lahore 2010 Pakistan 89414 188 2583.9 43.1

Manila 1996 Philippines 231838 220 1671.1 37.4

Phnom

Penh

2000 Cambodia 17398 70 351.3 14.3

Phnom

Penh

2012 Cambodia 42074 85 536.0 17.5

Viang

Chan

2007 Lao People’s

DR

27630 33 330.7 11.0

Yangon 2013 Myanmar 42224 620 782.4 29.7
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Table A.4: List of Cities Other Than JICA Surveys

Country Number

of

Cities

Total number

of survey

zones

List of Cities

Brazil 30 93876 Aracaju, Belo Horizonte, Belém, Campinas,

Ceilândia, Cuiabá, Curitiba, Florianópolis,

Fortaleza, Goiânia, João Pessoa, Londrina,

Maceió, Manaus, Natal, Novo Hamburgo, Porto

Alegre, Recife, Ribeirao Preto, Rio de Janeiro,

Salvador, Santos, Sao Goncalo, Sao Jose dos

Campos, Sorocaba, São Luís, São Paulo, Teresina,

Uberlândia, Vila Velha

France 7 5419 Bordeaux, Lille, Lyon, Marseille, Nice, Paris,

Toulouse

Japan 1 190 Tokyo

Spain 7 9889 Barcelona, Bilbao, Madrid, Málaga, Seville,

Valencia, Zaragoza

United Kingdom 9 2529 Birmingham, Bristol, Leeds, Liverpool, London,

Manchester, Newcastle upon Tyne, Nottingham,

Sheffield

United States 48 27655 Albuquerque, Atlanta, Austin, Bakersfield,

Baltimore, Boston, Bradenton, Bridgeport,

Buffalo, Chicago, Cincinnati, Cleveland,

Columbus, Concord, Dallas, Denver, Detroit,

Fresno, Honolulu, Houston, Indianapolis, Kansas

City, Las Vegas, Los Angeles, Louisville, Miami,

Milwaukee, Minneapolis, New Orleans, New

York, Oklahoma City, Omaha, Orlando,

Philadelphia, Phoenix, Pittsburgh, Portland,

Providence, Sacramento, Salt Lake City, San

Antonio, San Jose, Seattle, St. Louis, Tampa,

Tucson, Virginia Beach, Washington D.C.

Note: A list of all countries which appear in our neighborhood-level income dataset described in Section 2,
along with the number of cities from each country.
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Figure A.1: Locations of Cities in our Data Set

Note: A map of all cities included in the neighborhood-level income dataset described in Section 2 .
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Figure A.2: Built-up area (red) and Neighborhoods (blue) in Lima and Ho Chi Minh City

(a) Lima, Peru (b) Ho Chi Minh City, Vietnam

Note: “Built-up Area”, in red, represents shape of a city as defined by the Un Human Settlements Project
(Bright et al., 2016). “JICA Survey”, blue, shows the neighborhoods surveyed by JICA in their surveys
across the world. With a few, small, deviations, the area spanned by JICA surveys encompasses the entire
“built-up area”.
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Figure A.3: Geocoding Survey Zones (Lima)

(a) PDF (b) Shapefiles

Note: Left panel shows the screenshot of survey zones from a report for a travel survey. Right panel shows
the screenshot of geocoded shapefiles of survey zones.
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A.2. Comparison of Income between Travel Survey and Census in Belem, Brazil

In this section, we provide a cross-validation of our residential income data from travel survey

data and census data in Belem, Brazil, the only city in our data set where both types of data is

available.

The two data sets show similar patterns of residential income. In Figure A.4, we show

the neighborhood-level income percentiles for both data sources. The semi-circle in each

panel represents the border between suburban and non-suburban neighborhoods as defined

in Section 3, where suburban neighborhoods are defined as those containing 50 percent of

the population furthest from the city center. Despite the differences in the spatial resolution,

one can recognize a similarity in the broad pattern of the spatial income distribution between

these two data sets. In particular, in both data sets, one can visually recognize the pattern that

the average income is higher in urban than suburban areas.

To further reinforce this point, in Figure A.5, we show the relationship between income

percentile and distance to the city center for the two data sources. The two thick lines

represent the average income percentile within each 2km bin from each data set, with 95

percent confidence intervals. Both datasets exhibit a monotonically decreasing pattern in the

distance from the city center, consistent with our findings in a typical less-developed city

(Section 3).

Finally, in Figure A.6, we directly compare the average neighborhood income between the

JICA travel survey and the census data. Because the JICA travel survey is spatially coarser

than those from the census, we aggregate the census income at the level of the travel survey.

We compare the income percentiles between the two surveys at this level. We find remarkably

tight relationships between these two data sets, with the majority of neighborhoods hewing

to the 45-degree line, indicating identical income percentiles for both data sources.

7



Figure A.4: Map of income percentiles in Belem, Brazil

(a) JICA Travel Survey (b) 2010 Census

Figure A.5: Income percentile and distance from center in Belem
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Figure A.6: Income ranking from census and JICA travel survey in Belem
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B. Additional Figures and Tables describing Income Patterns

B.1. Residential Income and Distance to City Center

Figure B.1: Residential Income and Distance to City Center: Nonparametric Plots, by

Continent

(a) USA (b) W. Europe or Japan

(c) L. America (d) Asia, E. Europe

(e) Africa, M. East

Note: Distance from the city center and average neighborhood residential income percentile. Emulates
Figure B.1, grouping by continent rather than development status. Each light line represents a single city,
and averages are highlighted in bold.
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Figure B.2: Residential Income and Distance from City Center: Normalized Log Income

(a) Developed Cities (b) Less Developed Cities

Note: Distance from the city center and income. Emulates Figure B.1, except using normalized log income
on the y-axis. Each light line represents a single city, and averages are highlighted in bold.

Figure B.3: Suburban-Urban Income Gap: log Income

(a) By Development Status (b) By Continents

Note: Distance from the city center and income. Emulates Figure B.1, except using normalized log income on
the y-axis, and with cities grouped by continent rather than development status. Each light line represents
a single city, and averages are highlighted in bold
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Figure B.4: Suburban-Urban Income Gap: By City, 25 percent as cut-off of ratio of income

percentiles

(a) By Development Status (b) By Continents

Note: The “suburban-urban income gap” of each city. Emulates Figure 4, except suburban neighborhoods
are those with the outer 20 percent of the population, as opposed to the outer 50 percent as in our main
specification. Each dot represents a city. Panel (a) groups cities by development status, Panel (b) by
continent. We also plot the average value and its 95 percent confidence interval.

12



Table B.1: Suburban-Urban Income Gap: Top and Bottom 20 Cities

City Country Difference Continent Development Status

Hanoi Viet Nam -37.9 Asia, E. Europe Less Developed

Ho Chi Minh City Viet Nam -37.1 Asia, E. Europe Less Developed

Dhaka Bangladesh -35.9 Asia, E. Europe Less Developed

Mombasa Kenya -33.5 Africa, M. East Less Developed

Phnom Penh Cambodia -33.2 Asia, E. Europe Less Developed

Tokyo Japan -33.2 W. Europe, Japan Developed

Lima Peru -31.8 L. America Less Developed

Curitiba Brazil -30.8 L. America Less Developed

Goiânia Brazil -28.2 L. America Less Developed

Phnom Penh Cambodia -28.1 Asia, E. Europe Less Developed

Belém Brazil -28.0 L. America Less Developed

Florianópolis Brazil -26.2 L. America Less Developed

Porto Alegre Brazil -25.3 L. America Less Developed

Seattle United States -25.0 USA Developed

Vila Velha Brazil -24.8 L. America Less Developed

Uberlândia Brazil -24.4 L. America Less Developed

Ho Chi Minh City Viet Nam -23.9 Asia, E. Europe Less Developed

Londrina Brazil -22.9 L. America Less Developed

Campinas Brazil -22.0 L. America Less Developed

Colombo Sri Lanka -21.6 Asia, E. Europe Less Developed

(a) Bottom 20 Cities

City Country Difference Continent Development Status

Fresno United States 42.3 USA Developed

Las Vegas United States 37.5 USA Developed

Omaha United States 36.7 USA Developed

Buffalo United States 32.7 USA Developed

Detroit United States 31.7 USA Developed

San Antonio United States 31.5 USA Developed

Dà Nang Viet Nam 31.4 Asia, E. Europe Less Developed

Indianapolis United States 30.5 USA Developed

Tucson United States 30.5 USA Developed

Cleveland United States 29.9 USA Developed

Bakersfield United States 29.2 USA Developed

Oklahoma City United States 29.1 USA Developed

Providence United States 28.6 USA Developed

Columbus United States 27.0 USA Developed

Baltimore United States 26.0 USA Developed

Milwaukee United States 25.9 USA Developed

Albuquerque United States 24.9 USA Developed

Kansas City United States 23.8 USA Developed

Philadelphia United States 23.7 USA Developed

Houston United States 23.7 USA Developed

(b) Top 20 Cities

Note: A list of the top and bottom 20 cities, ranked by the gap ratio of income between suburban vs urban
areas. Suburban neighborhoods are those containing the furthest 50 percent of the population.
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Table B.2: Suburban-Urban Income Gap: By Country

Country Difference Cities continent Development Status

Japan -33.2 1 W. Europe, Japan Developed

Peru -31.8 1 L. America Less Developed

Cambodia -30.7 2 Asia, E. Europe Less Developed

Sri Lanka -21.6 1 Asia, E. Europe Less Developed

Bangladesh -20.6 2 Asia, E. Europe Less Developed

D.R. of the Congo -20.0 1 Africa, M. East Less Developed

Viet Nam -16.9 4 Asia, E. Europe Less Developed

Myanmar -15.8 1 Asia, E. Europe Less Developed

Kenya -15.2 3 Africa, M. East Less Developed

Brazil -15.1 31 L. America Less Developed

Romania -12.8 1 Asia, E. Europe Less Developed

Nicaragua -12.3 1 L. America Less Developed

Malaysia -11.7 1 Asia, E. Europe Less Developed

Syrian Arab Republic -10.2 1 Africa, M. East Less Developed

Côte d’Ivoire -9.9 1 Africa, M. East Less Developed

Pakistan -8.6 2 Asia, E. Europe Less Developed

Lao People’s DR -8.2 1 Asia, E. Europe Less Developed

Egypt -7.5 1 Africa, M. East Less Developed

Philippines -6.3 2 Asia, E. Europe Less Developed

France -5.4 7 W. Europe, Japan Developed

Indonesia -5.0 1 Asia, E. Europe Less Developed

U.R. of Tanzania: Mainland -4.9 1 Africa, M. East Less Developed

Spain 0.4 7 W. Europe, Japan Developed

United Kingdom 3.9 9 W. Europe, Japan Developed

China 5.7 1 Asia, E. Europe Less Developed

United States 16.4 48 USA Developed

Note: A list of all countries in our neighborhood-level income dataset ranked by the gap ratio of income
between suburban vs urban areas. Suburban neighborhoods are those containing the furthest 50 percent of
the population.
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B.2. Residential Income and Hills/Rivers

Figure B.5: Residential Income and Hills: By City

(a) By Development Status (b) By Continents

Note: Differences in average income percentile between hilly neighborhoods and non-hilly neighborhoods,
as defined in Section 2. Emulates Figure 5, but focuses only on hills. Panel (a) groups cities by development
status, Panel (b) by continent. We also plot the average value and its 95 percent confidence interval.

Figure B.6: Residential Income and Rivers: By City

(a) By Development Status (b) By Continents

Note: Differences in average income percentile between neighborhoods that are near a river, meaning within
100 meters of a natural waterway. Emulates Figure 5, but focuses only on rivers. Panel (a) groups cities by
development status, Panel (b) by continent. We also plot the average value and its 95 percent confidence
interval.
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Table B.3: Residential Income and Hills/Rivers: Top and Bottom 20 Cities

City Country Difference Continent Development Status

Nairobi Kenya -47.1 Africa, M. East Less Developed

Damascus Syrian Arab Republic -32.3 Africa, M. East Less Developed

Dhaka Bangladesh -31.6 Asia, E. Europe Less Developed

Lima Peru -29.2 L. America Less Developed

Managua Nicaragua -25.2 L. America Less Developed

Lahore Pakistan -25.1 Asia, E. Europe Less Developed

Ho Chi Minh City Viet Nam -24.7 Asia, E. Europe Less Developed

Belém Brazil -23.3 L. America Less Developed

Dar es Salaam U.R. of Tanzania: Mainland -22.9 Africa, M. East Less Developed

Belém Brazil -22.1 L. America Less Developed

Colombo Sri Lanka -20.3 Asia, E. Europe Less Developed

Vila Velha Brazil -20.1 L. America Less Developed

Phnom Penh Cambodia -19.4 Asia, E. Europe Less Developed

Newcastle upon Tyne United Kingdom -19.3 W. Europe, Japan Developed

Maceió Brazil -18.5 L. America Less Developed

João Pessoa Brazil -17.6 L. America Less Developed

São Luís Brazil -17.3 L. America Less Developed

Recife Brazil -16.9 L. America Less Developed

Hanoi Viet Nam -15.8 Asia, E. Europe Less Developed

Curitiba Brazil -15.8 L. America Less Developed

(a) Bottom 20 Cities

City Country Difference Continent Development Status

Concord United States 25.7 USA Developed

Bakersfield United States 23.3 USA Developed

Honolulu United States 22.6 USA Developed

Lille France 22.6 W. Europe, Japan Developed

Las Vegas United States 22.5 USA Developed

Cleveland United States 22.0 USA Developed

Atlanta United States 22.0 USA Developed

Dà Nang Viet Nam 21.9 Asia, E. Europe Less Developed

Austin United States 21.2 USA Developed

Los Angeles United States 18.3 USA Developed

Sacramento United States 17.7 USA Developed

San Jose United States 17.7 USA Developed

Bradenton United States 17.2 USA Developed

Buffalo United States 15.8 USA Developed

Málaga Spain 15.7 W. Europe, Japan Developed

Seattle United States 14.8 USA Developed

Albuquerque United States 14.2 USA Developed

Indianapolis United States 14.0 USA Developed

Madrid Spain 13.5 W. Europe, Japan Developed

Lyon France 13.3 W. Europe, Japan Developed

(b) Top 20 Cities

Note: A list of the top and bottom 20 cities, ranked by the gap in income percentile between neighborhoods
that are hilly or near a river and thost that are not, as defined in Section 2.
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Table B.4: Residential Income and Hills/Rivers: By Country

Country Ratio Cities Continent Development Status

Syrian Arab Republic -32.3 1 Africa, M. East Less Developed

Peru -29.2 1 L. America Less Developed

Nicaragua -25.2 1 L. America Less Developed

Kenya -25.0 3 Africa, M. East Less Developed

U.R. of Tanzania: Mainland -22.9 1 Africa, M. East Less Developed

Sri Lanka -20.3 1 Asia, E. Europe Less Developed

Bangladesh -16.9 2 Asia, E. Europe Less Developed

Pakistan -14.6 2 Asia, E. Europe Less Developed

Cambodia -12.6 2 Asia, E. Europe Less Developed

Myanmar -12.3 1 Asia, E. Europe Less Developed

Japan -11.3 1 W. Europe, Japan Developed

Côte d’Ivoire -8.9 1 Africa, M. East Less Developed

Brazil -8.8 31 L. America Less Developed

Malaysia -7.5 1 Asia, E. Europe Less Developed

Lao People’s DR -6.5 1 Asia, E. Europe Less Developed

Viet Nam -6.5 4 Asia, E. Europe Less Developed

Philippines -5.9 2 Asia, E. Europe Less Developed

Egypt -4.4 1 Africa, M. East Less Developed

Indonesia -2.8 1 Asia, E. Europe Less Developed

D.R. of the Congo -2.1 1 Africa, M. East Less Developed

United Kingdom 1.0 9 W. Europe, Japan Developed

Romania 1.6 1 Asia, E. Europe Less Developed

Spain 2.7 7 W. Europe, Japan Developed

China 2.8 1 Asia, E. Europe Less Developed

France 7.9 7 W. Europe, Japan Developed

United States 8.0 48 USA Developed

Note: A list of countries, ranked by the gap in income percentile between neighborhoods that are hilly or
near a river and those that are not, as defined in Section 2.
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B.3. Robustness of Regression Analysis

Table B.5: Further Robustness: Differences in Income Premiums in Suburban, Hilly, and River

Neighborhoods between Less Developed versus Developed Cities

Difference: Less Developed vs. Developed

Specification Suburban Hilly River

Main specification
Income: Income percentile (high is rich)

Distance: Top 50 percent distance from center

Weight: Nbhd pop

Income Measures
Log income -0.44 (0.04)

∗∗∗
-0.36 (0.06)

∗∗∗
-0.13 (0.03)

∗∗∗

Weighting schemes
No nbhd pop weight -24.2 (2.6)

∗∗∗
-21.1 (3.5)

∗∗∗
-9.6 (2.1)

∗∗∗

City subsets
No Brazil -22.9 (3.2)

∗∗∗
-17.0 (5.8)

∗∗∗
-10.4 (2.4)

∗∗∗

No USA -12.2 (2.9)
∗∗∗

-15.4 (4.9)
∗∗∗

-7.3 (2.8)
∗∗∗

New World cities -31.4 (2.8)
∗∗∗

-29.9 (3.4)
∗∗∗

-12.4 (2.4)
∗∗∗

Old World cities -10.6 (3.7)
∗∗∗

-6.0 (6.2) -7.5 (3.1)
∗∗

Exclude bottom/top 25% of cities by pop -23.3 (3.8)
∗∗∗

-19.5 (5.7)
∗∗∗

-12.3 (4.0)
∗∗∗

Exclude bottom/top 25% of cities by area -25.0 (3.5)
∗∗∗

-22.5 (4.3)
∗∗∗

-9.5 (2.9)
∗∗∗

Neighborhood subsets
Exclude neighborhoods ≥ 15km of center -18.7 (2.5)

∗∗∗
-19.0 (4.1)

∗∗∗
-8.7 (2.3)

∗∗∗

Exclude neighborhoods ≥ 20km of center -22.6 (2.5)
∗∗∗

-20.3 (3.9)
∗∗∗

-9.0 (2.3)
∗∗∗

Distance measures
Top 25 percent distance from center -24.6 (2.4)

∗∗∗
-21.9 (3.6)

∗∗∗
-10.0 (2.1)

∗∗∗

Distance (km) -1.8 (0.19)
∗∗∗

-21.6 (3.5)
∗∗∗

-8.4 (2.0)
∗∗∗

Log distance -16.4 (1.8)
∗∗∗

-21.0 (3.5)
∗∗∗

-9.3 (2.0)
∗∗∗

Distance population rank (0-100) -0.48 (0.05)
∗∗∗

-20.9 (3.6)
∗∗∗

-8.6 (2.0)
∗∗∗

Negative log population density -11.6 (1.3)
∗∗∗

-14.1 (3.5)
∗∗∗

-5.1 (2.0)
∗∗

Negative log building volume density -12.1 (0.95)
∗∗∗

-13.0 (3.7)
∗∗∗

-5.9 (2.0)
∗∗∗

City-level controls
City population -23.3 (2.7)

∗∗∗
-21.6 (3.5)

∗∗∗
-9.9 (2.4)

∗∗∗

City area -23.5 (2.9)
∗∗∗

-18.8 (3.9)
∗∗∗

-10.4 (2.4)
∗∗∗

Ethnic diversity -23.7 (2.6)
∗∗∗

-21.7 (3.4)
∗∗∗

-12.4 (2.4)
∗∗∗

Colonial group -12.7 (3.5)
∗∗∗

-15.9 (4.0)
∗∗∗

-9.5 (2.8)
∗∗∗

Neighborhood-City controls
Log area -21.7 (2.4)

∗∗∗
-22.2 (3.5)

∗∗∗
-6.4 (1.8)

∗∗∗

Quadrant relative to center -24.3 (2.5)
∗∗∗

-20.2 (3.6)
∗∗∗

-10.1 (2.1)
∗∗∗
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Table B.6: Spatial Patterns of Population Density

Dependent Variable: Log population density

Model: (1) (2) (3) (4)

Variables
Developed𝑐 × Suburban𝑗 ,𝑐 -0.76

∗∗∗
-0.73

∗∗∗

(0.05) (0.05)

Less Developed𝑐 × Suburban𝑗 ,𝑐 -0.82
∗∗∗

-0.73
∗∗∗

(0.08) (0.07)

Developed𝑐 × Hilly𝑗 ,𝑐 -0.90
∗∗∗

-0.85
∗∗∗

(0.11) (0.10)

Less Developed𝑐 × Hilly𝑗 ,𝑐 -0.42
∗∗∗

-0.37
∗∗∗

(0.10) (0.08)

Developed𝑐 × River𝑗 ,𝑐 -0.70
∗∗∗

-0.65
∗∗∗

(0.04) (0.04)

Less Developed𝑐 × River𝑗 ,𝑐 -0.98
∗∗∗

-0.82
∗∗∗

(0.10) (0.08)

Difference: Less Developed𝑐 vs Developed𝑐
Suburban𝑗 ,𝑐 -0.06 -0.003

(0.09) (0.08)

Hilly𝑗 ,𝑐 0.47
∗∗∗

0.47
∗∗∗

(0.15) (0.13)

River𝑗 ,𝑐 -0.28
∗∗∗

-0.18
∗∗

(0.10) (0.09)

Observations 145,393 145,377 145,393 145,377

City-Year FE ✔ ✔ ✔ ✔
Unique City-Years 132 132 132 132

Weight by neighborhood pop within city ✔ ✔ ✔ ✔

Note: Analysis similar to Table 2 using population density, as opposed to income as the outcome variable.
Panel (a) reports the results of the regression (1), and the bottom panel reports the differences in the
regression coefficients between developed and less-developed cities calculated through at Wald test. Unit of
observation is a neighborhood and weights are the inverse number of neighborhoods in each city 𝑐. ∗∗∗, ∗∗

and ∗ indicate statistical significance at the 1-percent, 5-percent, and 10-percent levels.
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Figure B.7: Population Density and Distance to City Center

(a) By Development Status (b) By Continents

Note: Population density gradient across cities. Emulates Figure 4, however instead of income ratios as the
outcome, we analyze the analyze the population density gradient, defined as the coefficient of log distance
to the city center regressed on log population density. Dots represent cities. Panel (a) groups cities by
development status, Panel (b) by continent. We also plot the average value and its 95 percent confidence
interval.

Figure B.8: Population Density and Hills

(a) By Development Status (b) By Continents

Note: Population density and hilliness across cities. Emulates Figure B.5, however instead of income ratios
as the outcome, our outcome is the coefficient of hilliness when regressed on log population density. Dots
represent cities. Panel (a) groups cities by development status, Panel (b) by continent. We also plot the
average value and its 95 percent confidence interval.
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Figure B.9: Population Density and Rivers

(a) By Development Status (b) By Continents

Note: Population density and being near a river across cities. Emulates Figure B.6, however instead of
income ratios as the outcome, our outcome is the coefficient of being near a river when regressed on log
population density. Dots represent cities. Panel (a) groups cities by development status, Panel (b) by
continent. We also plot the average value and its 95 percent confidence interval.
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C. Additional Figures and Tables for Quantitative Analysis

Table C.1: Estimated Commuting Semi-Elasticity to Road Distance (km) from Travel Surveys

in Less-Developed Cities

City Country Commuting Semi-Elasticity (km)

Phnom Penh Cambodia 0.52 (0.03)

Lahore Pakistan 0.48 (0.02)

Chengdu China 0.45 (0.02)

Vientiane Lao People’s DR 0.44 (0.02)

Hanoi Viet Nam 0.33 (0.02)

Mombasa Kenya 0.33 (0.02)

Dhaka Bangladesh 0.30 (0.02)

Quezon City Philippines 0.28 (0.01)

Abidjan Côte d’Ivoire 0.23 (0.01)

Dà Nang Viet Nam 0.22 (0.03)

Damascus Syrian Arab Republic 0.22 (0.06)

Bucharest Romania 0.22 (0.01)

Cairo Egypt 0.20 (0.01)

Dar es Salaam U.R. of Tanzania: Mainland 0.19 (0.01)

Managua Nicaragua 0.18 (0.01)

Ho Chi Minh City Viet Nam 0.18 (0.01)

Nairobi Kenya 0.17 (0.02)

Lima Peru 0.14 (0.00)

Cebu City Philippines 0.13 (0.01)

Kinshasa D.R. of the Congo 0.13 (0.01)

Kuala Lumpur Malaysia 0.10 (0.00)

Yangon Myanmar 0.10 (0.01)

Belém Brazil 0.10 (0.01)

Karachi Pakistan 0.09 (0.01)

Colombo Sri Lanka 0.07 (0.00)

Jakarta Indonesia 0.03 (0.00)

Note: Estimated semi-elasticity of road distance in kilometers using Equation (17). Parentheses indicate the
standard errors, where the standard errors are clustered in two ways by origins and by destinations.
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Table C.2: Regression Results of Estimated 𝐴𝑗 and 𝑤𝑗 by Income Groups

Dependent Variables: log𝐴𝐻𝑗,𝑐(= �̃�𝐻𝑗,𝑐/𝜃) log𝐴𝐿𝑗,𝑐(= �̃�𝐿𝑗,𝑐/𝜃) log𝑤𝐻𝑗,𝑐(= −𝜂𝐻𝑗,𝑐/𝜃) log𝑤𝐿𝑗,𝑐(= −𝜂𝐿𝑗,𝑐/𝜃)
Model: (1) (2) (3) (4)

Variables
Developed𝑐 × Suburban𝑗 ,𝑐 -0.12

∗∗∗
-0.08

∗∗∗
-0.08

∗∗∗
-0.07

∗∗∗

(0.01) (0.01) (0.007) (0.008)

Less Developed𝑐 × Suburban𝑗 ,𝑐 -0.30
∗∗∗

-0.27
∗∗∗

-0.17
∗∗∗

-0.14
∗∗∗

(0.02) (0.02) (0.02) (0.02)

Developed𝑐 × Hilly𝑗 ,𝑐 -0.26
∗∗∗

-0.26
∗∗∗

-0.03
∗∗

-0.04
∗∗∗

(0.04) (0.03) (0.01) (0.01)

Less Developed𝑐 × Hilly𝑗 ,𝑐 -0.15
∗∗∗

-0.14
∗∗∗

-0.06
∗∗

-0.05

(0.02) (0.03) (0.02) (0.04)

Developed𝑐 × River𝑗 ,𝑐 -0.02
∗

-0.07
∗∗∗

-0.02
∗∗∗

-0.02
∗∗∗

(0.01) (0.010) (0.004) (0.004)

Less Developed𝑐 × River𝑗 ,𝑐 -0.17
∗∗∗

-0.16
∗∗∗

-0.08
∗∗∗

-0.06
∗∗∗

(0.02) (0.02) (0.02) (0.01)

Difference: Less Developed𝑐 vs Developed𝑐
Suburban𝑗 ,𝑐 -0.18

∗∗∗
-0.19

∗∗∗
-0.09

∗∗∗
-0.07

∗∗∗

(0.03) (0.02) (0.02) (0.02)

Hilly𝑗 ,𝑐 0.11
∗∗∗

0.12
∗∗∗

-0.04 -0.01

(0.04) (0.04) (0.03) (0.04)

River𝑗 ,𝑐 -0.15
∗∗∗

-0.08
∗∗∗

-0.06
∗∗∗

-0.03
∗∗

(0.02) (0.02) (0.02) (0.01)

Observations 25,259 25,367 25,463 25,463

City-Year FE ✔ ✔ ✔ ✔
Unique City-Years 76 76 76 76

Weight neghborhoods equally within city ✔ ✔ ✔ ✔
Subset ✔ ✔ ✔ ✔

Note: The results of regression (1), where the outcome variables are estimated destination fixed effect from
the commuting gravity equation (22), net of log area and scaled by 𝜃 = 5 (Columns 1-2) and the estimated
origin fixed effects (Columns 3-4). Odd columns report the results of high-income groups, and even columns
report the results of low-income groups, where high- and low-income groups are defined by above or below
the city-specific median income.
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Figure C.1: Spatial Residential Income Distribution of U.S. Cities: Separate Counterfactual for

Lowering Income, Increasing Commuting Costs, and Changing Productivity Distribution

Note: This figure displays the estimated coefficients on the suburban, hilly, and river indicators from
regression specification (1). Column (1) presents the baseline results from our model calibrated to U.S.
cities, corresponding to Column (1) of Table 6. Column (2) shows the regression coefficients under a
counterfactual in which average productivity levels {𝐴𝑗 ,𝑐}𝑗 are uniformly reduced by 2.0 log points across all
neighborhoods and cities—approximately 14% of their baseline values. Column (3) reports coefficients from
a counterfactual equilibrium in which we alternatively increase the commuting semi-elasticity �̃�𝑐 by 0.14,
reflecting the average gap between U.S. and less-developed cities as shown in Figure 7. Column (4) presents
results from an alternative counterfactual in which the relative productivity of suburban, hilly, and river
neighborhoods is adjusted to match the patterns observed in less-developed cities, as documented in Table 4.
Finally, Column (5) displays the corresponding estimates for less-developed cities based on observed data,
as reported in Table 2.
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